带式输送机传动装置课程设计报告
带式输送机传动装置课程设计报告书

带式输送机传动装置课程设计报告书一、课程设计目的和任务本次课程设计旨在加深学生对带式输送机及其传动装置的理解,培养学生工程实践能力,提高学生的设计能力和团队合作能力。
具体任务包括对带式输送机传动装置进行设计,并采用实物模型进行实验验证。
二、课程设计内容和步骤1.确定课程设计题目:带式输送机传动装置的设计。
2.了解带式输送机传动装置的基本原理和工作方式。
3.进行相关理论知识的学习,包括带式输送机的结构、基本参数、运行原理以及传动装置的选择和设计原则。
4.进行市场调研,了解不同类型的带式输送机传动装置的应用和发展趋势。
5.根据所学的理论知识和市场调研结果,进行带式输送机传动装置的设计。
6.制作带式输送机的实物模型,并进行相应的实验验证。
7.对实验结果进行分析和总结,提出改进意见。
8.撰写课程设计报告书。
三、课程设计过程和经验1.团队分工:根据每个人的专长和兴趣,合理分配任务,确保各个环节的顺利进行。
2.实物模型制作:在实物模型制作过程中,要注意选用合适的材料和工具,并严格按照设计图纸进行制作。
3.实验验证:在进行实验验证时,要严格控制变量,确保实验结果的准确性。
4.报告撰写:在撰写报告书时,要按照规范的格式,清晰地叙述设计过程和实验结果,并结合理论知识进行分析和总结。
四、课程设计成果和效果通过本次课程设计,学生对带式输送机传动装置的工作原理和设计方法有了更深入的理解,并通过实验验证了设计的可行性。
同时,培养了学生的工程实践能力、团队合作能力和创新思维能力。
课程设计报告书的撰写和展示,进一步提高了学生的表达能力和综合素质。
五、存在问题和改进措施本次课程设计中存在的问题主要是时间紧张,设计深度不够。
为了提高后续课程设计的质量,可以增加课程设计的时间,加强理论学习和市场调研的深度,提高实物模型的制作工艺和实验验证的精度。
六、课程设计总结通过本次课程设计,我深入学习了带式输送机传动装置的设计原理和方法,并通过实验验证了设计的可行性。
带式运输机传动装置课程设计

带式运输机传动装置课程设计带式运输机传动装置课程设计带式运输机是工业制造业中非常常见的一种传送装置,其主要作用是将物品从一处传输到另一处。
由于带式运输机的使用频率非常高,因此传动装置对于其运行稳定性和工作效率有着非常重要的影响。
本文将介绍一个关于带式运输机传动装置课程设计的案例,并说明过程中的关键问题和解决方案。
1. 课程设计目标在本次课程设计中,我们的主要目标是设计一个带式运输机传动装置,使其达到以下几个要求:(1)传动系统能够实现双向传动。
在某些情况下,带式运输机需要向前和向后传送物品。
因此传动系统需要能够实现双向传动,以满足不同工作环境下的需要。
(2)传动系统需要能够适应不同负载工作。
带式运输机的负载大小不同,在使用时需要有相应的调节装置来适应不同的工作负载。
因此传动系统需要能够适应不同负载工作情况。
(3)传动系统需要有良好的耐磨性和耐用性。
带式运输机在工作中摩擦较大,因此传动系统需要具有足够的耐磨性和耐久性,以保证其长期稳定运行。
2. 设计方案基于课程设计目标,我们选择了齿轮传动方案来设计带式运输机传动装置。
齿轮传动具有传动效率高,传动力矩大等优点,在带式运输机上的应用也十分常见。
我们首先需要确定传动装置的传动比和转速。
传动比需要考虑带式运输机的负载情况和需要调节的情况。
同时,传动装置的转速也需要和带式运输机的转速相匹配,以保证传动装置的有效使用。
为了实现双向传动,我们选择了两套齿轮传动系统分别作为正向传动和反向传动。
当带式运输机需要正向传动时,正向的齿轮传动系统被启用,反向传动系统处于停止状态。
当带式运输机需要反向传动时,反向的齿轮传动系统被启用,正向传动系统则处于停止状态。
我们还需要注意传动系统的润滑和散热。
由于带式运输机需要长时间运行,传动系统需要采用润滑剂来减少摩擦,确保传动效率和传动质量的稳定性。
同时,传动系统在工作时也会产生大量热量,我们需要设计散热系统来保持传动系统的正常运行。
带式输送机传动装置课程设计

