复数知识点总结
复数的知识点总结

复数的知识点总结一、复数概述复数是数学中的一个重要概念,它由实数和虚数部分组成。
虚数单位i定义为i² = -1,其中i是一个虚数。
复数可表示为a + bi的形式,其中a是实数部分,bi 是虚数部分。
二、复数运算1. 复数加法和减法复数的加法和减法按照实部和虚部分别进行运算,即将实部相加或相减,并将虚部相加或相减。
例如,给定复数z₁ = a₁ + b₁i和z₂ = a₂ + b₂i,它们的和可以表示为z₁ + z₂ = (a₁ + a₂) + (b₁ + b₂)i,差可以表示为z₁ - z₂ = (a₁ - a₂) + (b₁ - b₂)i。
2. 复数乘法复数乘法采用分配律和虚数单位的平方等于-1的性质进行计算。
例如,给定复数z₁ = a₁ + b₁i和z₂ = a₂ + b₂i,它们的乘积可以表示为z₁ * z₂ = (a₁ * a₂ - b₁ * b₂) + (a₁ * b₂ + a₂ * b₁)i。
3. 复数除法复数除法是将分子和分母同乘以分母的共轭,并利用虚数单位的平方等于-1的性质进行计算。
例如,给定复数z₁ = a₁ + b₁i和z₂ = a₂ + b₂i,它们的除法可以表示为z₁ / z₂ = ((a₁ * a₂ + b₁ * b₂) / (a₂² + b₂²)) + ((a₂ * b₁ - a₁ * b₂) / (a₂² + b₂²))i。
三、复数的共轭和模1. 复数的共轭复数的共轭是保持实部相同而虚部变号的操作。
复数a + bi的共轭可以表示为a - bi,其中a是实部,b是虚部。
2. 复数的模复数的模是复数到原点的距离,可以用勾股定理计算。
复数a + bi的模可以表示为√(a² + b²)。
四、复数的指数形式和三角形式1. 复数的指数形式复数可以用指数形式表示为re^(iθ),其中r是模,θ是辐角。
2. 复数的三角形式复数的三角形式是指使用三角函数表示复数。
(完整版)复数知识点总结

复数一、复数的概念1. 虚数单位i(1) 它的平方等于1-,即 2i 1=-;(2) 实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律.(3) i 的乘方: 4414243*i 1,i i,i 1,i i,N n n n n n +++===-=-∈,它们不超出i b 的形式.2. 复数的定义形如i(,)R a b a b +∈的数叫做复数, ,a b 分别叫做复数的实部与虚部3. 复数相等 i i a b c d +=+,即,a c b d ==,那么这两个复数相等4. 共轭复数 i z a b =+时,i z a b =-. 性质:z z =;2121z z z z ±=±;1121z z z z ⋅=⋅; );0()(22121≠=z z z z z 二、复平面及复数的坐标表示1. 复平面在直角坐标系里,点z 的横坐标是a ,纵坐标是b ,复数i z a b =+可用点(,)Z a b 来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴为实轴,y 轴出去原点的部分称为虚轴.2. 复数的坐标表示 点(,)Z a b3. 复数的向量表示 向量OZ .4. 复数的模在复平面内,复数i z a b =+对应点(,)Z a b ,点Z 到原点的距离OZ 叫做复数z 的模,记作z .由定义知,z =.三、复数的运算1. 加法 (i)(i)()()i a b c d a c b d +++=+++.几何意义: 设1i z a b =+对应向量1(,)OZ a b =,2i z c d =+对应向量2(,)OZ c d =,则12z z +对应的向量为12(,)OZ OZ a c b d +=++.因此复数的和可以在复平面上用平行四边形法则解释.2. 减法 (i)(i)()()i a b c d a c b d +-+=-+-.几何意义: 设1i z a b =+对应向量1(,)OZ a b =,2i z c d =+对应向量2(,)OZ c d =,则12z z -对应的向量为1221(,)OZ OZ Z Z a c b d -==--.12()()i z z a c b d -=-+-=1Z 、2Z 两点之间的距离,也等于向量12Z Z 的模.3. 乘法 ()()()()a bi c di a c b d i +±+=±+±.4. 乘方 m n m n z z z +⋅= ()m n mn z z = 1212()n n n z z z z ⋅=⋅5. 除法 ()()()()()()()()22a bi c di ac bd bc ad i a bi a bi c di c di c di c di c d+-++-++÷+===++-+. 6. 复数运算的常用结论 (1) 222(i)2i a b a b ab +=-+, 22(i)(i)a b a b a b +-=+(2) 2(1i)2i +=, 2(1i)2i -=-(3) 1i i 1i +=-, 1i i 1i-=-+ (4) 1212z z z z ±=±, 1212z z z z ⋅=⋅, 1122z z z z ⎛⎫=⎪⎝⎭,z z =.