弹簧的弹性势能专题训练
高考物理弹簧专题,包含弹簧问题所有类型的经典例题

A Bv 0 AB 1如下图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①弹簧的左端固定在左墙上;②弹簧的左端受大小也为F 的拉力作用;③弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④弹簧左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( )A .l 2 > l 1B .l 4 > l 3C .l 1 > l 3D .l 2 = l 42如图天花板上用细绳吊起两个用轻弹簧相连的两个质量相同的小球。
两小球均保持静止,突然剪断细绳时,上面小球A 与下面小球B 的加速度为A .a1=g a2=gB .a1=2g a2=gC .a1=2g a2=0D .a1=0 a2=g3两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。
现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为()A 、m 1g/k 1B 、m 2g/k 1C 、m 1g/k 2D 、m 2g/k 24.两块质量分别为m 1和m 2的木块,用一根劲度系数为k 的轻弹簧连在一起,现在m 1上施加压力F ,.为了使撤去F 后m 1跳起时能带起m 2, 则所加压力F 应多大?g m m F )(21+>5一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
当N=0时,物体与平板分离6在足够大的光滑水平面上放有两物块A 和B ,已知m A >m B ,A 物块连接一个轻弹簧并处于静止状态,B 物体以初速度v 0向着A 物块运动。
力学练习题弹簧势能和谐振子的运动分析

力学练习题弹簧势能和谐振子的运动分析力学练习题:弹簧势能和谐振子的运动分析弹簧振子是力学中的一个重要概念,在物理学和工程学中有着广泛的应用。
它可以用来描述弹簧的弹性变形和振荡运动。
本文将重点讨论弹簧振子的势能和谐振子的运动分析。
一、弹簧势能弹簧的势能是指由于弹性势能导致的能量储存。
当弹簧被拉伸或压缩时,其形变会导致储存的势能增加。
根据胡克定律,弹簧的弹性势能与其形变呈线性关系。
胡克定律可以用以下公式表示:F = -kx其中,F是弹簧受到的恢复力,k是弹簧的劲度系数,x是弹簧的形变。
根据弹簧的势能公式:E = 1/2kx²可以看出,弹簧的势能与形变的平方成正比。
二、谐振子的运动分析谐振子是指满足谐振条件的振子系统。
在弹簧振子中,谐振条件是指当外力作用于振子时,振子的周期是恒定的,并且与振幅无关。
根据谐振的特性,弹簧振子的运动可以通过以下公式来描述:x(t) = A*cos(ωt + φ)其中,x(t)表示振子的位移,A表示振幅,ω表示角频率,t表示时间,φ表示初相。
角频率可以用以下公式表示:ω = √(k/m)其中,k是弹簧的劲度系数,m是振子的质量。
根据以上公式,我们可以得出弹簧振子的运动规律:1. 振子的振幅决定了位移的幅值,振幅越大,位移的幅值越大。
2. 振子的周期是恒定的,由角频率决定,与振幅无关。
3. 振子的位移随时间的变化是以正弦函数的形式进行周期性振动。
三、练习题分析为了进一步理解弹簧振子的运动规律,我们来看一个练习题:练习题:一个弹簧振子的劲度系数为100 N/m,质量为0.5 kg。
当振子的振幅为2 cm时,求振子的位移函数和周期。
解答:根据谐振子的运动公式,我们可以计算出角频率:ω = √(k/m) = √(100 N/m / 0.5 kg) = 20 rad/s振子的位移函数为:x(t) = A*cos(ωt + φ)由于振幅为2 cm,即A = 0.02 m,我们可以将其代入位移函数中:x(t) = 0.02*cos(20t + φ)接下来,我们需要求解振子的周期。
弹性势能试题及答案

弹性势能试题及答案1. 弹性势能是指什么?弹性势能是指物体由于发生弹性形变而储存的能量。
2. 弹性势能的计算公式是什么?弹性势能的计算公式为:\[ E = \frac{1}{2}kx^2 \],其中\( E \)是弹性势能,\( k \)是弹性系数,\( x \)是形变量。
