三次样条插值法

合集下载

三次样条插值的方法和思路

三次样条插值的方法和思路

三次样条插值的方法和思路摘要:1.三次样条插值的基本概念2.三次样条插值的数学原理3.三次样条插值的实现步骤4.三次样条插值的优缺点5.三次样条插值在实际应用中的案例正文:在日常的科学研究和工程应用中,我们经常会遇到需要对一组数据进行插值的问题。

插值方法有很多,其中三次样条插值是一种常见且有效的方法。

本文将从基本概念、数学原理、实现步骤、优缺点以及实际应用案例等方面,全面介绍三次样条插值的方法和思路。

一、三次样条插值的基本概念三次样条插值(Cubic Spline Interpolation)是一种基于分段多项式的插值方法。

它通过在各个节点上构建一条三次多项式曲线,使得这条曲线在节点之间满足插值条件,从而达到拟合数据的目的。

二、三次样条插值的数学原理三次样条插值的数学原理可以分为两个部分:一是分段三次多项式的构建,二是插值条件的满足。

1.分段三次多项式的构建假设有一组数据点序列为(x0,y0),(x1,y1),(x2,y2),(x3,y3),我们可以将这些数据点连接起来,构建一条分段三次多项式曲线。

分段三次多项式在每个子区间上都是一个三次多项式,它们之间通过节点值进行连接。

2.插值条件的满足为了使分段三次多项式在节点之间满足插值条件,我们需要在每个子区间上满足以下四个条件:(1)端点条件:三次多项式在区间的端点上分别等于节点值;(2)二阶导数条件:三次多项式在区间内的二阶导数等于节点间的斜率;(3)三阶导数条件:三次多项式在区间内的三阶导数等于节点间的曲率;(4)内部点条件:三次多项式在区间内部满足插值函数的连续性。

通过求解这四个条件,我们可以得到分段三次多项式的系数,从而实现插值。

三、三次样条插值的实现步骤1.确定插值节点:根据数据点的位置,选取合适的节点;2.构建分段三次多项式:根据节点值和插值条件,求解分段三次多项式的系数;3.计算插值结果:将待插值点的横坐标代入分段三次多项式,得到插值结果。

三次样条插值

三次样条插值

0)
s(xn 0) s(xn 0)
三弯矩插值法
x xi,
x i+1
s”(x) M i , M i+1
记Mi = s″(xi), f(xi)= yi ,考虑它在任一区间[xi, xi+1]上的形式. 根据三次样条的定义可知 , s(x)的二阶导数 s ″(x)在每一个子区
间[xi, xi+1] ( i=0,1,2,,n-1)上都是线性函数.
2 6
M
i
)(xi1
xi
)
(1)
同理在[xi1, xi ]上讨论得
s(xi )
yi xi
yi1 xi1
(
2 6
M
i
1 6 M i1)(xi
xi1)
(2)
因为s( x)连续,所以(1)(2)即
yi1 yi xi1 xi
1 ( 6 M i1
2 6
M i )(xi1
xi )
yi xi
yi1 xi1
(2) (n 1)内节点处连续及光滑性条件:
s(x s( x
j j
0) 0)
s(x j 0) s(x j 0)
j
1,2,...,n
1
s(x j 0) s(x j 0)
对于待定系数a j ,bj , c j .d j j 1,2,...n,即4n个未知系数,
而插值条件为4n 2个,还缺两个,因此须给出两个 条件称为边界条件,有以下三类:
——分段三次插值多项式
分段插值存在着一个缺点,就是会导致插值函数在子区间的端点 (衔接处)不光滑,即导数不连续。
实际应用中,如机翼设计、船体放样等往往要求有二阶光滑度, 即二阶连续导数。早期工程师制图时,把富有弹性的细长木条 (所谓样条SPLINE )用压铁固定在样点上,其它地方让其自 由弯曲,然后画下曲线(称为样条曲线),它实际上是由分段 多项式光滑连接而成,在样点上要求二阶连续可导。