带式输送机传动装置课程设计
带式输送机传动装置是一种常用的成套设备,由交流变频调速器、电机、带轮、机架以及传动机构等组成。
它的工作原理是:机架安装有带轮,上下两端的带轮采用交流变频调速器与电机联结,通过传动机构实现电机带动带轮旋转,输送带上物料随带轮转动。
在设计带式输送机传动装置课程时,先由讲师讲解带式输送机传动装置的工作原理及主要结构特点,并介绍常用的变频器在使用上的注意事项,以及带式输送机传动装置动力测量和控制系统设计方案和安装要求。
接下来,学生们可以实际操作习题,如电动调速带式输送机传动装置参数的设计和调整,带轮的有效安装和相应的安装要求,传动机构的连接安装等,以便掌握变频调速器及其在带式输送机传动装置中的使用要点,加深对带式输送机传动装置的了解。
在实验室实验环节,学生们可以通过实验,进一步掌握带式输送机传动装置的安装和调试的细节要求以及各个组件的协调运行方式,发现带式输送机传动装置的各种故障,及时采取有效的应对措施,并熟悉电动调速带式输送机的调试技巧,以便于对带式输送机传动装置的运行状态进行综合性的分析和掌握。
在本课程设计中,学生可以熟悉带式输送机传动装置的基本构成,认识其功能和结构,掌握其变频器调速原理,并能够熟练地使用电动调速带式输送机传动装置,以及灵活地调节电机输出;并能够运用现代测控技术,对带式输送机传动装置及其它控制系统进行测量、控制;
同时,掌握带式输送机传动装置的故障处理能力。
本课程设计的最终目的是,培养学生在毕业设计中能够根据实际需要,利用变频调速器对带式输送机传动装置以及其他传动装置的动力测量和控制,能够独立设计、完成汽车制动系统、电动机等各类传动驱动装置的调试等。
机械设计综合课程设计——带式运输机传动装置设计

前言机械设计课程设计是大三阶段一门非常重要的课程,旨在通过让学生设计齿轮减速器了解一般机械设计过程的概貌,是一门理论与工程并重的课程。
本次课程设计能够让学生深刻了解到机械设计区别于其他学科的显著特征,主要包括以下几点:⑴机械设计是一门强调标准的学科,在设计每一个零件时首先必须考虑是否需要遵循某些标准。
⑵机械设计是注重实际的学科,设计过程不是孤立的,而必须考虑实际使用中的易用性、维护性、运输环境等各种条件,有经验的设计人员区别普通设计者的特点就在于此。
⑶机械设计工作要求设计人员有很好的耐心和缜密的思维,在设计过程中综合考虑多方面因素,从而使设计产品各方面都符合使用需求。
通过本次设计,我们能掌握到一个设计者最基本的技能,学会如何书写标准的设计说明书,了解产品设计的每一个步骤,对我们侧重电学领域的学生来说,学习机械设计过程增强了我们的综合素质,开拓了学科的视野,对我们可靠性专业的学生来说,学习机械设计让我们对更好得了解了产品情况,使我们能以整体的思维看待本专业的问题。
一、设计项目:带式运输机传动装置设计二、运动简图:1)电动机2)V带传动3)减速器(斜齿)4)联轴器5)带式运输机三、运输机数据运输带工作拉力1200F N=运输带工作速度 1.7/=V m s运输带滚筒直径270=D mm(附:运输带绕过滚筒的损失用效率计,效率η=0.97)四、工作条件1)设计用于带式运输机的传动装置2)连续单向运转,载荷较平稳,空载启动,运输带速允许误差为5%3)使用年限为10年,小批量生产,两班制工作五、设计工作量1)减速器装配图(0号图纸) 1 张2)零件工作图(2号图纸) 2 张3)设计说明书 1 份(本任务书须与设计说明书一起装订成册一并交上)设计说明目录一、电动机的选择、传动系统的运动和动力参数 (4)1.电动机的选择 (4)2.传动比分配 (4)3.运动和动力参数设计 (5)4. 将运动和动力参数计算结果整理并列于下表 (5)二、传动零件的设计、计算 (6)1. V带传动的设计 (6)2. 带的参数尺寸列表 (8)3.减速器齿轮(闭式、斜齿)设计 (8)4.齿轮其他传动参数 (11)5.齿轮传动参数列表 (11)三、轴与轴承的设计与校核 (11)1.Ⅰ轴(高速轴)的校核 (11)2.Ⅰ轴(高速轴)轴承校核 (15)3.Ⅱ轴(低速轴)与轴承的校核说明 (16)四、键连接的设计与校核 (17)五、联轴器的选择 (18)六、润滑与密封形式,润滑油牌号及用量说明 (19)七、箱体结构相关尺寸 (19)八、减速器附件列表 (21)九、设计优缺点及改进意见 (21)十、参考文献 (22)十一、总结 (23)项目-内容设计计算依据和过程计算结果轴的材料选择确定传动零件位置和轮廓线最小轴颈的确定计算各轴段直径轴的材料有碳素钢和合金钢,碳素钢的综合力学性能好,应用范围广,其中以45钢最为广泛。
