2021考研数学线性代数32个重要考点-考研辅导
数学专业考研复习资料线性代数重点知识点整理

数学专业考研复习资料线性代数重点知识点整理数学专业考研复习资料:线性代数重点知识点整理一、向量与矩阵1. 向量的定义和性质- 向量的表示与运算- 单位向量和零向量- 向量的线性相关性2. 矩阵的定义和性质- 矩阵的基本运算- 矩阵的转置和逆矩阵- 矩阵的秩和行列式二、线性方程组1. 线性方程组的概念- 线性方程组的解和解的存在唯一性- 齐次线性方程组和非齐次线性方程组2. 线性方程组的解法- 列主元消元法- 矩阵的初等变换和阶梯形矩阵 - 高斯消元法和高斯约当法三、线性空间和子空间1. 线性空间的定义和性质- 线性空间的子空间和直和- 基和维数的概念- 线性空间的同构与等价2. 子空间的性质与判定- 线性子空间的交与和- 维数公式和秩-零化定理- 子空间的降维与升维四、线性变换和特征值1. 线性变换的定义和性质- 线性变换的表示和运算- 线性变换的核与像- 线性变换的矩阵表示和判定2. 特征值和特征向量- 特征方程和特征值的求解 - 特征空间和特征子空间- 相似矩阵和对角化矩阵五、内积空间和正交变换1. 内积的定义和性质- 内积的基本性质和判定- 正交向量和正交子空间- 构造内积空间2. 正交变换和正交矩阵- 正交变换的性质和表示- 正交矩阵的特点和运算- 正交矩阵的对角化和特征值六、二次型和正定矩阵1. 二次型的定义和性质- 二次型的标准形和规范形 - 二次型的正定性和负定性- 二次型的规约和降维2. 正定矩阵的定义和性质- 正定矩阵的判定和运算- 正定矩阵的特征值和特征向量- 正定矩阵及其应用总结:线性代数是数学专业考研中的重要内容之一。
通过对向量与矩阵、线性方程组、线性空间和子空间、线性变换和特征值、内积空间和正交变换、二次型和正定矩阵等知识点的学习和掌握,能够为考研复习提供有力的理论基础和解题方法。
在复习过程中,需要注重概念的理解、性质的掌握以及应用题的练习,同时注意归纳总结和思维方法的培养。
数学考研必备知识点线性代数的重点章节解析

数学考研必备知识点线性代数的重点章节解析一、引言线性代数是数学中的一个重要分支,广泛应用于各个领域的科学研究和工程实践中。
作为数学考研的一门必备知识,掌握线性代数的重点章节非常关键。
本文将对数学考研必备知识点线性代数的重点章节进行解析,帮助考生全面理解和掌握这些内容。
二、向量空间向量空间是线性代数的基础,包括向量的加法、数乘和向量空间的性质等。
重点章节有:1. 线性相关性与线性无关性:讨论向量组的线性相关性与线性无关性,以及线性相关性的判定方法。
2. 向量空间的维数:介绍向量空间的维数概念及其性质,以及维数的计算方法。
3. 基与坐标:介绍向量空间的一组基及其坐标表示方法,以及基的变换与坐标的变换关系。
三、线性映射与线性变换线性映射与线性变换是线性代数的重要内容,涉及到线性变换的性质、线性变换的表示矩阵和线性映射的核与像等。
重点章节有:1. 线性变换与矩阵:介绍线性变换的定义和性质,并探究线性变换的代数表示——矩阵。
2. 线性变换的核与像:讨论线性变换的核与像的概念,以及它们的性质和计算方法。
3. 线性变换的合成与逆变换:研究线性变换的合成和逆变换的概念与性质,以及相应的计算方法。
四、特征值与特征向量特征值与特征向量是线性代数中的重要概念,用于研究线性变换的本质特性。
重点章节有:1. 特征值与特征向量的定义:介绍特征值与特征向量的定义及其性质。
2. 特征值与特征向量的计算:探究特征值与特征向量的计算方法和求解步骤。
3. 对角化与相似矩阵:讨论矩阵的对角化概念及其条件,以及相似矩阵的性质和计算方法。
五、内积空间与正交变换内积空间与正交变换是线性代数的重要分支,包括内积空间的定义与性质、正交变换的概念与性质等。
重点章节有:1. 内积空间的定义与性质:介绍内积空间的定义和性质,包括内积的性质和内积空间的几何解释。
2. 正交向量与正交子空间:研究正交向量和正交子空间的概念、性质及其计算方法。
3. 正交变换与正交矩阵:探究正交变换的定义和性质,以及正交变换的矩阵表示——正交矩阵。
考研数学线性代数复习要点

