高考物理知识归纳力学模型及方法
高中物理48个解题模型高考物理题型全归纳

⾼中物理48个解题模型⾼考物理题型全归纳最后两个⽉,快速掌握⾼考物理150道易错题+30个常考物理模型,⼀定拿⾼分!不看太可惜!历年⾼考物理解题经典模型,⽼师都没讲得这么全!常考物理模型及易错题常考物理模型及隐含条件30条1.绳:只能拉,不能压,即受到拉⼒时F≠0,受压时F=0.2.杆:既能拉也能压,即受到拉⼒.压⼒时,有F≠0.3.绳刚要断:此时绳的拉⼒已经达到最⼤值,即F=Fmax.4.光滑:意味着⽆摩擦⼒.5.长导线:意味着长度L可看成⽆穷⼤.6.⾜够⼤的平板:意味着平板的⾯积S可看成⽆穷⼤.7.轻杆.轻绳.轻滑轮:意味着质量m=0.8.物体刚要离开地⾯.物体刚要飞离轨道等物体和接触⾯之间作⽤⼒:FN=0.9.绳恰好被拉直,此时绳中拉⼒:F=0.10.物体开始运动.⾃由释放:表⽰初速度为0.11.锤打桩⽆反弹:碰撞后,锤与桩有共同速度.12.理想变压器:⽆功率损耗的变压器.13.细杆:体积为零,仅有长度.14.质点:具有质量,但可忽略其⼤⼩.形状和内部结构⽽视为⼏何点的物体.15.点电荷:在研究带电体间的相互作⽤时,如果带电体的⼤⼩⽐它们之间的距离⼩得多,即可认为分布在带电体上的电荷是集中在⼀点上的.16.基本粒⼦如电⼦.质⼦.离⼦等是不考虑重⼒的粒⼦,⽽带电的质点.液滴.⼩球等(除说明不考虑重⼒外)则要考虑重⼒.17.“轻绳.弹簧.轻杆”模型:注意三种模型的异同点,常考查直线与圆周运动中三种模型的动⼒学问题和功能问题.18.“挂件”模型:考查物体的平衡问题.死结与活结问题,常采⽤正交分解法,图解法,三⾓形法则和极值法解题.19.“追碰”模型:考查运动规律.碰撞规律.临界问题.常通过数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等解题.20.“⽪带”模型:注意摩擦⼒的⼤⼩和⽅向.常考查⽜顿运动定律.功能关系及摩擦⽣热等问题.21.“平抛”模型:物体做平抛运动(或类平抛运动),考查运动的合成与分解.⽜顿运动定律.动能定理等知识.22.“⾏星”模型:万有引⼒提供向⼼⼒.注意相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).23.“⼈船”模型:不仅是动量守恒问题中典型的物理模型,也是最重要的⼒学综合模型之⼀.通过类⽐和等效⽅法,可以使许多动量守恒问题的分析思路和解答步骤变得简捷.24.“⼦弹打⽊块”模型:⼦弹和⽊块组成的系统动量守恒,机械能不守恒.系统损失的机械能等于阻⼒乘以相对位移.25.“限流与分压器”模型:电路设计中经常遇到.考查串.并联电路规律及闭合电路的欧姆定律.电能.电功率以及实际应⽤等.26.“电路的动态变化”模型:考查闭合电路的欧姆定律.27.“回旋加速器”模型:考查带电粒⼦在磁场中运动的典型模型.注意加速电场的平⾏极板接的是交变电压,且它的周期和粒⼦的运动周期相同.28.电磁场中的“单杆”模型:导体棒主要是以棒⽣电或电⽣棒的内容出现,从组合情况来看有棒与电阻.棒与电容.棒与电感.棒与弹簧等.导体棒所在的导轨有平⾯导轨.竖直导轨等.29.电磁场中的“双电源”模型:考查⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律等知识.30.“远距离输电变压器”模型:注意变压器的三个制约问题.⾼中物理模型有哪些⒈"质⼼"模型:质⼼(多种体育运动).集中典型运动规律.⼒能⾓度.⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动⼒学问题和功能问题.⒊"挂件"模型:平衡问题.死结与活结问题,采⽤正交分解法,图解法,三⾓形法则和极值法.⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等.⒌"运动关联"模型:⼀物体运动的同时性.独⽴性.等效性.多物体参与的独⽴性和时空联系.⒍"⽪带"模型:摩擦⼒.⽜顿运动定律.功能及摩擦⽣热等问题.⒎"斜⾯"模型:运动规律.三⼤定律.数理问题.⒏"平抛"模型:运动的合成与分解.⽜顿运动定律.动能定理(类平抛运动).⒐"⾏星"模型:向⼼⼒(各种⼒).