课程设计-带式输送机传动装置设计

课程设计-带式输送机传动装置设计.pdf本文档旨在介绍带式输送机传动装置设计的背景和目的。
带式输送机是一种广泛应用于工业领域的物料输送设备,其传动装置的设计对其运行效果和运输能力具有重要影响。
本文将详细阐述带式输送机传动装置设计的原则和方法,包括传动装置的选择、布置和参数设计等方面。
通过合理的传动装置设计,可以提高带式输送机的工作效率、安全性和可靠性,将有助于提高生产效益和减少资源浪费。
引言带式输送机传动装置的重要性传动装置的选择原则传动装置的布置设计传动装置的参数设计结论参考文献请参阅附件中的《课程设计-带式输送机传动装置设计.pdf》了解更多详细内容。
本文旨在阐述带式输送机传动装置的基本原理和工作机制。
带式输送机传动装置是用于将物料从一个地方输送到另一个地方的重要设备。
其基本原理是利用驱动装置通过传动装置,将输送带带动物料沿输送线路运动。
主要的传动装置包括电动机、减速器和输送带。
电动机作为动力源,将电能转化为机械能,驱动减速器工作。
减速器则通过齿轮的传动,调节转速和扭矩,将电动机输出的转速和扭矩适应到输送带所需的范围。
最后,输送带将物料放置在上面,通过滚筒的转动将物料由一个地方输送到另一个地方。
带式输送机传动装置的工作机制是一个连续的过程。
当电动机启动后,动力通过减速器传递到输送带,使其开始运动。
输送带在滚筒的帮助下,将物料从一个地方平稳地移动到另一个地方。
这种运输方式具有高效、连续、安全的特点,广泛应用于矿山、港口、物流等领域。
总之,带式输送机传动装置的基本原理是通过电动机和减速器驱动输送带,实现物料的输送。
了解和掌握这些基本原理和工作机制对于合理设计和使用带式输送机传动装置具有重要意义。
本文档列举设计带式输送机传动装置时需要考虑的各种要求和限制条件。
功率要求:传动装置应能满足带式输送机所需的功率输出要求。
速度要求:传动装置应能适应带式输送机工作时所需的速度变化。
载荷要求:传动装置应能承受带式输送机运输物料的重量。
带式输送机课程设计报告书

一、确定传动方案二、选择电动机(1)选择电动机机械传动装置一般由原动机、传动装置、工作机和机架四部分组成。
单机圆柱齿轮减速器由带轮和齿轮传动组成,根据各种传动的特点,带传动安排在高速级,齿轮传动放在低速级。
传动装置的布置如图A-1所示,带式输送机各参数如表A-1所示。
图 A-1表A-1WF(N)WV(m/s)WD(mm)ηw(%)200 2.7 380 0.951)选择电动机类型和结构形式根据工作要求和条件,选用一般用途的Y系列三相异步电动机,结构为卧室封闭结构2)确定电动机功率工作机所需的功率WP(kW)按下式计算WP=WWWvFη1000式中,WF=2000N,W v=2.7m/s,带式输送机Wη=0.95,代入上式得WP=95.010007.22000⨯⨯=5.68KW电动机所需功率P0(kW)按下式计算WP=5.68KW(2)确定各轴段的尺寸图 A-21)各段轴的直径因本减速器为一般常规用减速器,轴的材料无特殊要求故选用45钢查教材13-10 45钢的 A=118~107 代入设计公式3nPAd==(118~107)×=379.13579.541.22~37.38考虑该轴段上有一个键槽,故应将轴径增大5%即=d(37.38~41.22)×(1+0.05)=39.25~43.28mm轴段①的直径确定为1d=42mm轴段②的直径2d应在1d的基础上加上两倍的非定位轴肩高度。
