对软岩变形问题的一些肤浅认识

合集下载

软岩隧道施工期内变形分析

软岩隧道施工期内变形分析

软岩隧道施工期内变形分析发表时间:2018-12-24T16:24:37.370Z 来源:《防护工程》2018年第28期作者:支立力[导读] 隧道围岩开挖后,原有的应力平衡被打破,围岩可能会产生较大的变形而失稳,导致坍塌事故。

中国水电建设集团十五工程局有限公司陕西咸阳 712000摘要:隧道围岩开挖后,原有的应力平衡被打破,围岩可能会产生较大的变形而失稳,导致坍塌事故。

因此对隧道的监测是必不可少的一个环节。

结合某软岩隧道现场实际监测数据,探讨了施工期内出口段三个连续断面拱顶沉降、净空收敛随时间的动态变化规律,得到了拱顶沉降及净空收敛稳定所需时间,为二次衬砌提供依据。

研究结论对软岩隧道施工具有一定的指导和借鉴。

关键词:软岩隧道:拱顶沉降;净空收敛;地表沉降Abstract:After excavation surrounding rock of tunnel,the original stress balance is broken,which will create larger deformation and instability of surrounding rock,leading to collapse. Hence the monitoring of the tunnel is one of the essential parts. Combined with the actual monitoring data of a soft rock tunnel,the dynamic change rules of time of vault settlement and clearance convergence of three consecutive sections was discussed during construction period. The stability time of vault settlement and clearance convergence was obtained,which can provide the basis for the secondary lining. We also analyzed the ground settlement of a section of the tunnel,and found that the change of land subsidence over time is similar.. In the end,the research conclusion can provide some guidance and references for construction of soft rock tunnel.Key Words:Soft rock tunnel:Vault settlement:Clearance convergence:Ground surface settlement.1 引言随着我国经济的快诉发展,国家交通网正在逐步完善,隧道的施工安全成为了人们关注的重点。

软岩大变形机理和处治方法的研究

软岩大变形机理和处治方法的研究

软岩大变形机理和处治方法的研究摘要:大变形问题在隧道修建过程中非常常见,目前对该问题的研究也较多,因此存在不同的处治思路和方法。

现阶段此类问题的主要处治原则是加强围岩、控制变形。

针对火山隧道出口端K397+220-K396+880(ZK397+365-ZK396+860)段,由于岩体稳定性差,隧道层间结合力差,自稳性差。

基于此,本文通过分析软岩大变形的分类与发生机理,结合实际案例提出相应的处治方法,旨在降低软岩大变形给施工带来的不良影响。

关键词:围岩大变形;大变形机理;处治方法引言近年来,随着地下工程建设的快速发展,涌现出大量深埋长大隧道。

众所周知,地球的地壳运动始终在运动,从未停歇,46亿多年来,火山岩、沉积岩、变质岩在地壳的运动中相互交织融合形成软硬不均、高低不平的江河湖海、平川大山。

软质岩是多形态岩性中的一种,然而,隧道掘进遇到软岩则是一道难题。

复杂的工程地质条件与特殊的围岩力学性质致使隧道围岩大变形问题十分突出,严重制约隧道工程的施工建设安全与长期运营稳定。

为采取精准有效的应对措施,对围岩大变形加以防控,需要认真分析软岩大变形的机理并提出相应的处治方法,保障施工安全。

1.构造软岩大变形分类与发生机理1.1断层型大变形断层型大变形主要发生在区域断层带,围岩一般处于较高应力状态。

在隧道开挖前,断层中破碎带在较高围压的作用下紧密闭合。

隧道开挖后,断层中破碎带在水平构造应力与重力的时效作用下,发生塑性挤出、结构流变,最终发展为断层型大变形。

1.2碎裂型大变形碎裂型大变形是发生在构造节理发育带的构造软岩大变形,如节理密集带、褶皱核部及转折端。

大变形发生段围岩呈碎裂状,在处于原岩应力状态时受到高围压的作用,整体较稳定。

隧道开挖后,围岩应力重分布,结构面之间发生错动,碎裂的结构体产生滑移,围岩整体强度大幅度下降,持续扩容松弛,有显著结构流变体的特征,在强烈构造应力的作用下发展为大变形。