相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).⒑"全过程"模型:匀变速运动的整体性.保守⼒与耗散⼒.动量守恒定律.动能定理.全过程整体法.⒒"⼈船"模型:动量守恒定律.能量守恒定律.数理问题.⒓"⼦弹打⽊块"模型:三⼤定律.摩擦⽣热.临界问题.数理问题.⒔"爆炸"模型:动量守恒定律.能量守恒定律.⒕"单摆"模型:简谐运动.圆周运动中的⼒和能问题.对称法.图象法.⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应⽤.⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断⽅法和变压器的三个制约问题.⒘"磁流发电机"模型:平衡与偏转.⼒和能问题.⒙"回旋加速器"模型:加速模型(⼒能规律).回旋模型(圆周运动).数理问题.⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平⾯导轨.竖直导轨等,处理⾓度为⼒电⾓度.电学⾓度.⼒能⾓度.21.电磁场中的"双电源"模型:顺接与反接.⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律.22.交流电有效值相关模型:图像法.焦⽿定律.闭合电路的欧姆定律.能量问题.23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.24.远距离输电升压降压的变压器模型.。
物理高考模型结论总结归纳

物理高考模型结论总结归纳物理学是自然科学中的一门重要学科,也是高考中的重点科目之一。
物理学的学习不仅要理解基本概念和原理,还要熟悉各种物理模型和结论。
掌握物理模型的结论对于高考物理的备考非常重要。
本文将总结归纳物理高考模型的一些重要结论,帮助同学们更好地备考物理高考。
一、力学模型结论1. 牛顿第一定律:物体在没有外力作用下保持静止或匀速直线运动。
2. 牛顿第二定律:物体的加速度与作用在其上的合力成正比,与物体的质量成反比。
3. 牛顿第三定律:任何两个物体之间的相互作用力大小相等、方向相反。
4. 动能定理:物体的动能变化等于外力对其所做的功。
5. 力的合成与分解:合力等于力的矢量和,合力的方向与矢量和的方向相同;分解力是将力分解为多个合力的过程,合力等于分解力的矢量和。
二、电磁学模型结论1. 电荷守恒定律:一个独立系统的总电荷在任何变化过程中都保持不变。
2. 库仑定律:两个点电荷之间的电力与它们之间的距离的平方成反比,与电荷的大小的乘积成正比。
3. 电流、电压和电阻的关系:欧姆定律,电流等于电压与电阻的比值。
4. 磁场的产生:通过导体中电流产生的磁场可以使用安培定理确定。
5. 洛伦兹力:带电粒子在磁场中受到的力与其电荷、速度、磁场强度之间的关系。
三、热学模型结论1. 物体内能:物体的内能等于其微观粒子的平均动能。
2. 热平衡:两个物体达到热平衡时,它们之间没有净热量传递。
3. 热传导:热传导是通过物质内部粒子间的碰撞传递热量的过程。
4. 热容量:物体吸收或释放的热量与温度变化之间的关系。
5. 熵增定律:孤立系统的熵在自发过程中总是增加。
四、光学模型结论1. 光的直线传播:光在均匀介质中直线传播,光遇到界面时发生反射和折射。
2. 光的反射定律:入射角等于反射角。
3. 光的折射定律:折射角、入射角和介质折射率之间的关系。
4. 成像定律:凸透镜成像公式和凹透镜成像公式。
5. 累次反射和全反射:累次反射是指光在界面之间多次反射的现象,全反射是指光由一种介质射入另一种折射率较小的介质时发生的完全反射。
高中物理知识点归类总结-模型法

模型法(1)“对象模型”:即把研究的对象的本身理想化.用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型), 实际物体在某种条件下的近似与抽象,如质点、光滑平面、理想气体、理想电表等; 常见的如“力学”中有质点、点电荷、轻绳或杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等;(2)条件模型:把研究对象所处的外部条件理想化.排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型. (3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型 理想化了的物理现象或过程,如匀速直线运动、自由落体运动、竖直上抛运动、平抛运动、匀速圆周运动、简谐运动等。