考研数学线性代数复习要点对于考研数学中的线性代数部分,掌握好复习要点至关重要。
线性代数在考研数学中占据着重要的地位,其特点是概念多、定理多、符号多、运算规律多,并且前后知识的联系紧密。
以下是为大家梳理的线性代数复习要点。
一、行列式行列式是线性代数中的基础概念,其计算方法和性质是必须要熟练掌握的。
1、行列式的定义要理解行列式的定义,特别是二阶和三阶行列式的计算方法。
对于高阶行列式,可以通过行列式的性质将其化为上三角行列式或下三角行列式来计算。
2、行列式的性质熟练掌握行列式的性质,如行列式转置值不变、两行(列)互换行列式变号、某行(列)乘以常数加到另一行(列)行列式不变等。
这些性质在行列式的计算中经常用到。
3、行列式按行(列)展开定理掌握行列式按行(列)展开定理,能够将高阶行列式降阶计算。
二、矩阵矩阵是线性代数的核心内容之一,需要重点掌握。
1、矩阵的运算包括矩阵的加法、数乘、乘法、转置等运算。
要特别注意矩阵乘法的规则和性质,以及矩阵乘法不满足交换律这一特点。
2、矩阵的逆理解逆矩阵的定义和存在条件,掌握求逆矩阵的方法,如伴随矩阵法和初等变换法。
3、矩阵的秩掌握矩阵秩的定义和求法,了解矩阵秩的性质。
矩阵的秩在判断线性方程组解的情况等方面有重要应用。
4、分块矩阵了解分块矩阵的概念和运算规则,能够灵活运用分块矩阵解决一些复杂的矩阵问题。
三、向量向量是线性代数中的重要概念,与线性方程组和矩阵的秩密切相关。
1、向量的线性表示理解向量线性表示的概念,掌握判断向量能否由一组向量线性表示的方法。
2、向量组的线性相关性掌握向量组线性相关和线性无关的定义和判定方法,这是线性代数中的重点和难点。
3、向量组的秩理解向量组的秩的概念,掌握求向量组秩的方法。
4、向量空间了解向量空间的基本概念,如基、维数等。
四、线性方程组线性方程组是线性代数的核心内容之一,在考研中经常出现。
1、线性方程组的解掌握线性方程组有解、无解和有唯一解、无穷多解的判定条件。
考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
线性代数考研知识点总结

线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。
在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。
在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。
1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。
向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。
2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。
3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。
矩阵可以用于表示线性变换、解线性方程组等。
常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。
4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。
行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。
5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。
相似的矩阵有着相同的特征值和特征向量。
对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。
6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。
线性变换可以进行合成、求逆等操作。
7. 内积空间:内积空间是一个带有内积运算的向量空间。
内积运算满足对称性、线性性、正定性等性质。
内积空间可以用来定义向量的长度、夹角、正交性等概念。
8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。
特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。
9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。
考研数学线性代数重点知识

考研数学线性代数重点知识线性代数是考研数学中非常重要的一部分,对于许多考生来说,掌握好线性代数的重点知识是取得高分的关键。
下面我们就来详细梳理一下线性代数中的重点知识。
一、行列式行列式是线性代数中的基本概念之一,它有着多种计算方法和重要的性质。
计算行列式的方法包括:按行(列)展开法、三角化法、利用行列式的性质化简等。
其中,利用行列式的性质将其化为上三角或下三角行列式是比较常用且有效的方法。
行列式的性质包括:行列式与其转置行列式相等;对换两行(列),行列式变号;某行(列)元素乘以 k,等于用 k 乘以此行列式;若某行(列)元素是两数之和,则行列式可拆分为两个行列式之和等。
行列式在求解线性方程组、判断矩阵可逆性等方面有着重要的应用。
二、矩阵矩阵是线性代数的核心概念,包括矩阵的运算、逆矩阵、矩阵的秩等内容。
矩阵的运算有加、减、乘、数乘。
矩阵乘法需要注意其规则,不满足交换律。
逆矩阵是一个重要概念,如果矩阵 A 可逆,则存在 A 的逆矩阵A⁻¹,使得 AA⁻¹= A⁻¹A = E(单位矩阵)。
求逆矩阵的方法有伴随矩阵法和初等变换法。
矩阵的秩反映了矩阵的“有效信息”量,通过初等变换可以求出矩阵的秩。
三、向量向量部分包括向量组的线性相关性、极大线性无关组、向量组的秩等。
判断向量组的线性相关性有定义法、行列式法、矩阵秩法等。
极大线性无关组是向量组中“最核心”的部分,它不唯一,但所含向量个数是确定的。
向量组的秩等于其极大线性无关组所含向量的个数。
四、线性方程组线性方程组是线性代数的重点应用之一。
齐次线性方程组,当系数矩阵的秩等于未知数个数时,只有零解;当系数矩阵的秩小于未知数个数时,有非零解。
非齐次线性方程组,当增广矩阵的秩等于系数矩阵的秩时,有解;当增广矩阵的秩大于系数矩阵的秩时,无解。
求解线性方程组可以使用高斯消元法。
五、特征值与特征向量特征值和特征向量反映了矩阵的某种特性。
求特征值就是求解特征方程|λE A| = 0 的根,求特征向量则是通过解齐次线性方程组(λE A)X = 0 得到。
考研数学线性代数重点知识点整理与习题解析