1.3小夹角型大变形小夹角型大变形是主要发生在顺层和缓倾岩层中,以隧道轴线与岩层面小角度相交为特点的构造软岩大变形。

软岩大变形发生的边界条件及对策探讨

软岩大变形发生的边界条件及对策探讨
研究结论 :(1)大变形是人为改变 内营力 ,导致地壳结构改变 、地 壳内部物质变位的构造运动 ;(2)大变形 发生 的边界条件主要有 :最 大 主应力 近 于水 平 ,薄 层极 软 岩 (R<5 MPa)占比较 大 ,以及 适宜 的构造 条 件 ; (3)大变形隧道 的支护参数应在 施工 中考 虑地 质条件 、工 艺工法 及施 工组 织等 因素 ,通过 开展 试验 段确定 ; (4)本研究成果适用 于软 岩隧道大变形 的预判和工程处理 。 关键词 :软 岩大变形 ;边界条件 ;地壳运动 ;地应 力 ;地质构造 中图 分 类 号 :U443 文 献 标 识 码 :A
The Discussion of Boundary Condition for Large Deform ation of Soft Rockm ass and Its Control Counterm easures
ZHANG Guang—ze,CHAI Chun—yang,SONG Zhang,GONG Jiang—feng
organization should be considered in constru ction, and then determ ined the tunnel support parameters of large
deformation by carrying out the test;(4)The research results can be applied to the prediction and engineer ing treatment
2018年 8月 第 8期 (总 239)
铁 道 工 程 学 报
JOURNACIETY
文章 编号 :1006—2106(2018)08—0027—05

软岩大变形

软岩大变形

软岩大变形软岩大变形软岩大变形问题从20世纪60年代就作为世界性难题被提了出来,在地下工程的建设过程中,软岩问题一直是困扰工程建设和运营的重大难题之一。

特别是“九五”期间,我国10个能源建设基地有8个都相继出现了软岩问题,造成多对矿井的停产建设。

每年有大量的隧洞在软弱围岩中开挖,随着开挖深度的增加,软岩问题愈趋严重,直接影响着工程安全以及人身安全。

随着人类工程活动的不断增强,软岩隧洞系指塑性大变形工程岩体有关的岩体工程,而工程软岩是指在工程力作用下能产生显著塑性变形的工程岩体。

工程软岩的定义不仅重视软岩的强度特征,而且强调软岩所承受的工程力荷载的大小,强调从软岩的强度和工程力荷载的对立统一关系中分析、把握软岩的相对性实质。

1.软岩大变形破坏特征软岩隧洞的大变形破坏特征不仅受围岩的力学性质影响,而且受隧洞所处的地应力环境和工程因素控制。

我国许多煤矿在采深不大的情况下,坑道的变形破坏并不强烈,常规支护即可维护隧洞稳定。

加大采深后,这些煤矿坑道额稳定性降低,变形破坏趋于强烈,常规支护难以维护坑道稳定,因此,软岩隧洞的变形破坏特征受多种因素控制。

一般来说,软岩隧洞的破坏具有以下特征:(1) 变形破坏方式多除一般隧洞中常见的变形破坏方式拱顶下沉、坍塌外,还有片帮和底鼓、底围隆破,隧洞表现出强烈的整体收敛和破坏。

变形破坏表现的形式既有结构面控制,又有应力控制型,尤以应力控制型为主。

(2) 变形量大拱顶下沉大于10cm,有的高达50cm,两帮挤入在20~80cm之间,底鼓非常强烈,在常规无仰拱支护的情况下,强烈的底鼓往往将整个隧洞封闭。

(3) 变形速度高软岩隧洞初期收敛速度可以达到3cm/d,即使施作了常规锚喷支护以后,软岩隧洞的收敛速度依然很高,可达2cm/d,而且其变形收敛速度降低缓慢,因此,在不长的时间内其变形收敛就很大,多则一年,少则几个月就将隧洞封闭。