(5) 2z z z ⋅=, z z =(6) 121212z z z z z z -≤+≤+ (7) 1212z z z z ⋅=⋅,1212z z z z ⋅=⋅,nn z z = 四、复数的平方根与立方根1. 平方根 若2(i)i a b c d +=+,则i a b +是i c d +的一个平方根,(i)a b -+也是i c d +的平方根. (1的平方根是i ±.) 2. 立方根 如果复数1z 、2z 满足312z z =,则称1z 是2z 的立方根.(1) 1的立方根: 21,,ωω.12ω=-+,212ωω==--,31ω=. 210ωω++=. (2) 1-的立方根:111,22z z -=+=-. 五、复数方程1. 常见图形的复数方程(1) 圆:0z z r -=(0r >,0z 为常数),表示以0z 对应的点0Z 为圆心,r 为半径的圆(2) 线段12Z Z 的中垂线:12z z z z -=-(其中12,z z 分别对应点12,Z Z )(3) 椭圆: 122z z z z a -+-=(其中0a >且122z z a -<),表示以12,z z 对应的点F1、F2为焦点,长轴长为2a 的椭圆(4) 双曲线: 122z z z z a ---=(其中0a >且122z z a ->),表示以12,z z 对应的点F1、F2为焦点,实轴长为2a 的双曲线2. 实系数方程在复数范围内求根(1)求根公式:1,21,21,20 20 20 2b x a b x a b x a ⎧-∆>=⎪⎪⎪-∆==⎨⎪⎪-±∆<=⎪⎩一对实根一对相等的实根一对共轭虚根 (2) 韦达定理:1212b x x a cx x a ⎧+=-⎪⎪⎨⎪=⎪⎩。
复数知识点总结

复数知识点总结一、复数的定义形如\(a + bi\)(\(a,b\in R\),\(i\)为虚数单位)的数叫做复数,其中\(a\)叫做复数的实部,\(b\)叫做复数的虚部。
当\(b = 0\)时,复数\(a + bi\)为实数;当\(b \neq 0\)时,复数\(a +bi\)为虚数;当\(a = 0\)且\(b \neq 0\)时,复数\(a + bi\)为纯虚数。
二、虚数单位\(i\)虚数单位\(i\)满足\(i^2 =-1\)。
三、复数的代数形式复数的代数形式为\(z = a + bi\)(\(a,b\in R\))。
四、复数的几何意义1、复平面建立直角坐标系来表示复数的平面叫做复平面,\(x\)轴叫做实轴,\(y\)轴叫做虚轴。
实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。
2、复数的模复数\(z = a + bi\)的模\(|z| =\sqrt{a^2 + b^2}\)。
3、复数与向量复数\(z = a + bi\)对应复平面内的向量\(\overrightarrow{OZ} =(a,b)\)。
五、复数的四则运算1、加法\((a + bi) +(c + di) =(a + c) +(b + d)i\)2、减法\((a + bi) (c + di) =(a c) +(b d)i\)3、乘法\((a + bi)(c + di) = ac + adi + bci + bdi^2 =(ac bd) +(ad + bc)i\)4、除法\\begin{align}\frac{a + bi}{c + di}&=\frac{(a + bi)(c di)}{(c + di)(c di)}\\&=\frac{ac adi + bci bdi^2}{c^2 + d^2}\\&=\frac{(ac + bd) +(bc ad)i}{c^2 + d^2}\end{align}\六、共轭复数当两个复数的实部相等,虚部互为相反数时,这两个复数互为共轭复数。
复数的知识点总结

复数的知识点总结一、基本概念复数是指由实数和虚数构成的数,形式为 a + bi,其中a 和b 都是实数,i 是虚数单位,满足 i² = -1。
实数是指具有有限位小数的数或无理数,而虚数是不能用实数表示的数。
二、复数的表示法复数有一般式、三角式和指数式三种表示法。
1. 一般式:a + bi其中 a 表示实部,b 表示虚部。
2. 三角式:r(cosθ + i sinθ)其中 r 表示复数的模,θ 表示复数的辐角或幅角。
3. 指数式:re^(iθ)其中 r 表示复数的模,e 是自然对数的底数,θ 表示复数的幅角。
三、基本运算1. 加法(a + bi) + (c + di) = (a + c) + (b + d)i即实部相加,虚部相加。
2. 减法(a + bi) - (c + di) = (a - c) + (b - d)i即实部相减,虚部相减。
3. 乘法(a + bi) × (c + di) = (ac - bd) + (ad + bc)i即实数部分按照常规乘法规则计算,虚数部分交叉相乘。
