2019年高一数列知识点总结

合集下载

高一必修五数学数列全章知识点(完整版)

高一必修五数学数列全章知识点(完整版)

高一数学数列知识总结知识网络二、知识梳理一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a )三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得m s 取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

四.数列通项的常用方法:(1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①⎩⎨⎧≥-==-)2()111n S S n S a n n n(;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:① q pa a n n +=+1;②nn n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.第一节通项公式常用方法题型1 利用公式法求通项例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式:⑴ 1322-+=n n S n ; ⑵12+=nn S .总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式;⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式.总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ⋅=+“;⑵迭加法、迭乘法公式:① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=----- ② 1122332211a a aa a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=----- . 题型3 构造等比数列求通项例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法:①令)(1λλ-=-+n n a p a ;② 在q pa a n n +=+1中令pqx x a a n n -=⇒==+11,∴)(1x a p x a n n -=-+; ③由q pa a n n +=+1得q pa a n n +=-1,∴)(11-+-=-n n n n a a p a a .例4已知数列{}n a 中,nn n a a a 32,111+==+,求数列{}n a 的通项公式.总结:递推关系形如“nn n q pa a +=+1”通过适当变形可转化为: “q pa a n n +=+1”或“nn n n f a a )(1+=+求解.例5已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.总结:递推关系形如“n n n a q a p a ⋅+⋅=++12”,通过适当变形转化为可求和的数列. 强化巩固练习1、已知n S 为数列{}n a 的前n 项和, )2,(23≥∈+=+n N n a S n n ,求数列{}n a 的通项公式.2、已知数列{}n a 中,)(0)1()2(,211++∈=+-+=N n a n a n a n n ,求数列{}n a 的通项公式. 小结:数列通项的常用方法:⑴利用观察法求数列的通项;⑵利用公式法求数列的通项;⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)构造等差、等比数列求通项:①q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.3、数列{}n a 中,)(,111n n n a a n a a -==+,则数列{}n a 的通项=n a 。

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)

..一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n与项数n是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列a n的第n项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即af(n)n.3.递推公式:如果已知数列a n的第一项(或前几项),且任何一项a n与它的前一项a(或前几项)间的关系可以用一个式子来表示,即a n f(a n1)或a n f(a n1,a n2),n1那么这个式子叫做数列a的递推公式.如数列an中,a11,a n2a n1,其中na n2a n1是数列a n的递推公式.4.数列的前n项和与通项的公式①Sn a1a2a;②nS(n1)1a n.SS(n2)nn15.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何nN,均有a n1a n.②递减数列:对于任何nN,均有a n1a n.③摆动数列:例如:1,1,1,1,1,.④常数数列:例如:6,6,6,6,⋯⋯.⑤有界数列:存在正数M使a n M,n N.⑥无界数列:对于任何正数M,总有项a使得a n M.n1、已知n*a2(nN)nn156,则在数列{}a的最大项为__(答:n125);2、数列{}a的通项为nana n,其中a,b均为正数,则a n与a n1的大小关系为___(答:bn1aa n1);n23、已知数列{a}中,a是递增数列,求实数的取值范围(答:3);ann,且{}nnn4、一给定函数yf(x)的图象在下列图中,并且对任意a(0,1),由关系式a n1f(a n)1*得到的数列{}a满足a n1a n(nN),则该函数的图象是()(答:A)neord完美格式..二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。