有些题目所设物理模型是不清晰的,不宜直接处理,但只要抓住问题的主要因素,忽略次要因素,恰当的将复杂的对象或过程向隐含的理想化模型转化,就能使问题得以解决。
解决物理问题的一般方法可归纳为以下几个环节: 原始的物理模型可分为如下两类:物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等. 知识分类举要力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律 1.力的三种效应:时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理 空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理对象模型(质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型等) 过程模型(匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运动、简谐波、弹性碰撞、自由落体运动、竖直上抛运动等)物理模型2.动量观点:动量(状态量):p=mv=K mE 2 冲量(过程量):I = F t动量定理:内容:物体所受合外力的冲量等于它的动量的变化。
公式: F 合t = mv’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F1t1+F2t2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =∆;21p -p ∆=∆内容:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。
高三物理常见模型与方法

高三物理常见模型与方法高三物理常见模型与方法如下:1. 质心模型:研究多种体育运动中的集中典型运动规律、力能角度。
2. 绳件、弹簧、杆件模型:研究三者在直线与圆周运动中的动力学问题和功能问题,以及异同点。
3. 挂件模型:解决平衡问题,包括死结与活结问题,并采用正交分解法、图解法、三角形法则和极值法等。
4. 追碰模型:研究运动规律、碰撞规律和临界问题,可采用数学法(函数极值法、图像法等)和物理方法(参照物变换法、守恒法)等。
5. 运动关联模型:研究一物体运动的同时性、独立性、等效性,以及多物体参与的独立性和时空联系。
6. 皮带模型:研究摩擦力、牛顿运动定律、功能及摩擦生热等问题。
7. 斜面模型:研究运动规律、三大定律和数理问题。
8. 平抛模型:研究运动的合成与分解、牛顿运动定律和动能定理(类平抛运动)。
9. 行星模型:研究向心力(各种力)、相关物理量、功能问题和数理问题(圆心、半径、临界问题)。
10. 全过程模型:研究匀变速运动的整体性、保守力与耗散力、动量守恒定律、动能定理和全过程整体法。
11. 人船模型:研究动量守恒定律、能量守恒定律和数理问题。
12. 子弹打木块模型:研究三大定律、摩擦生热、临界问题和数理问题。
13. 爆炸模型:研究动量守恒定律、能量守恒定律。
14. 单摆模型:研究简谐运动、圆周运动中的力和能问题,可采用对称法、图象法等。
15. 限流与分压器模型:研究电路设计、串并联电路规律及闭合电路的欧姆定律、电能、电功率和实际应用。
16. 电路的动态变化模型:研究闭合电路的欧姆定律、判断方法和变压器的三个制约问题。
17. 磁流发电机模型:研究平衡与偏转、力和能问题。
18. 回旋加速器模型:研究加速模型(力能规律)和回旋模型(圆周运动)及数理问题。
19. 对称模型:研究简谐运动(波动)、电场、磁场、光学问题中的对称性、多解性和对称性。
20. 电磁场中的单杆模型:处理角度为力电角度、电学角度和力能角度,涉及棒与电阻、棒与电容、棒与电感、棒与弹簧组合、平面导轨和竖直导轨等。