4. 除法(a + bi) ÷ (c + di) = (ac + bd)/(c² + d²) + (bc - ad)/(c² + d²)i即分子分母同除以 c + di,然后将分子分母分别展开并化简。
5. 共轭复数(a + bi) 的共轭复数为 (a - bi),共轭复数满足以下性质:a. 它们的实部相等。
b. 它们的虚部相等,但符号相反。
c. 一个复数与它的共轭复数的积等于这个复数的模的平方。
d. 两个复数的积的共轭等于它们的共轭的积。
四、复数的模和幅角1. 复数模|r|复数的模是指复数与原点之间的距离,可以用勾股定理求出。
|r| = √(a² + b²)2. 复数的幅角θ复数的幅角是指复数与正实轴正方向的夹角,可以用反正切函数求出。
高考复数知识点总结

高考复数知识点总结一、复数的概念1. 定义:在数学中,复数是由一个实数和一个虚数单位i构成的数,表示为a+bi,其中a 和b都是实数,而i是虚数单位,满足i²=-1。
2. 实部和虚部:复数a+bi中,a称为实部,bi称为虚部,其中a和b都是实数。
二、复数的表示形式1. 代数形式:a+bi2. 幅角形式:r(cosθ+isinθ),其中r为复数的模,θ为复数的幅角。
3. 指数形式:re^(iθ),其中e^(iθ)为指数函数。
三、复数的运算1. 加法与减法:实部相加,虚部相加2. 乘法:根据分配律和虚数单位i的性质计算3. 除法:乘以共轭复数,然后根据除法的定义计算4. 幂运算:通过指数形式进行计算四、复数的性质1. 共轭复数:a+bi的共轭复数是a-bi2. 模:复数a+bi的模是√(a²+b²)3. 幅角:复数a+bi的幅角是θ=tan^(-1)(b/a)五、复数的应用1. 代数方程式:一元二次方程的解2. 三角函数:通过复数的幅角形式可以求解三角函数的和差角公式3. 电路学:用复数解决交流电路中的问题六、复数的解析几何1. 复数的几何意义:复平面上的点2. 复数的模和幅角:向量的模和方向3. 复数的乘法和除法:向量的缩放和旋转七、复数的解1. 一元二次方程的解:通过求根公式得到解2. 复数的根:开方运算的应用总结:复数是数学中的一个重要概念,它由一个实部和一个虚部构成,可以通过代数形式、幅角形式和指数形式进行表示。
复数的运算包括加法、减法、乘法、除法和幂运算,通过这些运算可以得到复数的性质如共轭复数、模和幅角。
复数还具有广泛的应用,包括代数方程式、三角函数和电路学等方面。
此外,复数还可以通过解析几何的方式进行理解,它在平面上对应着一个点,并且具有向量的性质。
复数的解可以用于一元二次方程的求解以及复数的根的求解。
通过学习和掌握复数的知识,可以更好地理解数学中的各种概念和问题,并且对于后续的学习和应用具有重要的意义。
复数英语知识点总结

复数英语知识点总结一、英语名词复数的构成规则1. 一般情况下,名词的复数形式是在单数形式后面加上-s,例如:book → books, cat → cats。
2. 如果名词以s, ss, sh, ch, x, z结尾,则在单数形式后加-es,例如:bus → buses, class → classes, box → boxes。
3. 以辅音字母加y结尾的名词,变复数时去y变i加-es,例如:city → cities, baby → babies。
4. 以下划线结尾的名词变复数时,去掉下划线加-s,例如:brother-in-law → brothers-in-law。
5. 有些名词的单数和复数形式相同,例如:sheep → sheep, deer → deer。
6. 一些名词的复数形式是不规则的,需要特殊记忆,例如:man → men, woman → women, child → children。
二、英语名词复数的特殊情况1. 有些名词的复数形式是由拉丁语或希腊语形式直接转化而来,需要特殊记忆,例如:datum → data, phenomenon → phenomena。
2. 一些名词的复数形式是由原单数形式完全不同的词构成,例如:foot → feet, tooth → teeth, mouse → mice。
3. 一些名词的单数复数形式都一样,需要通过上下文来区分,例如:fish → fish, sheep → sheep, series → series。
4. 有些外来语保留了原单数复数格式,例如:cactus → cacti, fungus → fungi。
三、英语名词复数的使用1. 在句子中,名词的复数形式通常用来表示多个数量或者多个个体,例如:There are three books on the table.2. 名词的复数形式还可以用来表示某一类事物的普遍存在,例如:Dogs are loyal animals.3. 在某些习惯用语中,名词的复数形式可以表示某种共同的属性,例如:The rich live differently from the poor.4. 在某些情况下,名词的复数形式也可以表示某种程度或者数量,例如:He has had several accidents in his lifetime.综上所述,英语名词的复数形式是英语语法中一个重要的部分,掌握好英语名词的复数形式对于学习英语具有重要意义。