(4) 持续时间长由于软岩具有强烈的流变性和低强度,因此,软岩隧洞开挖以后,围岩的应力重分布持续时间很长,软岩隧洞变形破坏持续很长时间,往往长达1~2年。

深部软岩巷道围岩变形研究现状与存在问题分析_赵红超

深部软岩巷道围岩变形研究现状与存在问题分析_赵红超

12011轨道巷掘进期间采用钻屑量(S)、瓦斯解吸指标(Δh2)和钻孔瓦斯涌出初速度(q)进行预测,预测结果如图3所示。

经统计,12011轨道巷在执行措施前预测超标率为23%,在执行措施后预测超标率下降到3.9%。

4.3巷道进尺义安矿在未采取巷帮截流抽放与主巷超前排放措施技术以前煤巷掘进月进尺不足40m,12011轨道巷采用巷帮截流抽放与主巷超前排放措施后,月进尺达到了100m以上。

5几点看法(1)在突出煤层巷道掘进中,应用巷帮截流抽放与主巷排放钻孔相结合的防突技术比单项技术措施更具有安全性和可靠性。

(2)巷帮截流抽放技术、主巷排放钻孔技术与有效的管理相结合,可以实现了突出区域煤巷快速掘进,提高了生产率。

(3)巷帮截流抽放技术和主巷排放钻孔技术都涉及到钻孔布置合理性问题,因此,不同煤层赋存条件和地质条件的区域,抽放钻孔和排放钻孔间距需要在考察抽放半径和排放半径的基础上设计。

作者简介王念红,男,河南省宜阳县人,1971年7月生,1993年7月毕业于淮南矿业学院矿井通风与安全专业,现任洛阳义安矿业有限公司总工程师,工程师。

(收稿日期:2009-4-2)深部软岩巷道围岩变形研究现状与存在问题分析中国矿业大学矿业学院赵红超王维中国矿业大学化工学院刘璐摘要目前,我国煤矿开采已经向深部发展,与之相伴的软岩巷道变形现象更加明显,综合国内外关于软岩巷道的理论研究现状,提出一种关于改变软岩微结构面的方式来解决相关问题的设想,并从理论上给予证明。

关键词深部矿井软岩巷道蠕变1引言目前,我国煤矿开采已经向深部发展。

我国的煤炭资源埋深在1000m以下的储量为2.95×1012t,占煤炭资源重量的53%。

据初步统计现阶段我国已经有数百对矿井开采深度超过1000m,其中,山东新汶孙村矿延伸水平深度已达到1300m。

同时,我国国有重点煤矿平均开采深度正在以10~25m/a的速度逐年增加[1]。

预计在未来20年我国将有更多煤矿进入1000~ 1500m的深度。

软岩变形特征

软岩变形特征

软岩变形特征软岩是指抗压强度小于100MPa的岩石,其变形特征与硬岩有很大的不同。

软岩在地质工程领域中广泛存在,如隧道、坑道、水电站等建设中都会遇到软岩问题。

因此,了解软岩的变形特征对于地质工程设计和施工具有重要意义。

一、软岩的分类根据国际上惯例,软岩可以分为三类:粉砂质岩石、泥质岩石和火山碎屑。

其中粉砂质岩石主要包括粉砂岩、灰质粉砂岩和白云岩等;泥质岩石主要包括泥页岩、泥灰质页岩和泥盆纪灰泥页岩等;火山碎屑主要包括玄武质凝灰角礫石、安山玄武流纹安山玄武流纹玄武凝灰角礫石等。

