发动机结构与设计各类计算与校核结构设计

发动机结构与设计各类计算与校核结构设计
发动机结构与设计各类计算与校核结构设计

发动机结构与设计各类计算与校核结构设计

一、摩托车发动机结构与设计

(一)、发动机机体

1.气缸体

气缸体的作用除形成气缸工作容积外,还用作活塞运动导向,其圆柱形空腔称为气缸。 由于气缸壁表面经常与高温高压燃气接触,活塞在汽缸内作高速运动(最高速度可达100km/s )并施加侧压力,以及气缸壁与活塞环几活塞外圆表面之间反复摩擦,而其润滑条件由较差,所以气缸体必须耐高温、耐高压、耐腐蚀,还应具有足够的刚度和强度。

气缸体的材料一般用优质灰铸铁,为了提高气缸的耐磨性,可以在铸铁中加入少量的合金元素,如镍、铬、钼、磷、硼等。

汽缸内壁按二级精度珩磨加工,其工作表面有较高的关洁度,并且形状和尺寸精度也都比较高。 为了保证气缸壁表面能在高温下正常工作,必须对汽缸体和气缸盖随时加以冷却。发动机有风冷和水冷两种。用风冷却时,在汽缸体和气缸盖外表面铸有许多散热片,易增大冷却面积,保证散热充分。用水冷却时在汽缸体内制有水套。 1.1 气缸直径

气缸直径是指气缸内径,与活塞相配合,是发动机的重要参数,许多主要的尺寸如曲柄销直径、气门直径、活塞结构参数等,都要根据气缸直径来选取。

参数设计:

气缸直径已标准化,其直径值按一个优先系列合一个常用系列来选取。根据有关资料可确定气缸的直径D.

1.2 气缸工作容积、燃烧室容积和气缸总容积

上止点和下止点之间的气缸容积,称为气缸工作容积(也称为总排量)(图1)。气缸工作容积与气缸直径的平方、活塞冲程的大小成正比。气缸直径越大、工作容积越大、发动机的功率也就相应地增大。

气缸工作容积的计算公式为

N S D V n ??=42

π

式中:

V

n

——气缸工作容积(ml);

D —— 气缸直径(mm ); S —— 活塞行程(mm;)

N —— 气缸数目。

参数设计:

因设计要求的是单缸发动机的排气量V

n

为100ml ,那么其活塞行程为: 2

4n S V d

π=

同时活塞行程S =2r ;r 为曲轴半径 那么:2S r =

1.3压缩比

图1 气缸燃烧室容积和工作室容积 (a )燃烧室容积 (b )工作室容积

气缸总容积与燃烧室容积的比值,称为压缩比。压缩比表示活塞由下止点到上止点时,可燃混合气在气缸内被压缩多少倍。 1.4气缸工作内压力、气缸总推力

气缸工作内压力是一个变量,随作功行程的开始,数值急剧下降。高质量的气缸在跳火燃烧的瞬间,内压力可达3~5MPa 。

气缸总推力是指一个周期内气缸对外实际作功量。其计算式为:

P D s

F ηπ

2

4

=

式中:F ——气缸总推力(N ); η ——气缸效率;一般η=30% P s ——气缸工作内压力(MPa ); D ——气缸直径(mm )。

参数设计:

气缸工作内压力: P D s

F ηπ

2

4

=

1.5气缸盖

气缸盖用螺柱与气缸体-曲轴箱或气缸体固连在一起。为了增加密封性,气缸体和气缸盖之间加有气缸衬垫。气缸盖的作用主要是封闭气缸上部,并与活塞顶部和气缸壁共同形成燃烧室。燃烧室有很多种形式,不同形式的燃烧室气缸盖的结构又有所不同。

四行程顶置气门发动机的气缸盖上有进、排气门座及气门导管,并设有进气道和排气道,装有进、排气管等。

对气缸盖螺栓联接静强度计算:2

11.3[]4

ca Q

d σσπ=≤

对螺栓的疲劳强度进行精确校核:

1min

min 2()()(2)

tc ca a K S S K σσσσσψσψσσ-+-=

≥++

max 2

14

Q

d σπ

=

min 21

4

p

Q d

σπ

=

max min

2

a σσσ-=

式中:1tc σ-――螺栓材料的对称循环拉压疲劳极限,Mpa 。值见附表。

σψ――试件的材料特性,即循环应力中平均应力的折算系数,对于碳素钢为0.1~0.2,合金钢为0.2~0.3

K σ――拉压疲劳强度综合影响系数. S ――安全系数

1.6燃烧室

燃烧室的种类较多,有锲形、盆形、菱形、半球形等燃烧室。半球形燃烧室结构呈半球形,比起锲形、盆形燃烧室更为紧凑,面容比最小。因进、排气门分别置于气缸轴线的两侧,故其配气机构比较复杂。但有利于促进燃料的完全燃烧和减少排气中的有害成分,对提高经济性和排气净化有利。

(二)、曲柄连杆机构的受力分析与平衡

2.1 曲柄连杆比

曲柄连杆臂时指曲柄半径与连杆长度之比,简称为连杆比,用λ表示。由下式定义

l

r

式中:r ——曲柄半径,即曲柄销中心到曲轴中心之间的距离; l ——连杆长度,即连杆大小头轴线之间的距离。

连杆比不仅影响曲柄连杆机构的运动特性,而且影响发动机的外形尺寸。λ值越大,连杆越矩,发动机的总高度(立式发动机)或总宽度(卧式发动机)越小。对于V 形发动机,其总高度和总宽度都会减少。连杆过矩时易导致活塞在运动过程中与曲柄相碰。因此一般情况下现代摩托车发动机的连杆比3

1~51=λ,尽可能地采用矩连杆。

参数设计:取λ

那么连杆长度:l = r/λ=

2.2 曲柄连杆机构运动学

曲柄连杆机构运动学是研究曲柄连杆机构各主要零件的运动规律,分析其作用力和力矩及发动机的平衡和曲轴的扭转振动的一门科学。

在计算时,曲轴的转动可以近似看成等速转动,这是因为高速发动机在稳定工况下工作时,由于扭转的不均匀性而引起的曲轴旋转角速度的变化不大。

曲轴的角速度可以写为

ω=30π

n s rad

式中:n ——曲轴转速,m in r 。

曲柄销中心的切向速度v t 和向心加速度a n 分别为: v t = ωr s m a n = ωr 2

s 2

m

式中:r ——曲轴半径,m 。

在讨论连杆、活塞的运动规律时,不用时间t 表达,而是用曲轴转角α,并且规定:将活塞处于上止点位置所对应的曲轴位置作为曲轴转角的起点(即α=0),因而,活塞的速度、加速度的方