3. 弹性势能与动能有何不同?弹性势能是物体因形变而储存的能量,而动能是物体因运动而具有的能量。
4. 弹性势能与弹性系数的关系是怎样的?弹性势能与弹性系数成正比,弹性系数越大,弹性势能也越大。
5. 弹性势能与形变量的关系是怎样的?弹性势能与形变量的平方成正比,形变量越大,弹性势能也越大。
6. 简述胡克定律。
胡克定律是指在弹性限度内,物体的弹性形变与作用力成正比。
7. 弹性势能的单位是什么?弹性势能的单位是焦耳(J)。
8. 弹性势能的计算公式中,弹性系数\( k \)的物理意义是什么?弹性系数\( k \)表示物体抵抗形变的能力,是物体弹性特性的量度。
9. 在弹性势能的计算公式中,\( x \)表示什么?\( x \)表示物体从平衡位置的位移,即形变量。
10. 弹性势能与物体的质量有关吗?弹性势能与物体的质量无关,它只与物体的弹性系数和形变量有关。
11. 弹性势能的计算公式适用于哪些情况?弹性势能的计算公式适用于弹性物体在弹性限度内的形变。
12. 举例说明弹性势能的应用。
弹性势能的应用包括弹簧秤的工作原理、弓箭的发射原理等。
13. 为什么弹簧在拉伸或压缩时会储存能量?弹簧在拉伸或压缩时,其分子结构发生改变,储存了能量。
14. 弹性势能的计算公式是如何推导出来的?弹性势能的计算公式是通过实验数据拟合和理论推导得出的。
15. 弹性势能与物体的体积有关吗?弹性势能与物体的体积无关,它主要与物体的弹性系数和形变量有关。
弹簧类问题专题训练

2009年高三物理弹簧模型专题训练例1.(89年高考题)一轻弹簧上端固定,下端挂一重物,平衡时弹簧伸长了4cm ,再将重物向下拉1cm ,然后放手,则在刚释放的瞬间重物的加速度是(g 取10m/s2)A 、2.5m/s 2B 、7.5m/s 2C 、10m/s 2D 、12.5m/s 2训练1.(1987年高考物理题)如图1所示,一根轻质弹簧上端固定,下端挂一质量为m0的平盘,盘中有一物体,质量为m ,当盘静止时,弹簧的长度比其自然长度伸长了l ,今向下拉盘使弹簧再伸长Δl 后停止。
然后松手放开。
设弹簧总处在弹性限度以内,则刚松开手时盘对物体的支持力等于:A 、;B 、;C 、;D 、。
训练2.如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。
②中弹簧的左端受大小也为F 的拉力作用。
③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。
④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( )A. l l 21>B. l l 43>C. l l 13>D. l l 24=例2.如图,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始到弹簧压缩到最短的过程中,小球的速度、加速度如何变化?训练3. 上题中,小球m 在何时加速度最大? A .小球刚要接触弹簧时 B .在小球合力为0时 C .小球下落到最低点时 D .在小球速度最大时训练4.用如图所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。
该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。
用两根相同的轻弹簧夹着一个质量为2.0kg 的滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a 、b 上,其压力大小可直接从传感器的液晶显示屏上读出。
高中物理弹簧专题典型例题

高中物理弹簧专题典型例题例如图3-5,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。
现将子弹、木块和弹簧合在一起作研究对象,则此系统在从子弹开始射入木块到弹簧压缩到最短的过程中[ ]A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒【错解】以子弹、木块和弹簧为研究对象。
因为系统处在光滑水平桌面上,所以系统水平方向不受外力,系统水平方向动量守恒。
又因系统只有弹力做功,系统机械能守恒。
故A正确。
【错解原因】错解原因有两个一是思维定势,一见光滑面就认为不受外力。
二是规律适用条件不清。
【分析解答】以子弹、弹簧、木块为研究对象,分析受力。