高考物理模型方法分类

高考物理模型方法分类一、力学模型力学模型是物理学中最基础的模型之一,主要研究物体的运动以及与力的关系。
力学模型的核心概念是牛顿三定律,即物体的运动状态是由力决定的。
在高考物理中,力学模型的应用非常广泛,例如弹簧振子模型、摩擦力模型、质点运动模型等。
弹簧振子模型是力学模型中的典型案例之一。
它通过模拟弹簧和质点的相互作用来研究弹簧振动的规律。
在考试中,我们可以利用弹簧振子模型来分析弹簧的弹性系数、振动频率等问题。
摩擦力模型是力学模型中的另一个重要内容。
摩擦力是物体表面接触时产生的一种力,它可以分为静摩擦力和动摩擦力。
在高考物理中,我们经常需要应用摩擦力模型来解决物体在斜面上滑动、静止的问题。
二、电磁学模型电磁学模型是研究电荷和电场、磁场之间相互作用的模型。
在高考物理中,电磁学模型的应用非常广泛,例如电场模型、电流模型、电磁感应模型等。
电场模型是电磁学模型中的重要内容之一。
电场是由电荷产生的一种力场,通过电场模型,我们可以研究电荷之间的相互作用、电场强度的计算等问题。
电磁感应模型是另一个重要的电磁学模型。
它研究磁场与导体中的电荷运动之间的相互作用。
在高考物理中,我们经常需要应用电磁感应模型来解决电磁感应强度、感应电动势等问题。
三、光学模型光学模型是研究光的传播、反射、折射等现象的模型。
在高考物理中,光学模型的应用也非常广泛,例如光的传播模型、光的反射模型、光的折射模型等。
光的传播模型是光学模型中的基础内容。
它研究光在介质中传播的规律,通过光的传播模型,我们可以解释光的直线传播、光的弯折等现象。
光的反射模型是另一个重要的光学模型。
它研究光在介质表面反射的规律,通过光的反射模型,我们可以解释镜面反射、漫反射等现象。
四、热学模型热学模型是研究热能传递和温度变化的模型。
在高考物理中,热学模型的应用也非常广泛,例如热传导模型、热辐射模型、理想气体模型等。
热传导模型是热学模型中的重要内容之一。
它研究热能在物体中的传导规律,通过热传导模型,我们可以解释导热现象、热平衡等问题。
高中物理力学模型及方法

高中物理常见的力学模型及分析方法高二·五班孔维龙1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程。
隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
2斜面模型(搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定。
物体沿斜面匀速下滑或静止物体静止于斜面物体沿斜面加速下滑a=g(sin 一 cos )3.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
杆对球的作用力由运动情况决定只有时才沿杆方向最高点时杆对球的作用力;最低点的速度?杆的拉力? 若球带电呢?假设单B下摆,最低点的速度整体下摆所以AB杆对B做正功,AB杆对A做负功若所以AB杆对B做正功,AB杆对A做负功即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v1突然消失),再v2下摆机械能守恒例:摆球的质量为m,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A时绳子受到的拉力是多少?4.超重失重模型系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量ay) 向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a) 难点:一个物体的运动导致系统重心的运动1到2到3过程中(1、3除外)超重状态绳剪断后台称示数系统重心向下加速斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?铁木球的运动用同体积的水去补充。
5.碰撞模型:特点,动量守恒;碰后的动能不可能比碰前大;对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
高中物理经典解题模型归纳