高一数学-数列基础知识归纳

高一数学-数列基础知识归纳
数列基础知识
一、等差数列与等比数列
等差数列
等比数列
文字定义
一般地,如果一个数列从第二项起,每一项与它的前一项的差是一个常数,那么这个数列就叫等差数列,这个常数叫等差数列的公差。
一般地,如果一个数列从第二项起,每一项与它的前一项的比是一个常数,那么这个数列就叫等比数列,这个常数叫等比数列的公比。
符号定义
如: (下标成等差数列)
3. 等比,则
也等比。
4.等比数列的通项公式类似于 的指数函数,
即:
等比数列的前 项和公式是一个平移加振幅的 的指数函数,即:
5.等比数列中连续相同项数的积组成的新数列是等比数列。
证明方法
证明一个数列为等差数列的方法:
1.定义法
2.中项法
证明一个数列为等比数列的方法:
1.定义法
即把每一项都乘以 的公比 ,向后错一项,再对应同次项相减,转化为等比数列求和。
3.裂项相消法 即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
适用于数列 和 (其中 等差)可Βιβλιοθήκη 项为:分类递增数列:
递减数列:
摆动数列:
常数数列:
通项
前n项和
中项
主要性质
等和性:
若 则
推论:若 则
即:首尾颠倒相加,则和相等
等积性:
若 则
推论:若 则
即:首尾颠倒相乘,则积相等




1.等差数列中连续 项的和,组成的新数列是等差数列。即:
等差,则有
2.从等差数列中抽取等距离的项组成的数列是一个等差数列。
2.中项法
设元技巧
三数等差:
四数等差:
三数等比:

高一数学必修5:数列(知识点梳理)

高一数学必修5:数列(知识点梳理)

第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。

(完整版)高中数学数列知识点整理

(完整版)高中数学数列知识点整理

1数列中a n 与S n 之间的关系:a nS ‘(n 1)注意通项能否合并。

S n & i ,(n 2).2、等差数列:⑴定义:如果一个数列从第 2项起,每一项与它的前一项的差等于同一个常数,即a n - a n 1=d , (n >2, n € N ), 那么这个数列就叫做等差数列。

⑵等差中项:若三数 a 、A b 成等差数列或a n pn q (p 、q 是常数)⑷前n 项和公式:n n 1 S n n^d2⑸常用性质: ① 若 mn p q m,n, p,q N ,贝U a m a n a p a q;② 下标为等差数列的项 a k ,a k m ,a k 2m ,,仍组成等差数列; ③ 数列 a n b ( ,b 为常数)仍为等差数列;④ 若{a n }、{0}是等差数列,则{ka n }、{ka n pb n } (k 、p 是非零常数)、{a p nq }( p,q N )、,…也成等差数列。

⑤单调性: a n 的公差为d ,则:i) d 0 a n 为递增数列; ii) d 0 a n 为递减数列; iii) d 0a n 为常数列;⑥数列{a n }为等差数列 a n pn q ( p,q 是常数)⑦若等差数列 a n 的前n 项和S n ,则S k 、S 2kS k 、S 3k S 2k …是等差数列。

3、等比数列⑴定义:如果一个数列从第 2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

⑵等比中项:若三数a 、Gb 成等比数列G 2 ab, ( ab 同号)。

反之不一定成立。

数列⑶通项公式:a n a 1(n 1)d a m (n m)dn a-i a n2⑶通项公式:a nn 1n maga m q⑷前n 项和公式:a 1 1 q n S i1 qa 1 a n q 1 q⑸常用性质①若m n pq m,n, p,q N , 则 am ana p a q;② a k ,a k m ,a k 2m ,为等比数列, 公比为 q k (下标成等差数列,则对应的项成等比数列)③ 数列a n (为不等于零的常数)仍是公比为 q 的等比数列;正项等比数列 a n ;则lg a n 是公差为lg q 的等差数列;④ 若a n 是等比数列,则 ca n , a n 2 ,a n r(r Z )是等比数列,公比依次是⑤ 单调性:a i 0,q 1或印 0,0 q 1 a “为递增数列; a i 0,0 q 1或q 0,q1a .为递减数列;q 1 a n 为常数列; q 0a n 为摆动数列;⑥ 既是等差数列又是等比数列的数列是常数列。

高一数列知识点总结

高一数列知识点总结

高一数列知识点总结高一数列知识点总结「篇一」等差数列的基本性质⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd。

⑶若{an}{bn}为等差数列,则{ an ±bn }与{kan +bn}(k、b为非零常数)也是等差数列。

⑷对任何m、n ,在等差数列中有:an = am + (n-m)d(m、n∈N+),特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性。