复数各章知识点总结

复数各章知识点总结一、复数的构成规则1.在大多数情况下,名词的复数形式是通过在词尾加上-s来构成的,如:book → books, table → tables, cat → cats。
2.以s, x, ch, sh结尾的名词,需要在词尾加上-es,如:bus → buses, box → boxes, church → churches, brush → brushes。
3.以辅音字母+y结尾的名词,需将y改为i,再加上-es,如:baby → babies, city → cities, party → parties。
4.以-o结尾的名词,通常加上-es构成复数,如:tomato → tomatoes, hero → heroes, potato → potatoes。
但也有一些例外,如photo → photos, piano → pianos。
5.以-f 或-fe结尾的名词,通常将f 或 fe改为ves构成复数,如:leaf → leaves, knife → knives, wife → wives。
6.有些名词的复数形式需要利用变位规则,如:man → men, woman → women, child → children, foot → feet。
7.一些名词的复数形式与它们的单数形式完全相同,如:sheep, deer, fish, aircraft。
二、特殊的不规则名词复数形式1.一些名词的复数形式完全不同于它们的单数形式,如:man → men, woman → women, child → children, foot → feet。
2.一些名词的复数形式是通过变位而成的,如:mouse → mice, tooth → teeth, louse → lice, goose → geese。
3.有些名词既没有单数形式,也没有复数形式,如:scissors, pants, trousers。
复数的知识点公式总结

复数的知识点公式总结一、复数的基本概念1. 复数的定义:形如a+bi的数称为复数,其中a是实部,b是虚部,i是虚数单位,满足i²=-1。
2. 复数的实部与虚部:复数z=a+bi中,a称为实部,b称为虚部,通常用Re(z)和Im(z)表示。
3. 纯虚数:实部为0的复数,称为纯虚数,如bi,则bi为纯虚数。
4. 共轭复数:设z=a+bi是一个复数,如果将z的虚部b改变符号,得到一个新的复数z’=a-bi,称z’是z的共轭复数。
二、复数的表示形式1. 代数形式:z=a+bi,即由实部a和虚部b构成的复数形式。
2. 幅角形式:z=r(cosθ+isinθ),其中r=|z|为复数的模,θ为复数的辐角。
3. 按模辐角表示:z=r·exp(iθ)。
4. 柯西-黎曼公式:当z=x+yi时,可表示为z=r(exp[i(θ+2kπ)]), k=0,±1,±2,...。
三、复数的运算规则1. 加法:(a+bi)+(c+di)=(a+c)+(b+d)i。
2. 减法:(a+bi)-(c+di)=(a+c)-(b+d)i。
3. 乘法:(a+bi)·(c+di)=(ac-bd)+(ad+bc)i。
4. 除法:(a+bi)/(c+di)=(ac+bd)/(c²+d²)+(bc-ad)i/(c²+d²)。
5. 复数的乘方:(a+bi)²=a²-b²+2abi。
6. 复数的幂运算:zⁿ=(r·exp(iθ))ⁿ=rⁿ·exp(iθn)。
7. 复数的共轭:z=a+bi的共轭为z*=a-bi。
8. 复数的倒数:z=a+bi的倒数为1/z=1/(a+bi)。
四、复数的性质1. 除法:任一非零复数z=a+bi,存在有唯一的复数1/z=1/(a+bi),满足z(1/z)=1。
2. 复数的模:|z|=√(a²+b²),其中|z|为z的模。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数知识点总结
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
《复数》知识点总结
1、复数的概念
形如(,)a bi a b R +∈的数叫做复数,其中i 叫做虚数单位,满足21i =-,a 叫做复数的实部,b 叫做复数的虚部.
(1)纯虚数:对于复数z a bi =+,当00a b =≠且时,叫做纯虚数.
(2)两个复数相等:,()a bi c di a b c d R ++∈、、、相等的充要条件是=a c b d =且.
(3)复平面:建立直角坐标系来表示复数的平面叫做复平面,横轴为实轴,竖轴除去原点为虚轴.
(4)复数的模:复数z a bi =+可以用复平面内的点Z(,)a b 表示,向量OZ 的模
叫做复数z a bi =+的模,表示为:||||z a bi =+
(5)共轭复数:两个复数的实部相等,虚部互为相反数时,这两个复数叫做共轭复数.