二、软岩的力学特性1. 抗压强度小:软岩抗压强度一般小于100MPa,远低于硬性差的花崗岩、砂岩等。

2. 塑性变形大:软岩的塑性变形较大,因此在荷载作用下容易发生塑性变形,甚至发生流动现象。

3. 水分敏感性强:软岩的水分敏感性较强,当软岩中含有过多的水分时,其抗压强度会明显降低。

4. 粉化现象严重:软岩在受到荷载作用下容易出现粉化现象,表现为表面剥落、破碎等。

三、软岩的变形特征1. 塑性变形软岩在受到荷载作用下会发生塑性变形。

这种变形不仅会导致体积减小和密度增大,还会使得软岩表面产生裂缝。

当荷载超过一定限度时,软岩会出现流动现象,如泥流、泥石流等。

2. 粉化破碎粉化是指软岩表面或内部出现微小裂缝后,在荷载作用下逐渐扩展并最终导致整块岩石破碎。

粉化是软岩最常见的一种变形方式,也是造成隧道、地铁等软岩工程事故的主要原因之一。

3. 坍塌滑移坍塌滑移是指软岩在受到一定荷载作用下,由于内部结构弱化、粘聚力减小等原因,导致整块岩石发生向下滑动或向外倾斜的现象。

坍塌滑移是软岩变形中比较严重的一种,会对地质工程造成严重的影响。

4. 裂缝变形裂缝变形是指软岩在荷载作用下产生裂缝,并随着荷载大小和时间的变化而逐渐扩展和变形。

裂缝变形会导致软岩体积减小、密度增大、抗压强度降低等问题,对地质工程造成不利影响。

四、软岩的加固方法为了保证地质工程的安全可靠,需要对软岩进行加固。

软岩大变形

软岩大变形

软岩大变形软岩大变形问题从20世纪60年代就作为世界性难题被提了出来,在地下工程的建设过程中,软岩问题一直是困扰工程建设和运营的重大难题之一。

特别是“九五”期间,我国10个能源建设基地有8个都相继出现了软岩问题,造成多对矿井的停产建设。

每年有大量的隧洞在软弱围岩中开挖,随着开挖深度的增加,软岩问题愈趋严重,直接影响着工程安全以及人身安全。

随着人类工程活动的不断增强,软岩隧洞系指塑性大变形工程岩体有关的岩体工程,而工程软岩是指在工程力作用下能产生显著塑性变形的工程岩体。

工程软岩的定义不仅重视软岩的强度特征,而且强调软岩所承受的工程力荷载的大小,强调从软岩的强度和工程力荷载的对立统一关系中分析、把握软岩的相对性实质。

1.软岩大变形破坏特征软岩隧洞的大变形破坏特征不仅受围岩的力学性质影响,而且受隧洞所处的地应力环境和工程因素控制。

我国许多煤矿在采深不大的情况下,坑道的变形破坏并不强烈,常规支护即可维护隧洞稳定。

加大采深后,这些煤矿坑道额稳定性降低,变形破坏趋于强烈,常规支护难以维护坑道稳定,因此,软岩隧洞的变形破坏特征受多种因素控制。

一般来说,软岩隧洞的破坏具有以下特征:(1) 变形破坏方式多除一般隧洞中常见的变形破坏方式拱顶下沉、坍塌外,还有片帮和底鼓、底围隆破,隧洞表现出强烈的整体收敛和破坏。

变形破坏表现的形式既有结构面控制,又有应力控制型,尤以应力控制型为主。

(2) 变形量大拱顶下沉大于10cm,有的高达50cm,两帮挤入在20~80cm之间,底鼓非常强烈,在常规无仰拱支护的情况下,强烈的底鼓往往将整个隧洞封闭。

(3) 变形速度高软岩隧洞初期收敛速度可以达到3cm/d,即使施作了常规锚喷支护以后,软岩隧洞的收敛速度依然很高,可达2cm/d,而且其变形收敛速度降低缓慢,因此,在不长的时间内其变形收敛就很大,多则一年,少则几个月就将隧洞封闭。