考研数学线性代数重点知识点整理与习题解析一、矩阵的运算矩阵的加法、乘法、转置以及数量乘法等是矩阵运算的基本操作。
矩阵的加法和乘法具有结合律、交换律和分配律等基本性质。
1.1 矩阵的加法对于两个相同大小的矩阵A和B,它们的和记作A + B,定义为它们对应元素相加所得到的矩阵。
即,如果A = [a_ij],B = [b_ij],则A + B = [a_ij + b_ij]。
1.2 矩阵的乘法对于两个矩阵A和B,如果A的列数等于B的行数,它们可以进行乘法运算,记作C = AB。
矩阵C的元素c_ij可以表示为c_ij =∑(a_ik * b_kj)。
其中∑表示求和符号,k表示对应元素的相同下标。
1.3 矩阵的转置对于一个矩阵A,它的转置记作A^T。
即,如果A = [a_ij],则A^T = [a_ji]。
也就是说,矩阵A的行变为转置后矩阵的列,矩阵A的列变为转置后矩阵的行。
1.4 数量乘法一个数与一个矩阵的乘积称为数量乘法。
对于一个数k和一个矩阵A,它们的乘积记作kA。
即,kA = [ka_ij]。
其中ka_ij表示矩阵A中每个元素乘以k所得到的矩阵。
二、线性方程组线性方程组是线性代数的重要内容之一。
解一个线性方程组就是找到一组使得方程组中所有方程都成立的未知数的值。
通常通过矩阵的方法来解线性方程组,有三种常用的解法:高斯消元法、克拉默法则和逆矩阵法。
2.1 高斯消元法高斯消元法是通过矩阵的初等变换将线性方程组化为最简形式,从而求解方程组。
具体步骤如下:1) 将线性方程组的系数矩阵和常数矩阵合并成增广矩阵;2) 逐行进行初等变换,使得增广矩阵的主对角线元素为1,其他元素为0;3) 对增广矩阵进行回代,求出方程组的解。
2.2 克拉默法则克拉默法则是通过行列式的性质来解线性方程组。
对于一个n元线性方程组,如果系数矩阵的行列式不为0,则方程组有唯一解,且每个未知数的值可以通过求解n个行列式得到。
2.3 逆矩阵法逆矩阵法是通过求解方程AX = B来解线性方程组。
考研数学线性代数必考的知识点

考研数学线性代数必考的知识点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。
其原因是解决相关题目要用到线代中的大量内容,既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。
四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。
概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。
其它知识点考小题,如随机事件与概率,数字特征等。
从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。
第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。
随机变量之于概率正如矩阵之于线性代数。
考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量X……”,“设总体X……”,“设X1,X2,…,Xn为来自X的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。
所以随机变量的理解至关重要。
讨论完随机变量之后,讨论其描述方式。
分布即为描述随机变量的方式。
分布包括三种:分布函数、分布律和概率密度。
其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。
之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。
介绍完一维随机变量之后,推广一下就得到了多维随机变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021考研数学线性代数32个重要考点
【导语】2021考研已经进入备考期间,线性代数是考研数学的三大部分之一,是比较容易拿分的部分,冠珠教育整理了线性代数的一些重点,希望对大家有一定的帮助。
一、行列式常考题型
(1)行列式基本概念;
(2)低价行列式的计算;
(3)高阶行列式的计算;
(4)余子式与代数余子式。
二、矩阵常考题型
(1)计算方阵的幂;
(2)与伴随矩阵相关联的命题;
(3)有关初等变换的命题;
(4)有关逆矩阵的计算与证明;
(5)解矩阵方程;
(6)矩阵秩的计算和证明。
三、向量常考题型
(1)判定向量组的线性相关性;
(2)向量组线性相关性问题的证明;
(3)向量组的线性表示问题;
(4)向量组的极大线性无关组与向量组的秩;
(5)过度矩阵与向量的坐标表示(数一考生要求、数二、数三考生
不要求)。
四、线性方程组常考题型
(1)涉及线性方程组理论的矩阵证明;
(2)线性方程组解得结构与性质;
(3)齐次线性方程组的基础解系与通解;
(4)非齐次线性方程组的通解;
(5)方程组的公共解。
五、特征值与特征向量常考题型
(1)求矩阵的特征值与特征向量;
(2)特征值与特征向量的定义与性质;
(3)非是对称矩阵的相似对教化;
(4)是对称矩阵的对教化;
(5)求矩阵的幂矩阵;
(6)根据特征值与特征向量反求矩阵;
(7)有关特征值与特征向量的证明。
六、二次型常考题型
(1)二次型的概念和性质;
(2)化二次型为标准型;
(3)含参数的二次型问题;
(4)正定二次型的判别与证明问题;
(5)矩阵的相似与合同。