向朝着曲轴中心线方向为正,背离曲轴中心线方向为负。 参数设计:

曲柄的角速度:

30

n

πω=

曲柄销中心的切向速度v t 和向心加速度a n 分别为: v t = ωr a n = 2

r ω

2.3 连杆的角位移、角速度、角加速度

对于活塞中心线通过曲轴中心线的曲柄连杆机构(图2)。曲柄半径r 与连杆长度l 的比值:λ=r/l 则

sin β =λsin α 于是可得到连杆的角位移 β =)sin arcsin(αλ

当=90°和270°时连杆的角位移为最大,即 λβ

acrsin max

==arcsin (1/4)

=14.48 rad/s

连杆摆动的角速度

α

αωλβαωλβλβ

sin 22'

1cos cos cos -===

dt d

当α为0°和180°时,连杆角速度为最大值,ωλβ±='max

当α为90°和270°时,连杆角速度为0。

连杆摆动的角加速度

)

sin 1(cos sin sin

cos cos

cos

cos

2

2

sin )1()

1(1sin sin )sin (cos cos sin 2

32

2

3

2

22

2

2

3

2

2

2

2

2

)

cos cos (2

2

"

αλλω

λλωλ

ωβα

λβ

ααα

λβ

α

βαλβ

ββαβαωωλ

ωλββα---=----=--=---===

dt

d dt

d dt

d

(三)、 连杆、曲轴组结构设计

1. 连杆

连杆的作用是将活塞承受的力传给曲轴,从而推动曲轴作旋转运动。因此,其两端给安装一个轴承,分别连接活塞销于曲轴销。

连杆一般用中碳钢或中碳合金钢,还可以采用低碳合金钢(如20Cr 、20MnB 、20CrMo )模锻成

图2 中心曲柄连杆机构运动分析图

形,然后进行机械加工。中碳钢制造的连杆一般要进行调质处理;低碳合金钢制成的连杆大小头内孔要进行渗碳淬火等表面处理,淬火硬度为HRc60~65。

连杆于活塞连接的部分称为连杆小头,与曲轴销连接的部分称为连杆大头,中间的部分称为杆身。

为了润滑活塞销和轴承,连杆小头钻有集油孔或铣有油槽,用以收集发动机运转时被激涨起来的机油,以便润滑。

连杆杆身通常做成“工”字形断面,以保证在合适的刚度和强度下有最小的质量。

连杆大头有剖分式和整体式两种。整体式连杆倒头相应的曲轴采用组合式曲轴,用轴承与曲柄销相连。连杆大头的内孔表面有很高的关洁度,以便与连杆轴瓦(或滚针轴承)紧密结合。

摩托车单缸汽油机一般采用整体式连杆,大、小头内分别装有滚柱或滚针轴承。

1.1 曲柄连杆机构的当量质量

曲柄连杆机构中的连杆可以用无质量的刚性杆件联系的两个集中质量(连杆小头质量m 1和连杆大头质量m 2)组成的当量系统来代替。

这样往复运动质量m j 为

l a m m m m m c p p j ?+=+=1 式中:m p ——活塞组的质量; m c ——连杆的质量

a ——连杆的重心位置距连杆大头中心的尺寸。 旋转运动质量m r 为

l b m m m m m c K k r ?+=+=2

式中:m k ——曲柄上不平衡部分且相当几种在曲柄销中心的质量;

b ——连杆的重心位置距连杆小头中心的尺寸。

1.2 连杆承受的载荷

连杆承受的载荷主要视气压力和往复惯性力产生的交变载荷。其基本载荷是压缩或拉伸。对于四行程发动机,最大拉伸载荷出现在进气行程开始的上止点附近,其数值主要是活塞组和连杆计算断面以上那部分连杆质量的往复惯性力,即

()ωλr G G p g

j

2'

1

'

'1++=

式中:G '

G '

1——分别为活塞组和连杆计算断面以上那部分的质量。

最大压缩载荷出现在膨胀行程开始的上止点附近,其数值是最大爆发压力产生的推力减上述的惯性力

p

j

',即

p

p p j

z

'.-

=

式中:

p

z

——最大爆发压力产生的推力。

1.3 连杆小头的安全系数

小头的安全系数按下式计算:

σ?

δ

σσσ

σ

m

a z

n +=

-"

1

式中:σz

1-——材料在对称循环下的拉压疲劳极限;

σ

a

——应力副;

σ

m

——平均应力;

"δσ ——考虑表面加工情况的工艺系数;6.0~4.0="

δσ;

——角系数,()σσσ?σ

o o -=-12

σ1

- ——材料在对称循环下的弯曲疲劳极限;

σ

o

——材料在脉冲循环下的弯曲疲劳极限,对于钢

小头应力按不对称循环变化,在固定角截面的外表面处应力变化较大,通常只计算该处的安全系数,此时

循环最大应力 σσσaj a +'

=max

循环最小应力 σσσac a +'

=min

式中:'

σa ——衬套过盈配合和受热膨胀产生的应力;

σaj ——惯性力拉伸引起的应力;

σ

ac

——受压是产生的应力。

应力副

2

2

min max

σσσσ

σ

ac

aj

a

-=

-=

平均应力 ??? ?

?'++=

+=

σσσσσ

σa ac aj m 2212

min max

小头安全系数的许用值部小于1.5。

参数设计:

连杆材料采用45号钢,它的有关疲劳极限如下: 屈服极限

σ

s

=686.5MPa 强度极限

σ

b

=833.6MPa

在对称循环下的拉压疲劳极限 10.23()z s b σσσ-=?+

在对称循环下的弯曲疲劳极限

σ

1

-=450.3MPa

在脉冲循环下的弯曲疲劳极限 σσ15.1-=。 角系数?σ

()σ

σσ?σ

o

o

-=-1

2

工艺系数 "

δσ=0.5;

应力副 σ

a

=75.44MPa 平均应力

σ

m

=64.77MPa;

小头的安全系数按下式计算: σ?