(4) 持续时间长由于软岩具有强烈的流变性和低强度,因此,软岩隧洞开挖以后,围岩的应力重分布持续时间很长,软岩隧洞变形破坏持续很长时间,往往长达1~2年。

隧道软弱围岩大变形的特征

隧道软弱围岩大变形的特征

隧道软弱围岩大变形的特征
隧道软弱围岩大变形的特征是指隧道挖掘过程中,围岩承受巨大应力作用而发生显著变形的现象。

隧道围岩的弱化、裂隙扩展和塌方等问题会给隧道工程带来一系列的安全和施工困难。

首先,软弱围岩往往具有较低的抗压强度和弹性模量,容易受到来自地表和隧道内部的荷载作用而产生挤压和变形。

在隧道开挖过程中,地下水压力和岩土层的自重会增加围岩的应力,进而导致围岩发生挤压和塑性变形。

其次,软弱围岩存在较多的裂隙和脆弱层,这些裂隙和层面往往会随着开挖过程中的排空和应力变化而扩展和切割。

裂隙的扩展会导致围岩的失稳和片状岩体的脱落,增加了隧道施工过程中的风险和困难。

此外,软弱围岩容易受到地下水的侵蚀和渗流的影响,加速了围岩的破坏和溶解。

软弱围岩的溶解和破坏会导致隧道周围地层的沉陷和沉降,进一步加剧了围岩的变形和不稳定。

针对软弱围岩大变形的特征,隧道工程中需要采取一系列的支护措施和加固措施,以确保隧道的安全和施工的顺利进行。

常见的支护手段包括锚杆、喷射混凝土封固、钢架支撑等,这些措施能够增加围岩的抗压强度和稳定性,防止围岩的进一步变形和破坏。

总之,隧道软弱围岩大变形的特征是指围岩在隧道开挖过程中由于应力作用而发生的显著变形现象。

了解这些特征对于隧道工程的施工和安全至关重要,同时采取适当的支护措施和加固措施能够有效减少软弱围岩带来的风险和困难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对这几天对软岩变形论文的收集做了些归纳、总结,希望能提供给你们些许方向。

由于时间仓促,没有做系统的深入研究,对某些论文中的观点未作验证。

一、国内外工程实例
1、南昆线家竹箐隧道[1]
隧道于1996年建成,全长约4990m,发生大变形段落全长390m,拱顶最大下沉量为160cm,周边最大位移量为240cm,隧底最大隆起量100cm。

围岩为煤系地层,以煤、泥岩、砂质泥岩、和钙质细砂岩为主,最大主应力19.62Mpa,最大水平主应力16.09Mpa,最大垂直主应力8.57Mpa。

采用8m长锚杆加固围岩等措施整治。

2、兰新二线乌鞘岭隧道
隧道于2005年建成,全长20050m。

隧道穿越F4~F7等4条区域性大断层组成的宽大挤压构造带,线路长度为7587m,其中岭脊段志留系板岩夹千枚岩和F7断层泥砾带等软弱围岩发生大变形。

岭脊段最大水平收敛达1209mm,最大拱顶下沉367mm,平均累计变形F4、F5、志留系板岩夹千枚岩、F7几个区段分别为90mm~120mm、300mm~400mm、200mm~400mm、150mm~550mm。

最大变形速率F4、F5、志留系板岩夹千枚岩、F7几个区段分别可达73mm/d、143mm/d、165mm/d、167mm/d。

165mm/d;F7断带累计变形150~550mm、最大变形速率167mm/d。

最大水平主应力约22Mpa。

3、奥地利的陶恩隧道[1]
隧道于1985年建成,全长6400m,最大位移速度20cm/d,最大变形量120cm,围岩为绿泥石、绢云母千枚岩,地应力16~27Mpa。

采用6~9m长锚杆整治。

4、奥地利的阿尔贝格隧道
隧道于1979年建成,全长13980m,最大变形速度11.5 cm/d,最大变形量70cm,围岩为以千枚岩为主,地应力13Mpa。

采用9~12m长锚杆整治。

5、日本的惠那山隧道
隧道于1985年建成,全长8635m,边墙最大变形56cm,拱顶最大下沉93cm,围岩为风化花岗岩组成的断层破碎带,地应力为10~11Mpa。