2、复数的四则运算
(1)加减运算:()()()()a bi c di a c b d i +±+=±++;
(2)乘法运算:()()()()a bi c di ac bd ad bc i +⋅+=-++;
(3)除法运算:2222()()()()(0)ac bd bc ad a bi c di i c di c d c d
+-+÷+=++≠++; (4)i 的幂运算:41n i =,41n i i +=,421n i +=-,43n i i +=-.()n Z ∈
(5)22||||z z z z ==
3、 规律方法总结
(1)对于复数(,)z a bi a b R =+∈必须强调,a b 均为实数,方可得出实部为a ,虚部为b
(2)复数(,)z a bi a b R =+∈是由它们的实部和虚部唯一确定的,两个复数相等的充要条件是把复数问题转化为实数问题的主要方法.对于一个复数(,)z a bi a b R =+∈,既要从整体的角度去认识它,把复数看成一个整体,又要从实部、虚部的角度分解成两部分去认识
(3)对于两个复数,若不全是实数,则不能比较大小,在复数集里一般没有大小之分,但却有相等与不等之分.
(4)数系扩充后,数的概念由实数集扩充到复数集,实数集中的一些运算性质、概念、关系就不一定适用了,如绝对值的性质、绝对值的定义、偶次方非负等
1、基本概念计算类
例1.若,43,221i z i a z -=+=且2
1z z 为纯虚数,则实数a 的值为_________ 解:因为,21z z =25
)46(83258463)43)(43()43)(2(432i a a ia i a i i i i a i i a ++-=-++=+-++=-+, 又21z z 为纯虚数,所以,3a -8=0,且6+4a ≠0。
3
8=∴a 2、复数方程问题
例2.证明:在复数范围内,方程i
i z i z +-=-+255)1(||2(i 为虚数单位)无解 证明:原方程化简为,31)1()1(||i z i z i z -=+--+设z =x +yi(x 、y R ∈),代入
上述方程得⎩⎨⎧=+=+-=--+3221.3122222
2y x y x i yi xi y x 整理得051282=+-x x ∴<-=∆.016 方程无实数解,所以原方程在复数范围内无解。
3、综合类
例3.设z 是虚数,z
z 1+=ω是实数,且-1<ω<2
(1) 求|z|的值及z 的实部的取值范围;
(2) 设z
z M +-=11,求证:M 为纯虚数; (3) 求2M -ω的最小值。
解:(1)设z =a +bi (a ,b 0,≠∈b R )
,)()(12222i b
a b b b a a a bi a bi a +-+++=++
+=ω 因为,ω是实数,0≠b 所以,122=+b a ,即|z|=1, 因为ω=2a ,-1<ω<2,12
1<<-a 所以,z 的实部的取值范围(-1,21) (2)z z M +-=11=1)1(21)1)(1()1)(1(112
222+-=++---=-+++-+--=++--a bi b a bi b a bi a bi a bi a bi a bi a bi a (这里利用了(1)中122=+b a )。
因为a ∈(-1,2
1),0≠b ,所以M 为纯虚数
(3)2
M -ω112)1(12)1(22222+--=+-+=++=a a a a a a a b a 因为,a ∈(-1,2
1),所以,a +1>0, 所以2M -ω≥2×2-3=1, 当a +1=1
1+a ,即a =0时上式取等号, 所以,2M -ω的最小值是1。
4、创新类
例4.对于任意两个复数R y y x x i y x z i y x z ∈+=+=2121222111,,,(,)定义运算“⊙”为
1z ⊙2z =2121y y x x +,设非零复数21,ωω在复平面内对应的点分别为21,P P ,点O 为坐标原点,若1ω⊙2ω=0,则在21OP P ∆中,21OP P ∠的大小为_________. 解法一:(解析法)设)0,(,21222111≠+=+=a a i b a i b a ωω,故得点),(111b a P ,),(222b a P ,且2121b b a a +=0,即12
211-=⋅a b a b
从而有2121OP OP k k ⋅=12
211-=⋅a b a b 故21OP OP ⊥,也即02190=∠OP P 解法二:(用复数的模)同法一的假设,知
=2121b a ++2222b a +-2(2121b b a a +)=2121b a ++2222b a +-2×0 =2121b a ++2222b a +=21||OP +22||OP
由勾股定理的逆定理知02190=∠OP P 解法三:(用向量数量积的知识)同法一的假设,知),(),,(222111b a OP b a ==,则有
0cos 222221212
12121=+⋅++=⋅∠b a b a b b a a OP 故02190=∠OP P。