三次样条插值——三转角方程的算法设计

三次样条插值——三转角方程的算法设计

三次样条插值——三转角方程的算法设计
三次样条插值是一种插值方法,用于通过一组离散点的数据生成连续的曲线。

三次样条插值算法可以通过三转角方程来实现。

三转角方程是指在每个节点处,曲线的一阶导数和二阶导数与相邻插值段的一阶导数和二阶导数相等。

该方程可以用来计算插值段的系数,从而得到连续的曲线。

三次样条插值的算法设计包括以下步骤:
1. 确定插值节点,即给定一组数据点{x_i, y_i}。

2. 计算相邻插值段的一阶导数和二阶导数。

3. 根据三转角方程,计算每个节点的插值段系数。

4. 通过插值段系数,得到连续的三次样条曲线。

三次样条插值算法的优点是可以减少插值误差,同时保持曲线的平滑性。

该算法在数值分析、计算机图形学和工程设计等领域得到广泛应用。

在实现三次样条插值算法时,需要注意以下问题:
1. 插值节点的选择会影响插值曲线的精度和平滑性。

2. 计算导数时需要使用数值差分或解析方法。

3. 三转角方程的求解可能存在线性方程组求解的问题。

总之,三次样条插值算法是一种重要的插值方法,可以用来生成平滑的曲线,具有广泛的应用前景。

三次样条插值

三次样条插值

三次样条插值C++数值算法(第二版)3.3 三次样条插值给定一个列表显示的函数yi=y(xi),i=0,1,2,...,N-1。

特别注意在xj和xj+1之间的一个特殊的区间。

该区间的线性插值公式为(3.3.1)式和(3.3.2)式是拉格朗日插值公式(3.1.1)的特殊情况。

因为它是(分段)线性的,(3.3.1)式在每一区间内的二阶导数为零,在横坐标为xj处的二阶导数不定义或无限。

三次样条插值的目的就是要得到一个内插公式,不论在区间内亦或其边界上,其一阶导数平滑,二阶导数连续。

做一个与事实相反的个假设,除yi的列表值之外,我们还有函数二阶导数y"的列表值,即一系列的yi"值,则在每个区间内,可以在(3.3.1)式的右边加上一个三次多项式,其二阶导数从左边的yj"值线性变化到右边的yj+1"值,这么做便得到了所需的连续二阶导数。

如果还将三次多项式构造在xj和xj+1处为零,则不会破坏在终点xj和xj+1处与列表函数值yj和yj+1的一致性。

进行一些辅助计算便可知,仅有一种办法才能进行这种构造,即用注意,(3.3.3)式和(3.3.4)式对自变量x的依赖,是完全通过A和B对x的线性依赖,以及C和D(通过A和B)对x的三次依赖而实现。

可以很容易地验证,y"事实上是该插值多项式的二阶导数。

使用ABCD的定义对x求(3.3.3)式的导数,计算dA/dx dB/dx dC/dx dD/dx,结果为一阶导数因为x=xj是A=1,x=x(i+1)时A=0,而B正相反,则(3.3.6)式表明y"恰为列表函数的二阶导数。

而且该二阶导数在两个区间(xj-1, xj)和(xj, xj+1)上是连续的。

现在唯一的问题是,假设yj"是已知的。

而实际上并不知道。

然而,仍不要求从(3.3.5)式算出的一阶导数在两个区间的边界处是连续的。

三次样条的关键思想就在于要求这种连续性,并用它求得等式的二阶导数yi"。

数值分析三次样条插值

数值分析三次样条插值


0
2
1



n1
1
n2
2 n1
M d 0
MM dd n2 M d 2


1 1 2 2
n1 n1 n n
di f xi2, xi1, xi
华长生制作
7
2、 三弯矩构造法
三次样条插值函数 S( x) 可以有多种表达式,有时用二阶导数
值S( xi) Mi (i 0,1,, n)
Mi
xi
表示时,使用更方便。 在力学上解释
为细M梁i 在 S处( x的) 弯矩,并且得到的弯矩与相邻两个弯矩有关,故
称用由于表S(示x)在区间的算[x法i , x为i三1](弯i 矩0,算1,法,。n 1) 上是三次多项式,
hn
n1 3
Mn

f
x0 , x1 f
xn1, xn
其中
0

h1 h1h n
1
0 ,
hn , 0 hnh0
d1

6(
f
[
x
,
0
x1]
f
x[ , n1
x
n])(h1
h
n)
1
.
可解出 M i (i 0,1,, n) ,方程组的矩阵形式为
2
hi
min hi
,M4
max x[a,b]
f (4) (x)
1in
华长生制作
16
精品课件!
精品课件!
可见S(x), S(x)和S(x)在[a,b]上一致收敛到f (x), f (x)和f (x)

数值计算方法(三次样条插值)