高中物理经典解题模型归纳高中物理24个经典模型1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.高中物理11种基本模型题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。
高中物理知识归纳:力学模型及方法
高中物理知识归纳:力学模型及方法高中物理知识归纳:力学模型及方法力学是物理学中的一个重要分支,研究物体运动和受力情况。
力学模型及方法是力学研究的基础,对于理解和解决各种物理问题具有重要意义。
本文将归纳总结高中物理中力学模型及方法的相关知识。
一、力学基本概念1. 物体的质量:质量是物体特有的一种属性,表示物体所固有的惯性,通常用符号 m 表示,单位为千克(kg)。
2. 力的概念:力是使物体产生形变、速度改变或状态改变的原因,通常用符号 F 表示,单位为牛顿(N)。
3. 牛顿第一定律(惯性定律):一个物体若不受外力作用,或受到一个力的合力为零,则物体将保持静止或匀速运动。
4. 牛顿第二定律(运动定律):物体的加速度与作用在物体上的合力成正比,与物体的质量成反比,即 F = ma。
二、牛顿定律应用1. 质点的动力学模型:质点是指物体的大小可以忽略不计,只考虑物体的质量和所受力的点。
质点的动力学模型可以用牛顿第二定律描述。
2. 物体的受力分析:通过对物体受力情况的分析,可以找到物体受力的类型和大小,进而得到物体的运动状态。
3. 平衡力的判断:当物体受到的合力为零时,物体处于平衡状态;当物体受到合力不为零时,物体将发生加速度运动。
4. 斜面上的物体运动:利用物体位于斜面上时产生的力分解,将物体沿斜面方向的受力与垂直斜面方向的受力分开,从而求解物体的运动。
5. 牵引力与摩擦力问题:当物体受到一定的牵引力或摩擦力时,需要根据受力情况和物体的质量求解物体的运动状态。
6. 弹簧力的计算:弹簧力是指物体被压缩或拉伸时,弹簧所产生的力。
根据胡克定律,弹簧力与物体的位置成正比。
三、圆周运动及万有引力1. 圆周运动的力学模型:对于作圆周运动的物体,可以使用向心力和惯性力来建立其运动的力学模型。
2. 向心力与角速度关系:向心力是指物体在做圆周运动时所受到的力,它与物体的质量和角速度的平方成正比。
3. 万有引力与行星运动:引力是指物体与物体之间由于质量吸引而产生的力。
高考物理必考模型归纳总结
高考物理必考模型归纳总结一、力学模型在高考物理考试中,力学模型是必考的重点内容之一。
下面将对力学模型进行归纳总结。
1. 匀速直线运动匀速直线运动是最简单的运动形式之一,在高考中经常出现。
其物理模型包括匀速直线运动的速度、位移、时间等概念,以及相关的公式和计算方法。
2. 自由落体运动自由落体运动是指只受重力作用下的物体运动。
在高考中会出现自由落体运动的问题,要求学生根据所给条件计算物体的下落时间、下落距离等。
3. 斜抛运动斜抛运动是指物体在水平方向上具有初速度的情况下,以抛体运动形式进行运动。
在高考物理中,会考察斜抛运动的各种问题,要求学生分析和计算物体的运动轨迹、最大高度、飞行时间等。
4. 牛顿定律牛顿定律是力学的基本原理之一,也是高考物理必考的知识点。
其中包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
学生需要掌握这些定律的表达形式、应用方法以及与力、加速度、质量等概念的关系。
5. 动量守恒定律动量守恒定律是指在没有外力作用的情况下,物体的总动量保持不变。
在高考中,常涉及碰撞问题,要求学生利用动量守恒定律解决碰撞后物体的速度、动量等相关问题。
6. 万有引力定律万有引力定律是物理中的一项重要定律,描述了物体之间的引力作用。
在高考中会考察万有引力定律的应用,如行星运动、人造卫星运动等问题。
二、热学模型热学模型也是高考物理考试的必考内容之一。
下面将对热学模型进行归纳总结。
1. 热传导热传导是指热量通过物质内部的传递。
在高考中,经常出现热传导的计算问题,要求学生根据传导定律计算导热速率、热传导等。
2. 热膨胀热膨胀是物体在受热后体积发生变化的现象。
在高考物理中,会考察热膨胀的计算问题,要求学生根据热膨胀系数计算物体的体积或长度的变化。
3. 气体定律气体定律是描述气体性质的基本规律。
