分析比较激光焊、电子束焊接、等离子弧焊这三种高能束焊接方法的

合集下载

高能束焊接总结

高能束焊接总结

高能束焊接复习总结激光焊接:1.激光的基本特性?(1)激光的单色性好。

激光的单色性比一般光要高出很多(106倍以上)。

(2)方向性好、亮度高。

激光输出的光束发散角度很小(小于10-3弧度),光源表面的亮度高,被照射地方的照度大。

(3)相干性好。

激光的相位在时间上是保持不变的,合成后能形成相位整齐、规则有序的大振幅光波。

2.如何评价激光光束的质量?(1)光束传播系数k 、光束衍射极限倍数M 。

20011==K M w λπ⋅⋅Θ 通常K 的取值为0~1,K 或M 2为1, 光束质量实际达到衍射极限。

(2)光束参数积(BBP )。

200M BPP w K λλππ=⋅Θ==⋅决定激光加工使用围。

光束参数积与激光功率决定加工围。

3.激光产生相关名次解释?(1)辐射跃迁:粒子从外界吸收能量时从低能级跃迁到高能级;从高能级跃迁到低能级时向外界释放能量。

如果吸收或释放的能量是光能,则称此跃迁为辐射跃迁。

(2)激发:实现粒子从低能级向高能级的跃迁过程成为激发,方式主要以:加热激发、辐射激发、碰撞激发。

(3)自发辐射:处于高能级的粒子自发地向低能级跃迁并释放光子的过程。

(4)受激辐射:处于高能级的粒子受到一个能量为hv=E2-E1光子的作用,从E2能级跃迁到E1能级并同时辐射出与入射光子完全一样(频率、相位、传播方向、偏振方向)的光子的过程。

(5)受激吸收:处于低能级的粒子受到一个能量hv=E2-E1光子的作用,从E1能级跃迁到E2能级的过程。

PS:自发辐射与受激辐射的区别:一个是自由辐射的过程,光波之间没有固定的关系;另一个则是入射与辐射的光完全一致。

(6)粒子数反转:热平衡状态下,处于高能级的粒子远远少于处于基态的粒子数,如果在外界作用下打破平衡,使亚稳态能级的粒子数大于处于低能级的粒子数,这种状态称为粒子数反转。

(7)激光工作物质:凡是可通过激励实现粒子数反转的物质都称激光工作物质。

(8)泵浦:使工作物质在某两个能级之间实现粒子数反转的过程称为泵浦或抽运。

高能束流焊接技术的最新进展

高能束流焊接技术的最新进展
强, 缺点是熔深浅 、 焊速低、 工件承受热载荷 大。 激光焊可形成深 在等离子弧焊接 方面,变极性等离子弧焊 以及铝合金穿孔 等离
而窄的焊缝 , 焊速 高、 热输入低 , 但投资高 , 对工件制备精度要求 子立焊是关注点之一。
高, 对铝等材料的适应性差 。从能量观点看 , 激光电弧复合对焊 3 国内高能束流焊接现状 在 国 内 , 能 束 流 焊接 越 来 越 引 起 更 多相 关 人 士 诸 如 焊 接 、 高 接效率的提高十分显著。这主要基于两种效应 , 一是较高的能量
密度 导致 了较高的焊接速度 ; 二是两热源相互作用的叠加效应 。 物理 、 激光 、 材料、 机床 、 计算机等工作者的关 注。国内在设备水 与 但在工艺研究上 , 水平则较为接近 , 甚 G A 激 光加丝和激光电弧 复合三种方法焊接 时线能量 、 M 、 焊缝断 平上 , 国外有一定差距 , 面以及能量利用率 的比较。L srT G H bi 可显著增加焊速 , 至在某些方面还有 自己的特色。 ae- I yr d
0 mm的不锈钢 , 深宽比达 7 :。 日、 、 01 俄 德开展 了双枪及填丝 机多用。 ) 2 采用一台激光机可进行多工位 ( 可达 6 ) 个 加工 。 ) 3光 2 0 纤长度最长可达 6 m。 ) 0 4 开放式 的控制接 口。 ) 5 具有远距离诊断 电子束焊接技术的研 究。法 国研制成功的双金属和三金属薄带
1 激光焊接的最新进展
方法由于表面的清理作用强和加丝 的合金化作用效果 为好。 1 激光熔覆 。激光熔覆与其它表直 流板条式 ( C Sa )O 激光器 ; ) . 1 ) D lb C 2 二极 快、 热输人少 , 变形极小 ; 结合强度高 ; 稀释率低 ; 改性层厚度可 管泵浦的 Y G激光器 ; ) O激光器 ;) A 3C 4 半导体 激光器 ; ) 5 准分 精确控制 , 定域性好、 可达性好 、 生产效率高。