这里取定位轴肩高度12h=(0.07~0.1)1d=3mm,即2d=1d+212h=42+2×3=48mm考虑该段轴安装密封圈,故其直径2d还要符合密封圈的标准取2d=50mm轴段③的直径3d应在2d的基础上加上两倍的非定位轴肩高度,但因该轴段要安装滚动轴承,故其直径要与滚动轴承径相符合。
这里取3d=55mm 同一根轴上的两个轴承,在一般情况下应取同一型号,故安装滚动轴承处的直径应相同,即7d=3d=55mm轴段④上安装齿轮,为安装方便取4d=58mm ④轴段高于③1d=42mm2d=48mm7d=3d=55mm4d=58mm设计项目计算及说明主要结果(3)确定各轴段长度轴段只是为了安装齿轮方便,不是定位轴肩,应按非定位轴肩计算34h=1.5mm轴段⑤的直径5d=4d+245h45h是定位环的高度取45h=(0.07~0.1)4d=5.0mm 即5d=58+2×5=68mm轴段⑥的直径6d应根据所用的轴承类型及型号查轴承标准取得,预选该段轴承用6311轴承(深沟球轴承,轴承数据见课程设计指导书附录B),查得6d=65mm2)各段轴的长度如图A-3A-3轴段④安装有齿轮,故该段的长度4L与齿轮宽度有关,为了使套筒能顶紧齿轮轮廓应使4L略小于齿轮轮廓的宽度,一般情况下齿轮L-4L=2~3mm,齿轮L=70mm,取4L=68mm轴段③包括三部分:3L=432L-+∆+∆+齿轮LB,B为滚动轴承的宽度,查得指导书附录B可知6311轴承B=29mm2∆为齿轮端面至箱体的壁的距离,查指导书表5-2,通常可取2∆=10~15mm;3∆为滚动轴承端面的至减速器壁的距离,轴承5d=68mm6d=65mm4L=68mm链。
带式输送机传动装置课程设计报告书

重庆机电职业技术学院课程设计说明书设计名称:机械设计基础课程设计题目:带式输送机传动装置重庆机电职业技术学院课程设计任务书机电一体化技术专业2011年级3 班一、设计题目带式输送机传动装置已知条件:1.工作情况:两班制,连续单向运转,载荷较平稳,运输带速度允许误差为±0.5%;2.使用折旧期:五年;3.动力来源:电力,三相交流,电压380/220V;4.滚筒效率:0.96(包括滚筒与轴承的效率损失)。
参数题号1 2 3 4 5运输带工作拉力F/(KN) 3.2 3.4 3.5 2.8 2.6 运输带工作速度V/(m/s) 1.5 1.6 1.8 1.5 1.4 卷筒直径D/(mm) 400 400 400 450 450参数题号6 7 8运输带工作拉力F/(KN) 2.4 2.2 2.1 运输带工作速度V/(m/s) 1.5 1.4 1.5 卷筒直径D/(mm) 400 400 500选择的题号为8 号数据为:运输带工作拉力F = 2.1 N运输带工作速度v = 1.5 m/s卷筒直径D = 500 mm二、主要内容1.拟定和分析传动装置的设计方案;2.选择电动机,计算传动装置的运动和动力参数;3.进行传动件的设计计算及结构设计,校核轴的强度;4.绘制减速器装配图;5.绘制零件工作图;6.编写设计计算说明书。
三、具体要求本课程设计要求在2周时间内完成以下的任务:1.绘制减速器装配图1张(A2图纸);2.零件工作图2张(齿轮和轴,A4图纸);3.设计计算说明书1份,约3000字左右。
四、进度安排五、成绩评定指导教师张海秀签名日期年月日系主任审核日期年月日目录一设计任务的分析 (2)1.1本课程设计的目的 (2)1.2 本课程设计的内容、任务及要求 (3)1.2.1课程设计的内容 (3)1.2.2课程设计的任务 (4)1.2.3 课程设计的要求 (4)1.3 课程设计的步骤 (4)1.3.1设计准备工作 (4)1.3.2 总体设计 (4)1.3.3传动件的设计计算 (5)1.3.4装配图草图的绘制 (5)1.3.5装配图的绘制 (5)1.3.6 零件工作图的绘制 (5)1.3.7 编写设计说明书 (6)二传动装置的总体设计 (6)2.1选择电动机 (6)2.1.1选择电动机类型 (7)2.1.2选择电动机功率 (7)2.1.3 确定电动机转速 (7)2.2 计算总传动比和分配传动比 (8)2.2.1计算总传动比 (8)2.2.2 分配传动装置的各级传动比 (8)2.3 计算传动装置的运动和动力参数 (9)2.3.1各轴转速 (9)2.3.2 各轴的输入功率 (9)2.3.3 各轴的输入转矩 (9)2.4 传动零件的设计计算 (10)2.4.1箱外传动件的设计 (10)2.4.2箱内传动件的设计 (10)2.5 减速器的结构设计 (23)参考文献 (24)一设计任务的分析1.1本课程设计的目的机械设计基础课程设计是相关工科专业第一次较全面的机械设计练习,是机械设计基础课程的最后一个教学环节。