⑸、一般地,当m+n=p+q(m,n,p,q∈N+)时,am+an=ap+aq 。

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差)。

(7)下表成等差数列且公差为m的项ak.ak+m.ak+2m.(k,m∈N+)组成公差为md 的等差数列。

⑻在等差数列中,从第二项起,每一项(有穷数列末项除外)都是它前后两项的等差中项。

⑼当公差d>0时,等差数列中的数随项数的.增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。

高一数列知识点总结「篇二」高考题中的数列试题,往往比较难,同学们有点怕,究其原因,还是数列试题综合性强,变形灵活,为大家分享了高二数学数列知识点的总结,一起来看看吧!数列概念①数列是一种特殊的函数。

其特殊性主要表现在其定义域和值域上。

数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,n}的函数,其中的{1,2,3,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。

图像法;c.解析法。

其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

等差数列1.等差数列通项公式an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b2.等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。

数列基础 知识点总结高中

数列基础 知识点总结高中

数列基础知识点总结高中1. 什么是数列数列是指按照一定顺序排列的一组数,数列中的每一个数都叫做这个数列的项。

数列可以写成一般形式为{an},其中an表示数列的第n项,也可以写成a1, a2, a3, ..., an的形式。

2. 数列的分类数列可以按照项的性质和数列中项的变化规律进行分类,主要可以分为以下几种类型:- 等差数列:如果一个数列中的相邻两项的差都相等,那么这个数列就叫做等差数列。

- 等比数列:如果一个数列中的相邻两项的比都相等,那么这个数列就叫做等比数列。

- 菲波那契数列:这是一种非常有趣的数列,它的每一项都是前两项的和,即an = a(n-1) + a(n-2)。

3. 数列的通项公式对于某些特定的数列,我们可以通过推导或者观察得到一个通项公式,这个公式可以用来表示数列中任意一项的值。

例如对于一个等差数列{an},它的通项公式可以表示为an = a1 + (n-1)d,其中a1表示数列的首项,d表示数列的公差,n表示数列的项数。

4. 数列的性质数列有很多性质,例如对于一个等差数列,它的前n项的和可以用一个公式来表示,即Sn = (a1 + an) × n ÷ 2,其中a1为首项,an为末项。