在水平方向,弹簧被压缩是因为受到外力,所以系统水平方向动量不守恒。
由于子弹射入木块过程,发生巨烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒,故B正确。
例质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。
平衡时,弹簧的压缩量为x,如图3-15所示。
物块从钢板正对距离为3X0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动。
已知物体质量也为m时,它们恰能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到最高点与O点的距离。
【错解】物块m从A处自由落下,则机械能守恒设钢板初位置重力势能为0,则向下运动,然后返回O点,此时速度为0,运动过之后物块与钢板一起以v程中因为只有重力和弹簧弹力做功,故机械能守恒。
,与钢板一起向下2m的物块仍从A处落下到钢板初位置应有相同的速度v运动又返回机械能也守恒。
返回到O点速度不为零,设为V则:因为m物块与2m物块在与钢板接触时,弹性势能之比2m物块与钢板一起过O点时,弹簧弹力为0,两者有相同的加速度g。
之后,钢板由于被弹簧牵制,则加速度大于g,两者分离,2m物块从此位置以v为初速竖直上抛上升距离【错解原因】这是一道综合性很强的题。
专题5-8--弹簧能量问题

专题5-7 弹簧能量问题例1.如图所示,轻弹簧下端固定,竖立在水平面上。
其正上方A位置有一只小球。
小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D 位置小球速度减小到零。
小球下降阶段下列判断中正确的是A.在B位置小球动能最大B.在C位置小球加速度最大C.从A→C位置小球重力势能的减少等于小球动能的增加D.从B→D位置小球重力势能的减少小于弹簧弹性势能的增加例2如图所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了多少?物块1的重力势能增加了多少?例3. A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2).(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248J,求这一过程F对木块做的功.4.如图所示,一弹簧振子.物块质量为m,它与水平桌面动摩擦因数为μ,开始用手按住物块,弹簧处于伸状态,然后放手,当弹簧回到原长时物块速度为v1,当弹簧再次回到原长时物块速度为v2,求这两次为原长运动过程中弹簧的最大弹性势能.5.如图,水平弹簧一端固定,另一端系一质量为m的小球,弹簧的劲度系数为k,小球与水平面之间的摩擦系数为μ,当弹簧为原长时小球位于O点,开始时小球位于O点右方的A点,O与A之间的距离为l0,从静止释放小球。
1.为使小球能通过O点,而且只能通过O点一次,试问μ值应在什么范围?2.在上述条件下,小球在O点左方的停住点B点与O点的最大距离l1是多少? 例6.如图所示,质量均为m的木块A、B用轻弹簧相连,竖直放置在水平面上,静止时弹簧的压缩量为l。
弹性势能习题

探究弹性势能的表达式1.在探究弹簧的弹性势能的表达式时,下面猜想有一定道理的是()A.重力势能与物体被举起的高度h有关,所以弹性势能很可能与弹簧的长度有关B.重力势能与物体被举起的高度h有关,所以弹性势能很可能与弹簧被拉伸(或压缩) 的长度有关C.重力势能与物体所受的重力mg大小有关,所以弹性势能很可能与弹簧的劲度系数有关D.重力势能与物体的质量有关,所以弹性势能很可能与弹簧的质量大小有关2.弹簧的一端固定,处于自然长度.现对弹簧的另一端施加一个拉力,关于拉力做功(或弹簧克服拉力做功)与弹性势能变化的关系,以下说法中正确的是()A.拉力对弹簧做正功,弹簧的弹性势能增加B.拉力对弹簧做正功,弹簧的弹性势能减少C.弹簧克服拉力做功,弹簧的弹性势能增加D.弹簧克服拉力做功,弹簧的弹性势能减少3.自由下落的小球,从接触竖直放置的轻弹簧开始,到压缩弹簧到最大形变的过程中,以下说法中正确的是()A.小球的速度逐渐减小B.小球、地球组成系统的重力势能逐渐减小C.小球、弹簧组成系统的弹性势能先逐渐增大再逐渐减小D.小球的加速度逐渐增大4.