带式输送机传动装置课程设计报告书

1.传动装置的总体方案设计1.1 传动装置的运动简图及方案分析1.1.1 运动简图输送带工作拉力 kM /F 6.5 输送带工作速度 /v (1m -•s ) 0.85滚筒直径 mm /D3501.1.2 方案分析该工作机有轻微振动,由于V 带有缓冲吸振能力,采用V 带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V 带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。
减速器部分两级展开式圆柱齿轮减速,这是两级减速器中应用最广泛的一种。
齿轮相对于轴承不对称,要求轴具有较大的刚度。
高速级齿轮常布置在远离扭矩输入端的一边,以减小因弯曲变形所引起的载荷沿齿宽分布不均现象。
原动机部为Y 系列三相交流异步电动机。
总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。
1.2电动机的选择1.2.1 电动机的类型和结构形式电动机选择Y 系列三相交流异步电动机,电动机的结构形式为封闭式。
1.2.2 确定电动机的转速由于电动机同步转速愈高,价格愈贵,所以选取的电动机同步转速不会太低。
在一般 机械设计中,优先选用同步转速为1500或1000min /r 的电动机。
这里选择1500min /r 的电动机。
1.2.3 确定电动机的功率和型号 1.计算工作机所需输入功率1000P Fvw =由原始数据表中的数据得PW=1000FV=KW 310001085.05.6⨯⨯ =5.25kW2.计算电动机所需的功率)(P d kWη/P d w P =式中,η为传动装置的总效率n ηηηη⋅⋅⋅=21式子中n ηηη,,21分别为传动装置中每对运动副或传动副的效率。
带传动效率95.01=η 一对轴承效率99.02=η 齿轮传动效率98.03=η 联轴器传动效率99.04=η 滚筒的效率96.05=η总效率84.096.099.098.099.095.023=⨯⨯⨯⨯=ηkWkW P W58.684.0525.5P d ===η取kW 5.7P d =查表[]1Ⅱ.186得 选择Y132M —4型电动机电动机技术数据如下: 额定功率kW)(:kW 5.7 满载转速r/min)(:r/min 1440 额定转矩)/m N (:m N /2.2最大转矩)/m N (:m N /2.2 运输带转速min /4.4635.014.385.06060r D vn w =⨯⨯==π 1.3计算总传动比和分配各级传动比1.3.1确定总传动比w m n n i /=电动机满载速率m n ,工作机所需转速w n 总传动比i 为各级传动比的连乘积,即n i i i i ⋅⋅⋅=211.3.2分配各级传动比 总传动比314.461440/===w m n n i 初选带轮的传动比5.21=i ,减速器传动比4.125.231==i 取高速级齿轮传动比2i 为低速级齿轮传动比3i 的1.3倍,所以求的高速级传动比2i =4,低速级齿轮传动比3i =3.11.4计算传动装置的运动参数和动力参数1.4.1计算各轴的转速传动装置从电动机到工作机有三个轴,依次为1,2,3轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初选小齿轮齿数为20。那么大齿轮齿数为72.8。
3、由于减速器采用闭式传动,所以按齿面接触疲劳强度进行设计。
设计公式: ≥
确定公式中各参数,选Kt=1.6,ZH=2.433, , =0.765, , =0.945.