δ

σσσ

σ

m

a z

n +=

-"

1

符合要求;

1.4 连杆大头的强度验算

图4。4。7所示为连杆大头的计算简图。它是把整个连杆看成是两端固定的圆环, 固定端的位置用图中的角度

α。

表示(通常α。

=40°)

。连杆的曲率半径取两个连杆螺栓中心矩的一半,对于整体式连杆则取连杆大头内外圆半径之和的一半。环的截面积取D -D 截面的面积,同

时假定作用在连杆大头上的力按余弦分布。 连杆大头受到的惯性拉伸载荷为

R g

R g G G G G p j ωωλ232

2max )1(+++'+= 式中:G ’、G 、G 2、G 3——分别为活塞组、连杆组往复惯性部分、连杆组旋转部分和连杆大头下半部分的质量;

R ——曲柄半径; λ——连杆比。

连杆大头中央截面D -D 上的应力为

()()

???

?

????'+-+'++?=F F I I Z R p j αασ..1max 003.0522.01200083.00127.0 式中:R 1——计算圆环的曲率半径; I I ',——连杆大头及中央截面积; F F ',——大头及轴承中央截面积;

结构设计校核方法

【结构设计校核方法】 【校对原则】 ※ 能按建筑设计意图将结构骨架搭建起来 ※ 在搭建过程中注意不与建筑、设备发生冲突,做到不错不漏,不碰不缺 ※ 注意结构自身合理性,不合理的要与建筑协商解决 ※ 将设计意图表示完全,表达清楚 ※ 一套图的设计参数是否统一 【校对顺序】 图面――模板――配筋――说明,检查完一项打一个勾。 【图面校对】 ○是否有异常文字和标注(文字为?号,大小不统一,标注与实际长度不符或非整数); ○是否有多余文字、尺寸线和多余轴线; ○轴线、梁线等线型是否正确,线宽是否合适; ○文字是否被重叠,被覆盖; ○墙、柱、后浇带等是否有漏、多余填充或错误填充;不同类型是否用了相同的填充式样; ○出图比例是否异常,所注比例是否正确; ○图签中图名、图号、工程名称、出图时间是否正确。 ○文字表达是否通顺 【平面模板图校对】 ①轴线 ○轴号、尺寸是否有误、是否与建筑图对应 ○总尺寸是不是分尺寸之和 ○角度是否够精度,斜交轴网以长轴两端定位,避免以起点和角度定轴线 ○有没有未定位的轴线,有没有多余轴号 ○圆弧轴线有没有注明半径,圆心有没有定位 ②轮廓与标高 ○结构轮廓与建筑是否一致 ○结构平面各部分的标高是否标明,是否与建筑相应位置符合,注意建筑覆土范围、各层卫生间、室外露台,屋顶花园,台阶位置、电梯底坑、水池的吸水槽、公共厨房与肉菜市场等 需垫高的场所 ○结构变标高位置及反梁是否为实线,有没有实线与虚线相交的地方 ○天面、地下室平面是否为结构找坡,若建筑找坡是否考虑找坡荷载 ○与邻接区域的梁、板连接关系与分缝是否正确。 ○建筑、设备在板上开的洞有没有遗漏

③柱、墙位 ○下层墙柱有没有用虚粗线表示,是否画了不该升上的墙柱,是否画了梁上柱○墙柱是否与建筑一致,在位置和尺寸上是否有影响建筑使用 ○建筑、设备在混凝土墙上开的洞有没有漏 ○注意墙、柱顶标高是否满足建筑标高,是否满足梁板的搭接要求 ④梁 ○房屋周圈梁是否等高,注意其与建筑周圈墙的关系 ○逐条检查梁的定位、编号、尺寸和跨数以及梁顶标高与板面标高关系是否正确 ○梁高宽是否异常。如悬挑梁高小于跨度的1/6,一般梁高小于跨度的1/15,梁尺寸过大影 响建筑开门窗或楼梯间等。 ○有没有高梁搭在矮梁上 ○有没有梁位置不妥,如跨过厅房等。梁布置是否影响了建筑美观○梁平齐的优先顺序:厅、主房、客房、楼梯通道、厨厕、储物间等。 ⑤楼电梯 ○有没有注上编号 ○电梯底坑标高有无遗漏,机房部位是否封板,机房顶部是否加吊钩 ○楼梯柱是否已表示且定位 ○楼梯起步位置有没有表示 ⑥开洞与井沟 ○风井,水电井、烟道是否遗漏 ○洞的定位、大小与洞边加强处理(洞边长大于12倍板厚的需加梁) ○集水井、沟、天面排水沟是否遗漏,定位与大小是否与建筑一致 ⑦大样、构造柱 ○外飘窗台,女儿墙,立面要求的构造柱、墙,雨蓬等是否与主体结构有效连接(以主体结 构为支座)在平面上的投影是否正确。 ○其定位、尺寸是否完整 ○大样详图在平面上是否有表示,是否与编号对应,标高、定位轴线与平面是否对应 ⑧大样引出号 注意剖切方向和索引图号。索引位置是否正确。相应大样是否存在 ⑨后浇带 后浇带间距是否大于55米,是否定位,是否穿过框架梁等重要结构及受力较大部位。地下 室平面与侧墙后浇带定位是否一致 ⑩模板图说明 ○楼层基本标高是否明确,混凝土强度等级抗渗等级 ○特殊楼板厚有没有说明

高速公路沥青路面设计实例

高速公路沥青路面设计实例 一、设计资料: 本公路等级为高速公路,经调查得,近期交通量如下表所示。交通量年平均 区。 增长率为9.5%,设计年限为15年,该路段处于Ⅳ 2 二、交通分析: 轴载分析路面设计以BZZ-100为标准轴载。 1、以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 (1)累计当量轴次 注:轴载小于25KN的轴载作用不计。 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。

2、验算半刚性基层层底拉应力中的累计当量轴次 (1)轴载换算 车型i P(KN) C1C2i N(次/日) 小客车 前轴16.5 1 18.5 6750 0.0686 后轴23.0 1 1 6750 0.05286 中客车 SH130 前轴25.55 1 18.5 2000 0.67194 后轴45.10 1 1 2000 3.42328 大客车 CA50 前轴28.70 1 18.5 1250 1.06448 后轴68.20 1 1 1250 58.5039 小货车 BJ130 前轴13.40 1 18.5 4250 0.00817 后轴27.40 1 1 4250 0.13502 中货车 CA50 前轴28.70 1 18.5 1500 1.27737 后轴68.20 1 1 1500 70.2047 中货车 EQ140 前轴23.70 1 18.5 2125 0.39131 后轴69.20 1 1 2125 111.74 大货车 JN150 前轴49.00 1 18.5 2125 130.647 后轴101.60 1 1 2125 2412.73 特大车日野 KB222 前轴50.20 1 18.5 1500 111.916 后轴104.30 1 1 1500 2100.71 拖挂车 五十铃 前轴60.00 1 18.5 187.5 58.2617 后轴100(3轴) 3 1 187.5 562.5 5624.304 注:轴载小于50KN的轴载作用不计 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。 三、设计指标的确定 8 2 1 ? ? ? ? ? ' ' P P n C C i i 8 2 1 1 ? ? ? ? ? ' ' ='∑ = P P n C C N i i i i