07焊接方法与设备-高能束焊摘要

07焊接方法与设备-高能束焊摘要

30mm。这种方法的优点是不需真空室,因而可以焊
接尺寸大的工件,生产率较高。近年来,移动式真空室
或局部真空电子束焊接方法,既保留了真空电子束高功
率密度的优点,又不需要真空室,因而在大型工件的焊
接2019工/12/1程4 上有应用前景。
34
高能束焊接 -------------电子束焊
电子束焊可焊接所有的金属材料和某些
在采用转移弧时,由 于某些原因,有时除 了在钨极和工件之间 燃烧的等离子弧外, 还会另外产生一个在 钨极-喷嘴-工件之 间燃烧的串列电弧, 这种现象谓之双弧
2019/12/14
19
第一节 等离子弧的形成及特性 -------------双弧现象及防止
危害: – 破坏稳定性、破坏接头质量 – 降低功率、影响穿透力 – 危害喷嘴
高能束焊接
等离子弧焊接 电子束焊 激光焊
2019/12/14
1
焊接热源的最小加热面积、最大功 率密度和温度
热源
最小加热面积/cm2 最大功率密度/Wcm2
乙炔火焰
10-2
2×103
金属极电弧
10-3
104
TIG
10-3
埋弧焊
10-3
1.5 × 104 2 × 104
电渣焊
10-3
104
MIG CO2焊 等离子 电子束 激光 2019/12/14
三种压缩机制:
– 机械(前提):利用水冷喷嘴孔道限制弧柱
直径,来提高弧柱的能量密度和温度。
– 热(主要原因):由于水冷喷嘴温度较低,
从而在喷嘴内壁建立起一层冷气膜,迫使弧柱导 电断面进一步减小,电流密度进一步提高。弧柱 这种收缩谓之“热收缩”,也可称为“热压缩”。

高能束流焊接方法

高能束流焊接方法

高能束流焊接方法〔一〕激光焊1. 高能焊概念:高能焊接是指以激光束、电子束、等离子体为热源,对金属、非金属材料进行焊接的精细加工工艺。

高能束流焊接的功率密度〔Power Density〕到达105W/cm2以上。

2.高能束流是由单一的电子、光子、电子和离子,或者二种以上的粒子组合而成。

3.激光焊概念:激光焊是高能焊的一种。

是利用高能量密度的激光束作为热源的一种高效而且精密的焊接方法。

它是以聚焦的激光束作为能源轰击焊件所产生的热量而进行焊接的,聚焦的激光束是指:利用大功率相干单色光子流聚焦而成的激光束。

3.激光焊特点:〔1〕功率密度高。

由于激光束的频谱宽度窄,经过会聚后的光斑直径可以小到,功率密度可以到达109W/cm2,可以焊接0.1~ 50mm厚的工件。

〔2〕脉冲激光焊加热时间短、焊点小、热影响区小。

〔3〕激光焊与电子束焊有许多相似之处,但它不需要真空室,不产生X射线,更适合生产中推广应用。

激光焊接已成为高能束焊接技术发展的主流。

缺点是激光焊接一些高反射率的金属还比较困难,另外设备投资大。

〔4〕激光能够反射、透射、能够在空间传播相当长的距离而衰减很小,激光焊能够远距离焊接,或者对难以接近的部位进行焊接,能够透过玻璃等其他透明物体进行焊接。

〔5〕激光不受电磁场的影响。

〔6〕激光的电光转换效率低〔约为0.1 % ~ 0.3 %〕。

工件的加工和组装精度要求高,夹具要求精密,因此焊接成本高。

〔7〕一台激光器可供多个工作台进行不同的工作,既可以用于焊接,又可以用于切割、合金化和热处理,一机多用。

4激光焊接的优点激光焊接具有以下优点:能量密度高,可聚焦,深穿透,高效率,高精度,适应性强等。

5激光焊设备组成激光焊接设备由以下设备组成:工作平台,激光器,光束检测系统,焊接过程检测系统,导光聚焦系统,电脑控制系统6激光器的组成激光器一般由以下这些部件组成:〔1〕激光工作物质:必须是一个具有假设干能级的粒子系统并且具备压稳态能级,使粒子数反转和受激辐射成为可能。

六种先进的焊接技术

六种先进的焊接技术

01 激光焊接激光焊接:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。

激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。

功率密度小于10~10 W/cm为热传导焊,此时熔深浅、焊接速度慢;功率密度大于10~10 W/cm时,金属表面受热作用下凹成"孔穴",形成深熔焊,具有焊接速度快、深宽比大的特点。

激光焊接技术广泛被应运在汽车、轮船、飞机、高铁等高精制造领域,给人们的生活质量带来了重大提升,更是引领家电行业进入了精工时代。

特别是在大众汽车创造的42米无缝焊接技术,大大提高了车身整体性和稳定性之后,家电领头企业海尔集团隆重推出首款采用激光无缝焊接技术生产的洗衣机,先进的激光技术可以为人民的生活带来巨大的改变。