高考中经常出现气体定律的应用问题,包括玻意耳定律、查理定律、盖-吕萨克定律等。
4. 理想气体状态方程理想气体状态方程是物理中的一个重要公式,用于描述理想气体的性质。
高考物理课本知识点归纳总结
高考物理课本知识点归纳总结# 高考物理知识点归纳总结## 一、力学基础### 1. 运动学- 位移、速度、加速度:描述物体运动状态的基本概念。
- 匀速直线运动:速度不变的直线运动。
- 匀变速直线运动:加速度恒定的直线运动。
### 2. 牛顿运动定律- 第一定律:惯性定律,物体保持静止或匀速直线运动状态。
- 第二定律:力是改变物体运动状态的原因,\[ F = ma \]。
- 第三定律:作用力与反作用力,大小相等,方向相反。
### 3. 功和能- 功:力在物体位移方向上的分量与位移的乘积。
- 动能:\[ E_k = \frac{1}{2}mv^2 \]。
- 势能:物体由于位置而具有的能量。
## 二、电磁学### 1. 电场- 电场强度:描述电场对电荷的作用。
- 电势:电场中某点的电势能与电荷量的比值。
### 2. 磁场- 磁感应强度:描述磁场对运动电荷的作用。
- 安培环路定理:磁场的环路定理。
### 3. 电磁感应- 法拉第电磁感应定律:变化的磁场产生电场。
- 楞次定律:感应电流的方向。
## 三、热学### 1. 热力学第一定律- 能量守恒:能量不能被创造或消灭,只能转换形式。
### 2. 热力学第二定律- 熵:系统无序度的量度。
### 3. 理想气体状态方程- 状态方程:\[ PV = nRT \]。
## 四、光学### 1. 光的反射- 反射定律:入射角等于反射角。
### 2. 光的折射- 折射定律:光从一种介质进入另一种介质时方向改变。
### 3. 光的干涉与衍射- 干涉:两束或多束光波相遇时的相位关系。
- 衍射:光波通过小孔或绕过障碍物时的传播现象。
## 五、原子物理学### 1. 原子结构- 玻尔模型:描述氢原子的电子轨道。
### 2. 量子力学基础- 波函数:描述粒子状态的数学函数。
- 薛定谔方程:量子力学的基本方程。
### 3. 核物理- 放射性衰变:不稳定原子核的自发转变。
- 核反应:原子核的重组过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
╰
α
高中物理知识归纳(二)
----------------------------力学模型及方法
1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
2斜面模型(搞清物体对斜面压力为零的临界条件)
斜面固定:物体在斜面上情况由倾角和摩擦因素决定
μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面
μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)
3.轻绳、杆模型
绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
杆对球的作用力由运动情况决定
只有θ=arctg(g a)时才沿杆方向
最高点时杆对球的作用力;最低点时的速度?,杆的拉力?
若小球带电呢?
假设单B下摆,最低点的速度V B=R
2g⇐mgR=2
2
1
B
mv
E
m
L
·
m2
m1
F
B
A
F1 F2 B A F
F
m 整体下摆2mgR=mg
2R
+'2
B '2A
mv 21mv 2
1+
'A 'B V 2V = ⇒ '
A V =
gR 53 ; 'A 'B V 2V ==gR 25
6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0<
gR ,运动情况为先平抛,绳拉直沿绳方向的速度消失
即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力?
换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒
例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?