路面结构设计计算示例

课程名称: 学生: 学生学号: 专业班级: 指导教师: 年月日

路面结构设计计算 1 试验数据处理 1.1 路基干湿状态和回弹模量 1.1.1 路基干湿状态 路基土为粘性土,地下水位距路床顶面高度0.98m~1.85m。查路基临界高度参考值表可知IV5区H1=1.7~1.9m,H2=1.3~1.4m,H3=0.9~1.0m,本路段路基处于过湿~中湿状态。 1.1.2 土基回弹模量 1) 承载板试验 表1.1 承载板试验数据 承载板压力(MPa) 回弹变形 (0.01mm) 拟合后的回弹变形 (0.01mm) 0.02 20 10 0.04 35 25 0.06 50 41 0.08 65 57 0.10 80 72 0.15 119 剔除 0.20 169 剔除 0.25 220 剔除 计算路基回弹模量时,只采用回弹变形小于1mm的数据,明显偏离拟合直线的点可剔除。拟合过程如图所示:

路基回弹模量: 210101 1000 (1)4 n i i n i i p D E l πμ===-=∑∑ 2)贝克曼梁弯沉试验 表1.2 弯沉试验数据 测点 回弹弯沉(0.01mm ) 1 155 2 182 3 170 4 174 5 157 6 200 7 147 8 173 9 172 10 207 11 209 12 210 13 172 14 170 根据试验数据: l = ∑ll l = 155+?+170 14 =178.43

15.85(0.01mm)S = =s = √∑(ll ?l )2l ?1 =20.56(0.01mm) 式中:l ——回弹弯沉的平均值(0.01mm ); S ——回弹弯沉测定值的标准差(0.01mm ); l i ——各测点的回弹弯沉值(0.01mm ); n ——测点总数。 根据规要求,剔除超出(2~3)l S ±的测试数据,重新计算弯沉有效数据的平均值和标准差。计算代表弯沉值: 1174.79 1.64515.85200.86(0.01mm)a l l Z S - =+=+?=l 1=l +l l l =178.43+ 1.645×20.56=21 2.25 Z a 为保证率系数,高速公路、一级公路取2.0,二、三级公路取1.645,四级公路取1.5。 土基的回弹模量: 220201220.70106.5 (1)(10.35)0.71246.3(MPa)200.860.01 p E l δμα??= -=?-?=? 1.2 二灰土回弹模量和强度 1. 2.1 抗压回弹模量 二灰土抗压回弹模量为:735MPa 。 1.2.2 f50mm×50mm试件劈裂试验 表1.3 二灰土试件劈裂试验数据 f50mm×50mm试件劈裂试验 最大荷载(N ) 2t P Dh σπ= (kPa ) 处理结果 有效数据平均值t σ(kPa ) 250.57 有效数据样本标准差S (kPa ) 12.07 变异系数C v (%) 4.82 变异系数应小于6%,否则可在剔除偏差较大的数据后,重新计算平均值和标准差。设计

齿轮结构设计和校核

直齿锥齿轮传动是以大端参数为标准值的。在强度计算时,则以齿宽中 点处的当量齿轮作为计算的依据。对轴交角 刀=90。的直齿锥齿轮传动,其齿数 比u 、锥距&图<直齿锥齿轮传动的几何参数 >)、分度圆直d i , d 2、平均分度圆直 径d mi, d m2当量齿轮的分度圆直径d vi , d v2之间的关系分别为: Zj "亠 =■? 现以g 表示当量直齿圆柱齿轮的模数,亦即锥齿轮平均分度圆上轮齿 的模数(简称平均模数),则当量齿数 z v 为 (a) 丘二胆*勇诃娠屁丙pl 2 2 1 _________________ R (b) V 2 2 _ dm2 _ R - ~ = ~R - 令? R =b/R,称为锥齿轮传动的齿宽系数,通常取 ? R =0.25-0.35,最常用的值为 ~c = ? R =1/3 由右图可 找出当量 直齿圆柱 齿轮得分 度圆半径 r v 与平均 分度圆直 径d m 的关 系式为 AjIL 2cos8 --(e) 直齿锥齿轮传动的几何参数

(0 显然,为使锥齿轮不至发生根切,应使当量齿数不小于直齿圆柱齿轮 的根切齿数。另外,由式(d)极易得出平均模数mm和大端模数m的关系为 111^=111(1-0.5^)------------------------------------ (h) 、直齿圆锥齿轮的背锥及当量齿数 为了便于设计和加工,需要用平面曲线来近似球面曲线,如下图 OAB为分度圆锥,和为轮齿在球面上的齿顶高和齿根高,过点A作直线AO丄AO与圆锥齿轮轴线交于点O,设想以OO为轴线,OA为母线作一圆锥OAB,称为直齿圆锥齿轮的背锥。由图可见A、B附近背锥面与球面非常接近。因此,可以用背锥上的齿形近似地代替直齿圆锥齿轮大端球面上的齿形。从而实现了平面近似球面。

V带轮结构设计张紧装置校核计算

1 V带轮结构设计和张紧装置 一、V带轮设计 1、V带轮设计的要求 质量小、结构工艺性好、无过大的铸造内应力;质量分布均匀,转速高时要经过动平衡;轮槽工作面要精细加工(表面粗糙度一般应为3.2),以减小带的磨损;各槽的尺寸和角度应保持一定的精度,以使载荷分布较为均匀。 2、带轮的材料 带轮的材料主要采用铸铁,常用材料的牌号为HT150或HT200;转速较高时宜采用铸钢(或用钢板冲压后焊接而成);小功率时可用铸铝或塑料。 3、结构形式 铸铁制V带轮的典型结构形式有三种: (a)实心式(b)腹板式(c)轮辐式 图5-11 带轮的结构形式 (1)实心式:带轮基准直径小于3d(d为轴的直径)时; (2)腹板式:带轮基准直径小于300~350mm时;