=0.765+0.945
=1.710
由表查得齿宽系数 =1.0。
由表查得: 的计算公式:
=1.15+0.18(1+0.6)+0.23× 87.86
=1.428
再由[课]表10-3查的: =1.33, =1.2
公式:
=1×1.03×1.428×1.2
=1.765
再按实际载荷系数校正所算得分度圆直径:
=90.78mm
计算模数: = =3.146mm
5、再按齿根弯曲强度设计:
二、电动机的选择
1、按工作要求和条件,选用三相笼型异步电动机,封闭式结构,电压380V,Y型。
2、计算功率
=Fv/1000= =
系统的传动效率
机构
V带传动
齿轮传动
滚动轴承(一对)
联轴器
卷筒传动
效率
0.90
0.98
0.98
0.99
0.96
符号
所以:
=0.90 0.98 0.98 0.98 0.98 0.98 0.98 0.99x0.96=0.0.77
3.确定带轮基准直径
由[2]表8-3和表8-7取主动轮基准直径 =80 mm
根据[2]式(8-15), 从动轮基准直径 。
=3 80=240 mm
根据[2]表8-7 取 =250 mm
按[2]式(8-13)验算带的速度
= =6.29 m/s <25 m/s 带的速度合适
4.确定窄V带的基准长度和传动中心距
根据0.7( + )< <2( + ),初步确定中心距 =500 mm
根据[2] 式(8-20)计算带的基准长度
2 + ( + )+
=2 500+ (250+80)+
=1532.55mm
由[2]表8-2选带的基准长度 =1600 mm
按[2]式(8-12)计算实际中心距
+ =400+ =533.73 mm
计算大,小齿轮的 ,并加以比较:
=0.00769
=0.00737
小齿轮的数值大,选用小齿轮 =0.00737
设计计算:
mm
对比计算结果,由齿面接触疲劳强度计算的法面模数 大于由齿面接触强度计算的法面模数,取标准模数 =2mm,既满足弯曲强度,但为了满足接触疲劳强度需要按接触疲劳强度计算得分度圆直径 =90.78mm来计算齿数:
= =314.8Mpa
= =253.3MPa
计算大,小齿轮的 ,并加以比较:
=0.01327
=0.0155
大齿轮的数值大,选用大齿轮 =0.0155
设计计算:
对比计算结果,由齿面接触疲劳强度计算的法面模数 大于由齿面接触强度计算的法面模数,取标准模数 =2mm,既满足弯曲强度,但为了满足接触疲劳强度需要按接触疲劳强度计算得分度圆直径 =53.87mm来计算齿数:
公式:
=1×1.2×1.05×1.42
=1.789
再按实际载荷系数校正所算得分度院圆直径:
=55.91mm
计算模数: = =2.466mm
5、再按齿根弯曲强度设计:
设计公式:
确定计算参数:
计算载荷系数:
=1×1.05×1.2×1.33
=1.676
根据纵向重合度: =1.744,从表查得螺旋角影响系数 =0.88
由计算公式:N= 算出循环次数:
=60×129.73×1×(2×8×8×300)
=2.99×
=1×
再由N1,N2查得接触疲劳寿命系数 =0.90, =0.95.