数值计算方法(三次样条插值)
算法: 1 .输入 x j , f j , f j ( j 0 ,1 ,..., n ); 2 .计算插值
(1 ) 输入插值点 u ;
( 2 ) 对于 j 1 , 2 ,..., n 做
如果
u
x
则计算
j
A1, A2 , B1, B 2;
v A 1 f j 1 A 2 f j B 1 f j 1 B 2 f j;
s( xn 0) s( xn 0)
精品
三次样条插值
用三弯矩阵构造三次条样插值函数
(1)s( x j ) f ( x j ) ( j 0,1,2,... n); (2) 在每个小区间 [ x j1, x j ]( j 1,2,..., n)上 s( x)是不超过
三次多项式; (3) 在开区间( a, b)上 s( x)有连续的二阶导数 ,
则称 s( x)为区间 [a, b]对应于划分 的三次样条函数。 精品
y j1
x x j1 x j x j1
yj
y j1 (x x j1)(y j y j1) /(x j x j1)
精品
分段线性插值
算法: 1 .输入 x i , y i ( i 0 ,1 ,..., n ) 2 .按 k 1 , 2 ,..., m 做
(1) 输入插值点 u
(2) 对于 j 1,2,..., n 做
如果
u
x

j
精品
分段线性插值
1 0 v y j 1 ( u x j 1 )( y j y j 1 ) /( x j x j 1 )
2 0 输出 u , v
分段插值函数
I1 ( x )
I(x)
I2(x)
I
n

三次样条插值算法原理

三次样条插值算法原理

三次样条插值算法原理
三次样条插值算法是一种用于在已知离散数据点上插值的方法。

它使用三次多项式来拟合数据点,并保证拟合的曲线在每个数据点处具有一阶和二阶连续性。

具体原理如下:1.假设有n个已知的数据点(x_i, y_i),其中i=0,1,...,n-1。

2.在每个相邻的数据点之间插入一个三次多项式p_i(x),将插值问题转化为求解n个多项式的系数。

3.三次多项式p_i(x)的表达式为
p_i(x)=a_i+b_i(x-x_i)+c_i(x-x_i)^2+d_i(x-x_i)^3,其中a_i, b_i, c_i, d_i为待求系数。

4.要确定这些系数,需要满足以下条件:(1) 在每个数据点处,曲线通过该点:p_i(x_i)=y_i。

(2) 在相邻数据点之间,曲线一阶连续:
p_i(x_i+1)=p_{i+1}(x_i),即p_i(x_i+1)=p_{i+1}(x_i),对于1 ≤i ≤n-2。

(3) 在相邻数据点之间,曲线二阶连续:p'_i(x_i+1)=p'_{i+1}(x_i),即
p'_i(x_i+1)=p'_{i+1}(x_i),对于1 ≤i ≤n-2。

5.通过求解上述条件,可以得到一系列线性方程组,其中未知数为待求系数。

解出这些系数后,即可得到每个数据段的三次多项式,从而完成插值。

三次样条插值算法的优点是插值曲线的平滑性好,并且对于不符合插值条件的数据点有较好的适应性。

它广泛应用于数据分析、图形绘制等领域。

三次样条插值算法详解

三次样条插值算法详解
局限性
三次样条插值算法要求数据点数量较多,且在某些情况下可能存在数值不稳定性,如数据 点过多或数据点分布不均等情况。此外,该算法对于离散数据点的拟合效果可能不如其他 插值方法。
对未来研究的展望
01
02
03
改进算法稳定性
针对数值不稳定性问题, 未来研究可以探索改进算 法的数值稳定性,提高算 法的鲁棒性。
3
数据转换
对数据进行必要的转换,如标准化、归一化等, 以适应算法需求。
构建插值函数
确定插值节点
根据数据点确定插值节点,确保插值函数在节点处连续且光滑。
构造插值多项式
根据节点和数据点,构造三次多项式作为插值函数。
确定边界条件
根据实际情况确定插值函数的边界条件,如周期性、对称性等。
求解插值函数
求解线性方程组
06
结论
三次样条插值算法总结
适用性
三次样条插值算法适用于各种连续、光滑、可微的分段函数插值问题,尤其在处理具有复 杂变化趋势的数据时表现出色。
优点
该算法能够保证插值函数在分段连接处连续且具有二阶导数,从而在插值过程中保持数据 的平滑性和连续性。此外,三次样条插值算法具有简单、易实现的特点,且计算效率较高 。
根据数据点的数量和分布,合理分段,确保 拟合的精度和连续性。
求解线性方程组
使用高效的方法求解线性方程组,如高斯消 元法或迭代法。
结果输出
输出拟合得到的插值函数,以及相关的误差 分析和图表。
03
三次样条插值算法步骤
数据准备
1 2
数据收集
收集需要插值的原始数据点,确保数据准确可靠。
数据清洗
对数据进行预处理,如去除异常值、缺失值处理 等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档