(3)轮辐式:带轮基准直径大于300~350mm时。 带轮的结构设计主要是根据带轮的基准直径选择结构形式,并根据带的型号及根数确定轮缘宽度,根据带的型号确定轮槽尺寸(表5-9)。 表5-9 V带轮的轮槽尺寸

二、V带传动的张紧装置 各种材质的V带都不是完全的弹性体,在预紧力的作用下,经过一定时间的运转后,就会由于塑性变形而松弛,使初拉力降低。为了保证带传动的能力,应定期检查初拉力的数值。如发现不足时,必须重新张紧,才能正常工作。常见的张紧装置有以下几种: 1、定期张紧装置 图5-12 定期张紧 采用定期改变中心距的方法来调节带的预紧力,使带重新张紧。 2、自动张紧装置 图5-13 自动张紧

将装有带轮的电动机安装在浮动的摆架上,利用带轮的自重,使带轮随同电动机绕固定轴摆动,以自动保持张紧力。 3、采用张紧轮的装置 图5-13 张紧轮张紧 当中心距不能调节时,可采用张紧轮将带张紧。张紧轮一般应放在松边内侧,使带只受单向弯曲,同时张紧轮还应尽量靠近大轮,以免过份影响小带轮的包角。若张紧轮置于松边外侧,则应尽量靠近小带轮。张紧轮的轮槽尺寸与带轮的相同,且直径小于小带轮的直径。 二、普通V带传动设计 1、确定设计功率 = 式中:K A为工况系数(表5-6); P为所需传递的功率。 表5-6 工况系数K A

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

轴结构设计和强度校核

一、轴的分类 按承受的载荷不同, 轴可分为: 转轴——工作时既承受弯矩又承受扭矩的轴。如减速器中的轴。虚拟现实。 心轴——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴又可分为: 转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。 传动轴——工作时仅承受扭矩的轴。如汽车变速箱至后桥的传动轴。 固定心轴转动心轴

转轴 传动轴 二、轴的材料 轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。

各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。 高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。

结构设计及强度校核

专业综合训练任务书: 49.9米150吨冷藏船结构设计及总纵强度计算 一、综合训练目的 1、通过综合训练,进一步巩固所学基础知识,培养学生分析解决实际工程问题的能力,掌握静水力曲线的计算与绘制方法。 2、通过综合训练,培养学生耐心细致的工作作风和重视实践的思想。 3、为后续课程的学习和走上工作岗位打下良好的基础。 二、综合训练任务 1.150吨冷藏船结构设计,提供主要构件的计算书。 2.参考该船图纸和相关静水力资料、邦戎曲线图,按照《钢质内河船舶建造规范》的要求进行总纵 强度计算,提供总纵强度计算书。 3.参考资料: 1)中国船级社. 钢质海船入级与建造规范 2009 2)王杰德等. 船体强度与结构设计北京:国防工业出版社,1995 3)聂武等. 船舶计算结构力学哈尔滨:哈尔滨工程大学出版社,2000 三、要求: 1、专业综合训练学分重,应予以足够重视; 2、计算书格式要符合要求; 如船体结构设计计算书应包括:(a)对设计船特征(船型、主尺度、结构形式等)的概述,设计所根据的规范版本的说明等;(b)应按船底、船侧、甲板的次序,分别写出确定每一构件尺寸的具体过程,并明确标出所选用的尺寸。(c)计算书应简明、清晰、便于检查。 3、强度计算: a)按第一、二章的要求和相关表格做,如静水平衡计算,静水弯矩计算等; b)波浪弯矩等可按规范估算; c)相关表格用计算器计算,表格绘制于“课程设计”本上 注意:请班长到教材室领取课程设计的本子和资料袋(档案袋),各位同学认真填写资料袋封面。 4、专业综合训练总结:300~500字。 四、组织方式和辅导计划: 1、参考资料: a)船体强度与结构设计教材 b)某船的构件设计书 c)某船的总纵强度计算书 d)《钢质内河船舶建造规范》,最好2009版 2、辅导答疑地点:等学校安排。 五、考核方式和成绩评定: 1、平时考核成绩:参考个人进度。 2、须经老师验收合格,故应提前一周交资料,不合格的则需回去修改。 3、第18周星期三下午4:00前必须交资料,资料目录见第2页。 4、一旦发现打印、复印、数据格式完全相同等抄袭现象,均按规定以不及格计。 5、成绩由指导教师根据学生完成质量以及学生的工作态度与表现综合评定,分为优、良、中、及格、 不及格五个等级。 六、设计进度安排: 1、有详细辅导计划,但具体进度可根据个人情况可以自己定。 附录:档案袋内资料前2页如下

轴的设计与校核

2.1.1 概述 轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。1. 轴的分类 根据工作过程中轴的中心线形状的不同,轴可以分为:直轴和曲轴。根据工作过程中的承载不同,可以将轴分为: ?传动轴:指主要受扭矩作用的轴,如汽车的传动轴。 ?心轴:指主要受弯矩作用的轴。心轴可以是转动的,也可以是不转动的。 ?转轴:指既受扭矩,又受弯矩作用的轴。转轴是机器中最常见的轴。 根据轴的外形,可以将直轴分为光轴和阶梯轴;根据轴内部状况,又 可以将直轴分为实心轴和空。 2. 轴的设计 ⑴ 轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。

⑵ 轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。 3. 轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括:?碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。常用牌号有:30、35、40、45、50。采用优质碳钢时,一般应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 ?合金钢:对于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,可以选用合金纲。合金钢具有更好的机械性能和热处理性能,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。 ?铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 2.1.2 轴的结构设计

路面结构设计计算书有计算过程的样本

公路路面结构设计计算示例 一、 刚性路面设计 交通组成表 1) 轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 : s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、 单轴—双轮组、 双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数, 单轴—双轮组时, i δ=1; 单轴—单轮时, 按 式43.031022.2-?=i i P δ计算; 双轴—双轮组时, 按式22.05 1007.1--?=i i P δ; 三轴—双轮组时, 按式22.08 1024.2--?=i i P δ计算。