在一次“蹦极”运动中,人由高空跌下,到最低点的整个过程中,下列说法中正确的是()A.重力对人做正功B.人的重力势能减少了C.橡皮绳对人做负功D.橡皮绳的弹性势能增加了5.如图1所示,在光滑的水平面上有一物体,它的左端连一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是()A.弹簧的弹性势能逐渐减小B.弹簧的弹性势能逐渐增大C.弹簧的弹性势能先增大后减小D.弹簧的弹性势能先减小后增大图1 图26.如图2所示,质量相等的两木块中间连有一弹簧,今用力F缓慢向上提A,直到B 恰好离开地面.开始时物体A静止在弹簧上面.设开始时弹簧的弹性势能为E p1,B刚要离开地面时,弹簧的弹性势能为E p2,则关于E p1、E p2大小关系及弹性势能变化ΔE p说法中正确的是()A.E p1=E p2B.E p1>E p2C.ΔE p>0 D.ΔE p<07.如图1,水平放置的弹簧的进度系数k=500N/m,现用一外力推物块,使弹簧压缩10cm 而静止。
高中物理中的“弹簧”模型50题精选训练

B.图中所示的角度θ= 30°
C.O点受到的作用力大小为2mg
D.球A对绳子的作用力大小为
19、如图所示,在水平传送带上有三个质量分别为m1、m2、m3的木块1、2、3,1和2及2和3间分别用原长为L,劲度系数为k的轻弹簧连接起来,木块与传送带间的动摩擦因数均为μ,现用水平细绳将木块1固定在左边的墙上,传送带按图示方向匀速运动,当三个木块达到平衡后,1、3两木块之间的距离是()
A. B.
C. D.
14、如图所示为大型电子地磅电路图,电源电动势为E,内阻不计.不称物体时,滑片P在A端,滑动变阻器接入电路的有效电阻最大,电流较小;称物体时,在压力作用下使滑片P下滑,滑动变阻器的有效电阻变小,电流变大,这样把重力值转换成电信号,将电流对应的重力值刻在刻度盘上,就可以读出被称物体的重力值.若滑动变阻器上A、B间距为L,最大阻值等于定值电阻的阻值R0,已知两弹簧的总弹力与形变量成正比,比例系数为k,则所称重物的重力G与电流大小I的关系为()
D.轻绳上拉力与轻弹簧A上拉力的大小之比为 ∶2
3、两个劲度系数分别为k1和k2的轻质弹簧a、b串接在一起,a弹簧的一端固定在墙上,如图所示.开始时弹簧均处于原长状态.现用水平力作用在b弹簧的P端向右拉动弹簧,当a弹簧的伸长量为L时()
A.b弹簧的伸长量为
B.b弹簧的伸长量也为L
C.P端向右移动的距离为2L
D.P端向右移动的距离为
4、如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接,在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力FN和摩擦力Ff正确的是()
A. B.
C. D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧的弹性势能专题训练
1.关于弹力做功与弹性势能的关系,我们在进行猜想时,可以参考重力做功与重力势能的关系,则下面的猜想有道理的是()
①弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能增加;
②弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能减少;
③弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能增加;
④弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能减少。
A. ①③
B. ②③
C. ①④
D. ②④
2.在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg的木块相连,若在木块上再作用一个竖直向下的力F,使木块缓慢向下移动0.10m,力F做功2.5J。
此时木块再次处于平衡状态,力F的大小为50N,如图所示。
求:
(1)在木块下移0.10m的过程中弹簧弹性势能的增加量。
(2)弹簧的劲度系数(g取10m/s2)。
3.一根弹簧的弹力−位移图线如图所示,那么弹簧由伸长量4cm到伸长量
8cm的过程中,弹力的功和弹性势能的变化量为( )
A.1.8J,−1.8J
B.−1.8J,1.8J
C.3.6J,−3.6J
D.−3.6J,3.6J
3.答案选:B.