4.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )
向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)
难点:一个物体的运动导致系统重心的运动
1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数 系统重心向下加速 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动? 铁木球的运动
用同体积的水去补充
5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大;
③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
◆弹性碰撞:m 1v 1+m 2v 2='
22'
11v m v m +(1)
'222'12221mv 2
1mv 21mv 21mv 21+=+ (2 ) ◆一动一静且二球质量相等的弹性正碰:速度交换
大碰小一起向前;质量相等,速度交换;小碰大,向后返。
◆一动一静的完全非弹性碰撞(子弹打击木块模型) mv 0+0=(m+M)'
v
20mv 21='2M)v m (2
1++E 损 E 损=20mv 21一'2
M)v (m 2
1+=
0202
0E m M M m 21m)(M M M)2(m mM k v v +=+=+ a
图9 θ
E 损 可用于克服相对运动时的摩擦力做功转化为内能E 损=fd 相=μmg ·d 相=20
mv 21一'2
M)v (m 2
1+
“碰撞过程”中四个有用推论
弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等的特征, 设两物体质量分别为m 1、m 2,碰撞前速度分别为υ1、υ2,碰撞后速度分别为u 1、u 2,即有 :
m 1υ1+m 2υ2=m 1u 1+m 1u 2
21m 1υ12+21m 2υ22=21m 1u 12+2
1
m 1u 22 碰后的速度u 1和u 2表示为: u 1=
2121m m m m +-υ1+212
2m m m +υ2
u 2=
2112m m m +υ1+2
11
2m m m m +-υ2
推论一:如对弹性碰撞的速度表达式进行分析,还会发现:弹性碰撞前、后,碰撞双方
的相对速度大小相等,即}: u 2-u 1=υ1-υ2
推论二:如对弹性碰撞的速度表达式进一步探讨,当m 1=m 2时,代入上式得:
1221,v u v u ==。
即当质量相等的两物体发生弹性正碰时,速度互换。
推论三:完全非弹性碰撞碰撞双方碰后的速度相等的特征,即: u 1=u 2 由此即可把完全非弹性碰撞后的速度u 1和u 2表为: u 1=u 2=2
12
211m m m m ++υυ
例3:证明:完全非弹性碰撞过程中机械能损失最大。
证明:碰撞过程中机械能损失表为: △E=
21m 1υ12+21m 2υ22―21m 1u 12―2
1
m 2u 22 由动量守恒的表达式中得: u 2=
2
1
m (m 1υ1+m 2υ2-m 1u 1) 代入上式可将机械能的损失△E 表为u 1的函数为: △E=-
2
2112)
(m m m m +u 12-
222111)(m m m m υυ+u 1+[(21m 1υ12+2
1
m 2υ22)-
221m ( m 1υ1+m 2υ2)2]
这是一个二次项系数小于零的二次三项式,显然:当 u 1=u 2=2
12
211m m m m ++υυ时,
即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值
v 0 A
B
A
B
v 0
v s
M v
L
1 2
A
v 0
S 1
S 2 v 0 A
B
C △E m =21m 1υ12+21m 2υ22 -)
(2)(212
2
211m m m m ++υυ
推论四:碰撞过程中除受到动量守恒以及能量不会增加等因素的制约外,还受到运
动的合理性要求的制约,比如,某物体向右运动,被后面物体追及而发生碰撞,被碰物体运动速度只会增大而不应该减小并且肯定大于或者等于(不小于)碰撞物体的碰后速度。
6.人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中, 在此方向遵从动量守恒:mv=MV ms=MS s+S=d ⇒s=
d M
m M
+ M/m=L m /L M
载人气球原静止于高h 的高空,气球质量为M ,人的质量为m .若人沿绳梯滑至地面,则绳梯至少为多长? 7.弹簧振子模型:F=-Kx (X 、F 、a 、v 、A 、T 、f 、E K 、E P 等量的变化规律)水平型 竖直型 8.单摆模型:T=2π
g
L
(类单摆) 利用单摆测重力加速度 9.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。
①各质点都作受迫振动, ②起振方向与振源的起振方向相同, ③离源近的点先振动,
④没波传播方向上两点的起振时间差=波在这段距离内传播的时间⑤波源振几个周期波就向外传几个波长。
波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf
波速与振动速度的区别 波动与振动的区别:波的传播方向⇔质点的振动方向(同侧法) 知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法)
物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等. 模型法常常有下面三种情况
(1)物理对象模型:用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型),即把研究的对象的本身理想化.常见的如“力学”中有质点、刚体、杠杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等;
(2)条件模型:把研究对象所处的外部条件理想化,排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型.
(3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型
其它的碰撞模型:
20m
M
m
O
R
A
B C
1 2
A。