轴载换算结果如表所示 车型 i P i δ i N 16)(P P N i i i δ 解放CA10B 后轴 60.85 1 300 0.106 黄河JN150 前轴 49.00 43.03491022.2-?? 540 2.484 后轴 101.6 1 540 696.134 交通SH361 前轴 60.00 43.03601022.2-?? 120 12.923 后轴 2?110.00 22.052201007.1--?? 120 118.031 太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注: 轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范, 一级公路的设计基准期为30年, 安全等级为二级, 轮迹横向分布系数η是0.17~0.22取0.2, 08.0=r g , 则 [][] 362 .69001252.036508 .01 )08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其 交通量在4 4102000~10100??中, 故属重型交通。 2) 初拟路面结构横断面 由表3.0.1, 相应于安全等级二级的变异水平为低~中。根据一级公路、 重交通等级和低级变异水平等级, 查表 4.4.6 初拟普通混凝土面层厚度为24cm, 基层采用水泥碎石, 厚20cm; 底基层采用石灰土, 厚20cm 。普通混凝土板的平面尺寸为宽3.75m, 长5.0m 。横缝为设传力杆的假缝。 3) 确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=, 水泥碎石a MP E 15001=, 石灰土

发动机结构与设计各类计算与校核结构设计

发动机结构与设计各类计算与校核结构设计 一、摩托车发动机结构与设计 (一)、发动机机体 1.气缸体 气缸体的作用除形成气缸工作容积外,还用作活塞运动导向,其圆柱形空腔称为气缸。 由于气缸壁表面经常与高温高压燃气接触,活塞在汽缸内作高速运动(最高速度可达100km/s )并施加侧压力,以及气缸壁与活塞环几活塞外圆表面之间反复摩擦,而其润滑条件由较差,所以气缸体必须耐高温、耐高压、耐腐蚀,还应具有足够的刚度和强度。 气缸体的材料一般用优质灰铸铁,为了提高气缸的耐磨性,可以在铸铁中加入少量的合金元素,如镍、铬、钼、磷、硼等。 汽缸内壁按二级精度珩磨加工,其工作表面有较高的关洁度,并且形状和尺寸精度也都比较高。 为了保证气缸壁表面能在高温下正常工作,必须对汽缸体和气缸盖随时加以冷却。发动机有风冷和水冷两种。用风冷却时,在汽缸体和气缸盖外表面铸有许多散热片,易增大冷却面积,保证散热充分。用水冷却时在汽缸体内制有水套。 1.1 气缸直径 气缸直径是指气缸内径,与活塞相配合,是发动机的重要参数,许多主要的尺寸如曲柄销直径、气门直径、活塞结构参数等,都要根据气缸直径来选取。 参数设计: 气缸直径已标准化,其直径值按一个优先系列合一个常用系列来选取。根据有关资料可确定气缸的直径D. 1.2 气缸工作容积、燃烧室容积和气缸总容积 上止点和下止点之间的气缸容积,称为气缸工作容积(也称为总排量)(图1)。气缸工作容积与气缸直径的平方、活塞冲程的大小成正比。气缸直径越大、工作容积越大、发动机的功率也就相应地增大。 气缸工作容积的计算公式为 N S D V n ??=42 π 式中: V n ——气缸工作容积(ml); D —— 气缸直径(mm ); S —— 活塞行程(mm;) N —— 气缸数目。 参数设计: 因设计要求的是单缸发动机的排气量V n 为100ml ,那么其活塞行程为: 2 4n S V d π= 同时活塞行程S =2r ;r 为曲轴半径 那么:2S r = 1.3压缩比 图1 气缸燃烧室容积和工作室容积 (a )燃烧室容积 (b )工作室容积

沥青路面结构厚度计算

沥青路面结构厚度计算 路等级 : 一级公路新建路面的层数 :5 标准轴载 : BZZ-100 路面设计弯沉值 : 24、9 (0、01mm) 路面设计层层位 :4 设计层最小厚度 :150 (mm)层位结构层材料名称厚度20℃平均抗压标准差15℃平均抗压标准差容许应力 (mm) 模量(MPa) (MPa) 模量(MPa) (MPa) (MPa) 1 细粒式沥青混凝土401400 02000 0 、47 2 中粒式沥青混凝土601200 01800 0 、34 3 粗粒式沥青混凝土801000 01200 0 、27 4 水泥稳定碎石 ?1500 03600 0 、25 5 石灰土250550 01500 0 、1 6 新建路基36 按设计弯沉值计算设计层厚度 : LD= 24、9 (0、01mm) H(4 )=200 mm LS= 26、3 (0、01mm) H(4 )=250 mm LS= 23、4 (0、01mm)

H(4 )=224 mm(仅考虑弯沉) 按容许拉应力计算设计层厚度 : H(4 )=224 mm(第1 层底面拉应力计算满足要求) H(4 )=224 mm(第2 层底面拉应力计算满足要求) H(4 )=224 mm(第3 层底面拉应力计算满足要求) H(4 )=224 mm(第4 层底面拉应力计算满足要求) H(4 )=274 mm σ(5 )= 、101 MPa H(4 )=324 mm σ(5 )= 、087 MPa H(4 )=277 mm(第5 层底面拉应力计算满足要求) 路面设计层厚度 : H(4 )=224 mm(仅考虑弯沉) H(4 )=277 mm(同时考虑弯沉和拉应力) 验算路面防冻厚度 : 路面最小防冻厚度500 mm 验算结果表明 ,路面总厚度满足防冻要求、通过对设计层厚度取整, 最后得到路面结构设计结果如下:-------------------------------------- 细粒式沥青混凝土40 mm-------------------------------------- 中粒式沥青混凝土60 mm-------------------------------------- 粗粒式沥青混凝土80 mm-------------------------------------- 水泥稳定碎石280 mm-------------------------------------- 石灰土250 mm-------------------------------------- 新建路基

船舶强度与结构设计的复习题

复习题 第一章(重点复习局部载荷分配、静水剪力弯矩的计算绘制) 1、局部载荷是如何分配的? (2理论站法、3理论站法以及首尾理论站外的局部重力分布计算) P P P =+21 a P L P P ?=?+)(2 121 由此可得: ?? ? ?? ?? ?-=?+=)5.0()5.0(21L a P P L a P P 分布在两个理论站距内的重力 2、浮力曲线是如何绘制的? 浮力曲线通常按邦戎曲线求得,下图表示某计算状态下水线为W-L 时,通常 根据邦戎曲线来绘制浮力曲线。为此,首先应进行静水平衡浮态计算,以确定船舶在静水中的艏、艉吃水。