4.弹簧原长为l0,劲度系数为k.用力把它拉到伸长量为l,拉力所做的功为W1;继续拉弹簧,使弹簧在弹性限度内再伸长l,拉力在继续拉伸的过程中所做的功为W2.试求W1与W2的比值.
4.答案:1∶3
5.一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。
假定空气阻力可忽略,运动员可视为质点,下列说法不正确的是( )
A. 运动员到达最低点前重力势能始终减小
B. 蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加
C. 蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒
D. 蹦极过程中,重力势能的改变与重力势能零点的选取有关
5.答案选D.
6.如图所示,在光滑水平面上有一物体,它的左端连一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动。
在物体向右
运动的过程中,下列说法正确的是( )
A. 弹簧对物体做正功,弹簧的弹性势能逐渐减少
B. 弹簧对物体做负功,弹簧的弹性势能逐渐增加
C. 弹簧先对物体做正功,后对物体做负功,弹簧的弹性势能先减少再增加
D. 弹簧先对物体做负功,后对物体做正功,弹簧的弹性势能先增加再减少
6.答案选:C.
7.如图所示,一根轻弹簧下端固定,竖立在水平面上。
其正上方A位置有一只小球。
小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D位置小球速度减小到零。
小球下降阶段下列说法中正确的是( )
A. 在B位置小球动能最大
B. 在C位置小球动能最大
C. 从A→C位置小球重力势能的减少大于小球动能的增加
D. 从A→D位置小球重力势能的减少等于弹簧弹性势能的增加
7.答案选:BCD
8.如图所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且弹簧保持原长的A点无初速地释放,让它自由摆下,不计空气阻力,在重物由A点摆向最低点B的过程中( )
A. 重力做正功,弹力不做功
B. 重力做正功,弹力做正功
C. 若用与弹簧原长相等的细绳代替弹簧后,重力做正功,弹力不做功
D. 若用与弹簧原长相等的细绳代替弹簧后,重力做功不变,弹力不做功
9.如图所示,质量相等的两木块中间连有一弹簧,今用力F缓慢向上提A,直到B恰好离开地面。
开始时物体A静止在弹簧上面。
设开始时弹簧的弹性势能为Ep1,B刚
要离开地面时,弹簧的弹性势能为Ep2,则关于Ep1、Ep2大小关系及弹性势
能变化△Ep说法中正确的是( )
A. Ep1=Ep2
B. Ep1>Ep2
C. △Ep>0
D. △Ep<0
9.答案选:A
10.一个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹起到原高度,小孩从高处开始下落到弹回的整个过程中,他的运动速度v随时间t变化的图线如图所示,图中只有Oa段和cd段为直线。
则根据该图线可知,蹦床的弹性势能增大的过程所对应
的时间间隔为()
A. 仅在t1到t2的时间内
B. 仅在t2到t3的时间内
C. 仅在t1到t3的时间内
D. 在t1到t5的时间内
11.劲度系数分别为kA=200N/m和kB=300N/m的弹簧A和B连接在一起,拉长后将两端固定,如图所示,弹性势能EpA、EpB的关系是( )
A. EpA=EpB
B. EpA>EpB
C. EpA<EpB
D. 无法比较EpA、EpB的大小
11.答案选:B
12.某同学利用自己设计的弹簧弹射器测量弹簧的弹性势能。
装置如图所示。
水平放置的弹射器将质量为m的静止小球弹射出去。
测出小球通过两个竖直放置的光电门的时间间隔为t,甲、乙光电门间距为L,忽略一切阻力。
①小球被弹射出的速度大小v=___,求得静止释放小球时弹簧弹性势能E P=___;(用题目中的字母符号表示)
②由于重力作用,小球被弹射出去后运动轨迹会向下有所偏
转,这对实验结果___影响(选填“有”或“无”).。