对于一个等比数列,它的前n项的和也可以用一个公式来表示。

5. 数列的求和对于一些特定的数列,我们可以通过一些方法来求解它的前n项的和,例如使用公式、数学归纳法等。

6. 数列的应用数列在数学中有很多实际应用,例如在计算机科学中,数列可以用来表示计算机程序的执行次数;在经济学中,数列可以用来分析经济增长趋势等。

7. 数列的递推公式对于一些特定的数列,我们可以用递推公式来表示数列的变化规律,通过递推公式可以方便地计算数列的各项的值。

8. 数列的极限数列的极限是数学分析中一个非常重要的概念,它可以帮助我们理解数列的收敛性、发散性等性质。

数列的极限可以用来解决一些实际问题,例如计算机程序的性能优化等。

高一数学必修一 - 数列知识点总结

高一数学必修一 - 数列知识点总结

高一数学必修一 - 数列知识点总结1. 数列的概念数列是由一组按照一定规律排列的数所组成的序列。

数列可以分为等差数列和等比数列两种。

a. 等差数列等差数列是指数列中相邻两项之间的差值都相等的数列。

如果数列的公差为d,则数列的通项公式为:$a_n = a_1 + (n-1)d$,其中$a_n$为第n项,$a_1$为首项,n为项数。

b. 等比数列等比数列是指数列中相邻两项之间的比值都相等的数列。

如果数列的公比为r,则数列的通项公式为:$a_n = a_1 \cdot r^{n-1}$,其中$a_n$为第n项,$a_1$为首项,n为项数。

2. 数列的性质a. 通项公式通项公式是数列中任意一项与项数之间的关系式。

根据数列的类型,可以通过公式求解任意项。

b. 公差和公比对于等差数列,公差是指相邻两项之间的差值。

公差可以用于确定数列的特征和性质。

对于等比数列,公比是指相邻两项之间的比值。

公比可以用于确定数列的特征和性质。

c. 首项和末项首项是数列中的第一项,通常用$a_1$表示。

末项是数列中的最后一项,通常用$a_n$表示。

d. 项数项数是数列中项的个数,通常用n表示。

e. 等差数列的和等差数列的前n项和可以通过公式求解:$S_n =\frac{n}{2}(2a_1 + (n-1)d)$,其中$S_n$表示前n项和。

f. 等比数列的和等比数列的前n项和可以通过公式求解:$S_n = \frac{a_1(1-r^n)}{1-r}$,其中$S_n$表示前n项和。

3. 数列的应用数列在数学中有着广泛的应用,其中一些常见的应用包括:a. 金融计算数列可以应用于金融中的利息计算、贷款计算等,帮助人们进行财务规划和计算。

b. 物理学数列可以应用于物理学中的运动学问题,如运动物体所经过的位置、速度等的计算。

c. 统计学数列可以应用于统计学中的数据分析和预测,帮助人们了解和预测事物的发展趋势。

总结数列是数学中非常重要的概念,常见的数列包括等差数列和等比数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高一数列知识点总结
数列是高一数学的重点,以下是整理的高一数列知识点总结,欢迎参考阅读!
求数列通项公式常用以下几种方法:
一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。

例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。

解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。

所以an=2n—1。

此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。

二、已知数列的前n项和,用公式
S1(n=1)
Sn—Sn—1(n2)
例:已知数列{an}的前n项和Sn=n2—9n,第k项满足5
(A)9(B)8(C)7(D)6
解:∵an=Sn—Sn—1=2n—10,∴5<2k—10
此类题在解时要注意考虑n=1的情况。

三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。

例:已知数列{an}的前n项和Sn满足an=SnSn—1(n2),且a1=—,求数列{an}的通项公式。

解:∵an=SnSn—1(n2),而an=Sn—Sn—1,SnSn—1=Sn—Sn —1,两边同除以SnSn—1,得———=—1(n2),而—=—=—,∴{—}是以—为首项,—1为公差的等差数列,∴—=—,Sn=—,
再用(二)的方法:当n2时,an=Sn—Sn—1=—,当n=1时不适合此式,所以,
—(n=1)
—(n2)
四、用累加、累积的方法求通项公式
对于题中给出an与an+1、an—1的递推式子,常用累加、累积的方法求通项公式。

例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12—nan2+an+1an=0,求数列{an}的通项公式
解:∵(n+1)an+12—nan2+an+1an=0,可分解为[(n+1)an+1—nan](an+1+an)=0
又∵{an}是首项为1的正项数列,∴an+1+an≠0,∴—=—,由此得出:—=—,—=—,—=—,…,—=—,这n—1个式子,将其相乘得:∴—=—,
又∵a1=1,∴an=—(n2),∵n=1也成立,∴an=—(n∈N*)
五、用构造数列方法求通项公式
题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。

例:已知数列{an}中,a1=2,an+1=(——1)(an+2),n=1,2,3,……
(1)求{an}通项公式(2)略
解:由an+1=(——1)(an+2)得到an+1——=(——1)(an ——)
∴{an——}是首项为a1——,公比为——1的等比数列。

由a1=2得an——=(——1)n—1(2——),于是an=(——1)n—1(2——)+—
又例:在数列{an}中,a1=2,an+1=4an—3n+1(n∈N*),证明数列{an—n}是等比数列。

证明:本题即证an+1—(n+1)=q(an—n)(q为非0常数)
由an+1=4an—3n+1,可变形为an+1—(n+1)=4(an—n),又∵a1—1=1,
所以数列{an—n}是首项为1,公比为4的等比数列。

若将此问改为求an的通项公式,则仍可以通过求出{an—n}的通项公式,再转化到an的通项公式上来。

又例:设数列{an}的首项a1∈(0,1),an=—,n=2,3,4……(1)求{an}通项公式。

(2)略
解:由an=—,n=2,3,4,……,整理为1—an=——(1—an —1),又1—a1≠0,所以{1—an}是首项为1—a1,公比为——的等比数列,得an=1—(1—a1)(——)n—1。

相关文档
最新文档