帮戎曲线确定浮力曲线 3、M、N曲线有何特点? (1) M曲线:由于船体两端是完全自由的,因此艏、艉端点处的弯矩应为零,亦即弯矩曲线在端点处是封闭的。此外,由于两端的剪力为零,即弯矩曲线在两端的斜率为零,所以弯矩曲线在两端与纵坐标轴相切。 (2) N曲线:由于船体两端是完全自由的,因此艏、艉端点处的剪力应为零,亦即剪力曲线在端点处是封闭的。在大多数情况下,载荷在船舯前和舯后大致上是差不多的,所以剪力曲线大致是反对称的,零点在靠近船舯的某处,而在离艏、艉端约船长的1/4处具有最大正值或负值。 5、计算波的参数是如何确定的? 计算波为坦谷波,计算波长等于船长,波峰在船舯和波谷在船舯。 采用的军标GJB64.1A中波高h按下列公式确定: 当λ≥120m时, 当60m≤λ≤120m时,当λ≤60m时, 20 λ = h(m) 2 30 + = λ h(m) 1 20 + = λ h(m) 6、船由静水到波浪中,其状态是如何调整的? 船舶由静水进入波浪,其浮态会发生变化。若以静水线作为坦谷波的轴线,当船舯位于波谷时,由于坦谷波在波轴线以上的剖面积比在轴线以下的剖面积小,同时船体中部又较两端丰满,所以船在此位置时的浮力要比在静水中小, 因而不能处于平衡,船舶将下沉ξ值;而当船舯在波峰时,一般船舶要上浮一些。 另外,由于船体艏、艉线型不对称,船舶还将发生纵倾变化。 7、麦卡尔假设的含义。 麦卡尔方法是利用邦戎曲线来调整船舶在波浪上的平衡位置。因此,在计算 时,要求船舶在水线附近为直壁式,同时船舶无横倾发生。根据实践经验,麦 卡尔法适用于大型运输船舶。 第二章 (重点复习计算剖面的惯性矩、最小剖面模数是如何的计算、折减系数、极限弯矩的计算)1、危险剖面的确定。 危险剖面: 可能出现最大弯曲应力的剖面,由总纵弯曲力矩曲线可知,最大弯矩一般在 船中0.4倍船长范围的,所以计算剖面一般应是此范围内的最弱剖面—既有最大

路面结构设计

5.路面结构设计 5.1沥青路面 5.1.1交通量及轴载计算分析 路面设计以单轴载双轮组100KN 为标准轴载。 1) 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次: ①轴载换算: 轴载换算采用如下的计算公式:=N ∑=k i i i P P n C C 135.421)/( 计算结果如下表所示: 表5.1轴载换算表 ②累计当量轴次

根据《公路沥青路面设计规范JTG D50-2006》,高速公路沥青路面的设计年限取15年,四车道的车道系数是取0.5。 累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]18918830 5.060.430336506449 .0365106449.0115 =????-+= (次) 2) 验算半刚性基层层底拉应力中的累计当量轴次 ①轴载换算 验算半刚性基层层底拉应力轴载换算公式:812'1')/('P P n C C N i k i i ∑== 计算结果如下表所示: 表5.2 轴载换算结果(半刚性基层层底拉应力) ②累计当量轴次 参数取值同上,设计年限是15年,车道系数取0.5。

累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]321652575.087.731636506449 .0106449.0115 =???-+= (次) 5.1.2结构组合设计及材料选取 1) 拟订路面结构组合方案 根据规定推荐结构,并考虑到公路沿途有大量碎石且有石灰供应,路面结构面层采用沥青混凝土(取18cm ),基层采用水泥碎石(取20cm ),下基层采用石灰土(厚度待定)。 另设20cm 厚的中粗砂垫层。 2) 拟订路面结构层的厚度 由于计算所得的累计当量轴载达到了500万次,按一级路的路面来设计,由设计规范《公路沥青路面设计规范JTG D50-2006》规定高速公路、一级公路的面层由二层至三层组成。采用三层式沥青面层,表面层采用细粒式密级配沥青混凝土(厚度为4cm ),中面层采用中粒式密级配沥青混凝土(厚度为6cm ),下面层采用粗粒式密级配沥青混凝土(厚度为8cm )。 5.1.3设计指标及设计参数确定 1) 确定路面等级和面层类型 由上面的计算得到设计年限内一个行车道上的累计标准轴次约为大于500万次。根据规范《公路沥青路面设计规范JTG D50-2006》和设计任务书的要求可确定路面等级为高级路面,面层类型采用沥青混凝土,设计年限为15年。 2) 确定土基的回弹模量 ① 此路为新建路面,根据设计资料可知路基干湿状态为干燥状态。 ② 根据设计资料,由设计规范《公路沥青路面设计规范JTG D50-2006》,该路段处于II 2a 区,为粉质土,确定土基的稠度为1.05。 ③ 查设计规范《公路沥青路面设计规范JTG D50-2006》中“二级自然区划各土组土基回弹模量参考值(MPa)”表并作提高得土基回弹模量为 MPa E 0.370=. 3)各层材料的设计参数(抗压模量与劈裂强度)

布袋除尘器结构设计及强度计算(精)

?布袋除尘器结构设计及强度计算 2009-9-28 2:05:30 ?前言 低压脉冲布袋除尘器广泛应用于电厂脱硫除尘及一般钢厂除尘中(应用于钢厂及电厂的主要区别是除尘器外表是否需要保温、烟气对钢板的腐蚀程度及滤料的选择等),脱硫后的烟尘经过该除尘器后,其排放到大气中的浓度基本控制在20~30mg/m3,低于国家环保部门规定的50mg/m3。 低压脉冲布袋除尘器的工作原理:含尘气体由导流管进入各单元,大颗粒粉尘经分离后直接落入灰斗、其余粉尘随气流进入中箱体过滤区,过滤后的洁净气体透过滤袋经上箱体、排风管排出。随着过滤工况的进行,当滤袋表面积尘达到一定量时,由清灰控制装置(差压或定时、手动控制)按设定程序打开电磁脉冲阀喷吹,抖落滤袋上的粉尘。落入灰斗中的粉尘借助输灰系统排出。 低压脉冲除尘器的主要结构组成如下:底柱组件、滑块组件、顶柱组件、灰斗组件(含三通及风量调节阀,如果有的话)、进风装置、中箱体、上箱体、喷吹系统、离线装置、内旁路装置(外旁路,可供选择)、平台扶梯、防雨棚、气路配管及控制元件等组成。其结构简图如下: 除尘器的设计过程中,应当对除尘器的载荷(包括静载、动载、风载、雪载及地震载荷等,单位KN)、除尘器承受的设计负压(单位Pa)、板件材料的屈服极限及抗拉伸极限等(单位