采用9m和13.5m的长锚杆整治。

二、软岩大变形机理研究
1、关于大变形定义的讨论
隧道围岩大变形是软岩地质中常见的一种地质灾害。

大变形是一种塑性破坏和塑性流动。

20世纪初期以来,国内外许多学者从形成机制、预测方法、防治措施等诸多方面对大变形进行广泛地研究。

然而,迄今为止,国内外学术界对大变形的定义、分级、形成机制、位移控制等问题尚未形成统一的认识。

目前工程界和学术界对软岩隧道大变形尚无统一的定义。

徐则明从大变形的6个特征对大变形进行了概况描述,何满潮认为软岩的大变形是个塑性大变形,卞国忠从围岩变形量上(变形量>400mm)给大变形做了界定。

2、软岩大变形机理
软岩大变形的成因比较复杂,一般可归为两大类:一是开挖形成应力重分布超过围岩强度而发生塑性化;二是岩石中某些矿物和水反应而发生膨胀。

从各个大变形的工程案例上,发生大变形的地段,岩体具有一些共同的特性,如:岩体受区域性构造影响较大,普遍节理很发育,完整性差;岩石的强度和模量较高,同时岩体的强度和模量较低;高地应力环境;隧道内有少量地下水。

①高地应力对软岩变形的贡献
研究表明,当强度应力比(Rb/σmax)小于0.3~0.5时,即能产生比正常隧道开挖大一倍以
上的变形。

此时洞周将出现大范围的塑性区,随着开挖引起围岩质点的移动,加上塑性区“剪胀”作用,洞周将产生很大位移。

所以,高地应力是大变形的一个重要原因。

刘高[2]等人总结出了围岩变形的破坏机理,即:“原岩应力较高,故一旦开挖,随即发生内应力释放和回弹,并引起相应的应力调整和变形。

隧道开挖卸载相当于在原岩应力状态上叠加相应反向拉应力,于是工程岩体(尤其是层状和似层状岩体)在类似横弯或纵弯作用下发生扰曲,或者沿结构面发生剪胀滑移变形,岩体强度降低,围岩发生体积膨胀变形(扩容)。

”同时,他还指出“开挖前岩体处于高地应力场的高围压环境,而开挖后的工程岩体则处于高地应力状态下的低围压和高应力差环境。


对各个软岩变形案例的研究,表明隧道变形破坏最严重的部位多在拱顶和拱墙的交界处。

因此,许多学者指出,高地应力软岩破坏的围岩环境并不是高围压环境。

胡玉根[3]指出,“决定围岩破坏围压高低的是围岩中的径向应力,它是围岩三向应力中最小者……高应力软岩尽管初始地应力高,但破坏的围压环境仍为低压环境。

”他进一步指出,“引起隧道收敛的不仅有应力改变导致的围岩弹性体积应变的变化和围岩的蠕变,而且有围岩的破坏扩容,并且后者在隧道的收敛中往往起主要作用。

”张志强[4]更是通过分析家竹箐隧道和华蓥山隧道大变形的特征,指出“受非静水应力场作用的隧道,当地应力水平足够高,而围岩性质较软时,最大位移方向将会与最大主应力方向正交,而不是与它平行。


②围岩松动圈理论[5]
围岩松动圈理论按松动圈大小划分了围岩类别,将Lp≥150cm的围岩划分为软岩。

它指出,当Lp≥150cm后,所有刚性支护,如料石、混凝土、普通金属支架等已不能有效的进行支护,只有采用支护能力较强的可缩性支护才能适应。

三、软岩大变形防治措施研究
在大变形防治措施方面,国内外的学者和工程技术人员结合工程实践进行了大量的探索,已经取得了不少值得借鉴的成果。

但是,目前的现实是,防治措施的应用超前于理论研究,许多加固技术和机理不清、设计缺乏理论依据。

目前国内外工程实例均将长锚杆作为治理大变形的主要措施,且均获得了成果。

根据国外工程实例和家竹箐隧道的经验,认为整治大变形的原则可用24个字概括,具体为:“加固围岩、改善洞形、先柔后刚、先放后抗、变形留够、底部加强”。

[1]
四、参考文献:
[1]高世军,家竹箐隧道整治大变形的主要措施[J],世界隧道,1998(1);
[2] 刘高等,高应力软岩巷道围岩变形破坏研究[J],岩石力学与工程学报,2000(11);
[3]胡玉根,李铁汉,高应力下软岩变形机制及防治对策探讨[J],中国地质灾害与防治学报,1995(12);
[4]张志强,光宝树,软弱围岩隧道在高地应力条件下的变形规律研究[J],岩土工程学报,2000(11);。

相关文档
最新文档