计算接触疲劳许用应力,取安全系数S=1,失效概率1%。
=0.90×590=531Mpa
=0.95×560=532Mpa
=531.5MPa
4、计算小齿轮分度圆直径 ,由计算公式得:
5.5
高速轴
480
1.0067×
5.06
中间轴
129.73
3.5766×
4.86
低速轴
44.73
9.8638×
4.62
卷筒轴
44.73
9.5735×
4.484
四、三角带的传动设计
确定计算功功率
1.由[课]表8-6 查得工作情况系数 =1.2,故
=1.2 5.5 =6.6 kw
2.选取窄V带类型
根据 由[课]图8-9 确定选用SPZ型。
= =44.04
取 =44
得 =127
6、几何尺寸计算:
计算中心距:
将中心距圆整为:177mm
按圆整后中心距修正螺旋角:因 的值改变不大,故参Fra bibliotek 等不必修正。
计算大小齿轮分度圆直径:
=90.56mm
=263.44mm
计算齿轮宽度:
=1×90.56=90.56mm
取 =90mm, =95mm
7、低数级齿轮传动的几何尺寸
= =26.1
取 =26
则 =97
6、几何尺寸计算:
计算中心距:
将中心距圆整为:127 mm
按圆整后中心距修正螺旋角:
因 的值改变不大,故参数 等不必修正。
计算大小齿轮分度圆直径:
=53.69mm
=200.3mm
计算齿轮宽度:
=1×53.69=53.69mm
取 =54mm, =60mm
8、高速级齿轮传动的几何尺寸
1轴(高速轴)输入功率: =11 0.90=9.9kw
2轴(中间轴)的输入功率: =11 0.9 0.98 0.98×=9.51kw
3轴(低速轴)的输入功率: ==kw
4轴(滚筒轴)的输入功率:
=11x0.9 0.99×0.96=8.50kw
8、各轴输入转矩的计算:
0轴(电动机)的输入转矩:
= =36.47 N mm
≥87.86mm
计算小齿轮圆周速度:v= =0.596m/s
计算齿宽b及模数m.
b=
mm
齿高:h= =2.25×3.04=6.85mm
=12.83
计算纵向重合度:
=0.318×1×28×tan14°
=2.22
计算载荷系数K
已知使用系数 =1
已知V=0.596m/s,7级齿轮精度,由表查得动载荷系数 =1.03
3、由于减速器采用闭式传动,所以按齿面接触疲劳强度进行设计。
设计公式: ≥
确定公式中各参数,选Kt=1.6,ZH=2.433, =0.768, , ==0.945
=0.789+0.945
=1.713
选齿宽系数 =1.0。
查表得:材料弹性影响系数ZE=189.8
再按齿面硬度查得:小齿轮得接触疲劳强度极限 =590MPa,大齿轮得接触疲劳强度极限: =560MPa.
设计公式:
确定计算参数:
计算载荷系数:
=1×1.03×1.2×1.33
=1.644
根据纵向重合度: =2.22,从[课]图10-28查得螺旋角影响系数 =0.88
计算当量齿数: =31.59
=91.38
再由[课]表10-5查取齿形系数 =2.505, =2.20
查取应力校正系数 =1.63, =1.781
结果/mm
轮毂处直径D1
D1=1.6d=1.6×45
72
轮毂轴向长L
L=(1.2~1.5)d≥B
54
倒角尺寸n
n=0.5mn
1
齿根圆处厚度σ0
σ0=(2.5~4)mn
8
腹板最大直径D0
D0=df2-2σ0
216
板孔分布圆直径D2
D2=0.5(D0+D1)
144
板孔直径d1
d1=0.25(D0-D1)
查[课]表8-4得 =0.065 Kg/m, 故
=550.3N
8.计算作用在轴上的压轴力
=
=4346.38 N
9.带轮结构设计略。
五、齿轮传动的设计
㈠高速级齿轮传动的设计
选择齿轮精度为7级,小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为 240HBS,两者材料硬度差为 40HBS.
1460(r.min-1)
38mm
80mm
三、传动比的分配及转动校核
总的转动比:i= = =30.1
选择带轮传动比i1=3,一级齿轮传动比i2= 3.7,二级齿轮传动比i3=2.9
7、由于电动带式运输机属通用机械,故应以电动机的额定功率 作为设计功率,用以计算传动装置中各轴的功率。
0轴(电动机)输入功率: =11kw
名称
计算公式
结果/mm
面 基数
mn
2
面压力角
αn
20o
螺旋角
β
13.7o
分度圆直径
d3
90.56
d4
263.44
齿顶圆直径
da1=d1+2ha*mn=90.56+2×1×2
94.56
da2=d2+2ha*mn=263.44+2×1×2
267.44
齿根圆直径
df1=d1-2hf*mn=90.56-2×1.25×2
35
腹板厚C
C=0.3b2
18
(二)、低速齿轮机构设计
1、已知 =129.73r/min
2、选择齿轮精度为7级,小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为 240HBS,两者材料硬度差为 40HBS.