MPa),要有一定程度的了解。必要时,结构设计人员可以查阅相关的机械设计手册,以加深自己对这方面的理解。 如下的设计过程仅供除尘设备制造厂家及相关设计 单位参考。 1.除尘器载荷的确定: 1.1静载的确定:G静载=∑Gi(i=1~5) 式中,G1本体钢结构部分的重量,G2滤袋总重,G3袋笼总重,G4滤袋表面积灰5mm的重量,G5灰斗允许积灰重量。按本公司多年来的设计经验,静载荷在除尘器基础上的分布,一般是,最外面一圈基础柱桩的载荷为总静载分布在所有柱桩上的平均值Gp的110%。次外圈一圈柱桩的载荷为Gp的120~200%,以此类推,直到最内圈载荷。内圈载荷高于外圈载荷,但内外圈载荷最大差别不得超过300KN。这样设计载荷的目的是保证本体结构系统的地基稳定性。关于载荷部分的详细分配及计算过程可以参考《建筑荷载设计规范》手册。 1.2动载的确定 按楼面及屋面活荷载取标准值2.5KN/m2(检修平台按4KN/m2)来计算。 除尘器总动载荷:F=KA0A1+KA1A2,KA1检修平台活荷载取标准值,A1除尘器平面投影面积,A2平台扶梯平面投影面积。 设计时,单个承载点荷载值是平均值的100~120%左右。具体分布时,可以是平台扶梯结构多的部分取偏大值,结构少的部分取较小

路面结构设计计算书(有计算过程的)DOC.doc

公路路面结构设计计算示例 一、刚性路面设计 交通组成表 车型 前轴重 后轴重 后轴数 后轴轮组数 后轴距 交通量 ( m ) 小客车 1800 解放 CA10B 19.40 60.85 1 双 — 300 黄河 JN150 49.00 101.60 1 双 — 540 交通 SH361 60.00 2× 110.00 2 双 130.0 120 太脱拉 138 51.40 2× 80.00 2 双 132.0 150 吉尔 130 25.75 59.50 1 双 — 240 尼桑 CK10G 39.25 76.00 1 双 — 180 1)轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: n 16 P i N s i N i 100 i 1 式中 : N s —— 100KN 的单轴—双轮组标准轴载的作用次数; P i —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型 i 级轴载的总重 KN ; N i —各类轴型 i 级轴载的作用次数; n —轴型和轴载级位数; i —轴—轮型系数,单轴—双轮组时, i =1;单轴—单轮时,按式 i 2.22 103 P i 0.43 计算; 双轴—双轮组时,按式 i 1.07 10 5 P i 0. 22 ;三轴—双轮组时,按式 i 2.24 10 8 P i 0. 22 计算。 轴载换算结果如表所示 车型 P i N i P i 16 i i N i ( P ) 解放 CA10B 后轴 60.85 1 300 0.106 黄河 JN150 前轴 49.00 2.22 103 49 0.43 540 2.484 后轴 101.6 1 540 696.134 交通 SH361 前轴 60.00 2.22 103 60 0.43 120 12.923 后轴 2 110.00 1.07 10 5 220 0.22 120 118.031

结构设计原理计算方法

结构设计原理案例计算步骤 一、单筋矩形截面受弯构件正截面承载力计算 计算公式: ——水平力平衡 ()——所有力对受拉钢筋合力作用点取矩() ()——所有力对受压区砼合力作用点取矩()使用条件: 注:/,&& 计算方法: ㈠截面设计yy 1、已知弯矩组合设计值,钢筋、混凝土强度等级及截面尺寸b、h,计算。 ①由已知查表得:、、、; ②假设; ③根据假设计算; ④计算(力矩平衡公式:); ⑤判断适用条件:(若,则为超筋梁,应修改截面尺寸或提 高砼等级或改为双筋截面); ⑥计算钢筋面积(力平衡公式:); ⑦选择钢筋,并布置钢筋(若 ,则按一排布置); 侧外 ⑧根据以上计算确定(若与假定值接近,则计算,否则以的确定值作 为假定值从③开始重新计算); ⑨以的确定值计算; ⑩验证配筋率是否满足要求(,)。 2、已知弯矩组合设计值,材料规格,设计截面尺寸、和钢筋截面面积。 ①有已知条件查表得:、、、; ②假设,先确定; ③假设配筋率(矩形梁,板); ④计算(,若,则取); ⑤计算(令,代入); ⑥计算(,&&取其整、模数化); ⑦确定(依构造要求,调整); ⑧之后按“1”的计算步骤计算。 ㈡承载力复核 已知截面尺寸b、,钢筋截面面积,材料规格,弯矩组合设计值,

所要求的是截面所能承受的最大弯矩,并判断是否安全。 ①由已知查表得:、、、; ②确定; ③计算; ④计算(应用力平衡公式:,若,则需调整。令, 计算出,再代回校核); ⑤适用条件判断(,,); ⑥计算最大弯矩(若,则按式计算最大弯矩) ⑦判断结构安全性(若,则结构安全,但若破坏则破坏受压区,所以应以受压区控制设计;若,则说明结构不安全,需进行调整——修改尺寸或提高砼等级或改为双筋截面)。 二、双筋矩形截面梁承载力计算 计算公式: , ,()+() 适用条件: (1) (2) 注:对适用条件的讨论 ①当&&时,则应增大截面尺寸或提高砼等级或增加的用量(即 将当作未知数重新计算一个较大的);当时,算得的即为安全要 求的最小值,且可以有效地发挥砼的抗压强度,比较经济; ②当&&时,表明受压区钢筋之布置靠近中性轴,梁破坏时应变较 小,抗压钢筋达不到其设计值,处理方法: a.《公桥规》规定:假定受压区混凝土压应力的合力作用点与受压区钢筋合力作用 点重合,并对其取矩,即 令2,并 () 计算出; b.再按不考虑受压区钢筋的存在(即令),按单筋截面梁计算出。 将a、b中计算出的进行比较,若是截面设计计算则取其较小值,若是承载能力复核则取其较大值。 计算方法: ㈠截面设计 1.已知截面尺寸b、h,钢筋、混凝土的强度等级,桥梁结构重要性系数,弯矩组合 设计值,计算和。 步骤: ①根据已知查表得:、、、、; ②假设、(一般按双排布置取假设值); ③计算;

相关文档
最新文档