02 激光复合焊接激光复合焊接是激光束焊接与MIG焊接技术相结合,获得最佳焊接效果,快速和焊缝搭桥能力,是当前最先进的焊接方法。

激光复合焊的优点是:速度快,热变形小,热影响区域小,并且确保了焊缝的金属结构与机械属性。

激光复合焊除了汽车薄板结构件的焊接,还适用于很多其它应用。

例如将这项技术应用于混凝土泵和移动式起重机臂架的生产,这些工艺需对高强度钢进行加工,传统技术往往会因为需要其它辅助工艺(如预热)而导致成本的增加。

再则,该技术也可应用于轨道车辆的制造及常规钢结构(如桥梁,油箱等)。

03 搅拌摩擦焊搅拌摩擦焊是利用摩擦热与塑性变形热作为焊接热源。

搅拌摩擦焊焊接过程是由一个圆柱体或其他形状(如带螺纹圆柱体)的搅拌针伸入工件的接缝处,通过焊头的高速旋转,使其与焊接工件材料摩擦,从而使连接部位的材料温度升高软化。

搅拌摩擦焊在焊接过程中工件要刚性固定在背垫上,焊头边高速旋转,边沿工件的接缝与工件相对移动。

焊头的突出段伸进材料内部进行摩擦和搅拌,焊头的肩部与工件表面摩擦生热,并用于防止塑性状态材料的溢出,同时可以起到清除表面氧化膜的作用。

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用高能束焊接技术是一类利用高能量且作用范围集中的束流作为热源,作用于材料以达到使材料焊接目的的新型技术,目前已成为发展极为迅速、最具重要性的前沿的制造技术之一。

由于其焊接速度快、不易使材料变形、焊接质量极佳、适应能力强等诸多优点,这种技术不仅可以满足大量生产、高自动化程度生产的需要,亦可在要求少量、多品种乃至个性化定制生产的领域得到广泛的应用。

在视现代化制造技术如至宝的今天,高能束焊接技术自然成为国际间科技竞争的焦点之一,它是生产高科技国防武器装备的必需技术之一,同时也是度量一个国家工业水平及制造能力的最具代表性的指标之一。

如今,高能束焊接及制造技术已渗入到民用工业及军工业的多个领域,并在其中不断发光发热,为现代化工业生产做出了较大的贡献。

本文将从高能束焊接的三个具体方面:激光、电子束及等离子激光焊接技术切入,分析并总结了三类高能束焊接技术的机理、发展历程和应用、以及未来的发展趋势,从而指导工业生产和科学研究。

1 激光焊接技术的发展和应用激光焊接技术是一种利用高能量密度的激光为热源的高效材料加工方法,主要优点是焊接深度较大、速度较快、操作简便。

目前,常见的激光焊接所使用的激光器主要为CO2激光器及Nd:YAG激光器两种,它们的研发时间相对其他类型的激光器更长,技术更加完善,应用的领域也十分广泛。

前者是一种可连续工作的气体激光器,激光活性介质是CO2、碳酸气及氮气等混合气体,发射波长为10.6μm的光,电光转化效率介于10-30%之间,输出功率最低为0.5kW,最高可达50kW;后者利用掺有Nd杂质的YAG晶体为激光活性介质,与CO2激光器发射的激光相比,Nd:YAG激光器发射出的激光波长更短,电光转化效率及输出功率均低于前者。

而且它不仅可连续输出,还可以进行脉冲输出;且因发射光波长较短,激光束更易被焊接材料所吸收,故在高反射率材料的焊接上有更大的性能优势。

此外,Nd:YAG 激光器支持光纤传输,可匹配机器人加工系统,因此支持远程控制,利于进行自动化深入高产。

碳钢焊接焊接工艺方法的选用

碳钢焊接焊接工艺方法的选用

碳钢焊接焊接工艺方法的选用摘要:焊接工艺因操作灵活,适应性广,广泛应用于工程制造过程中。

不同的制造项目因设计、工艺、环境不同会选择不同的焊接工艺方法,本文就碳钢焊接工艺方法进行对比论述分析,在实际应用过程中以供参考。

关键词:焊接质量;影响因素;控制引言常见的焊接方法有电弧焊、电阻焊、高能束焊、钎焊等,不同的焊接有不同的特点,简要分析对比。

1电弧焊电弧焊是目前应用最广泛的焊接方法。

绝大部分电弧焊是以电极与工件之间燃烧的电弧作热源。

在形成接头时,可以采用也可以不采用填充金属。

所用的电极是在焊接过程中熔化的焊丝时,叫作熔化极电弧焊,所用的电极是在焊接过程中不熔化的碳棒或钨棒时,叫作不熔化极电弧焊。

(1)手弧焊手弧焊是各种电弧焊方法中发展最早、目前仍然应用最广的一种焊接方法。

它是以外部涂有涂料的焊条作电极和填充金属,电弧是在焊条的端部和被焊工件表面之间燃烧。

手弧焊设备简单、轻便,操作灵活。

可以应用于维修及装配中的短缝的焊接,特别是可以用于难以达到的部位的焊接。

手弧焊配用相应的焊条可适用于大多数工业用碳钢、不锈钢、铸铁、铜、铝、镍及其合金。

(2)埋弧焊埋弧焊是以连续送时的焊丝作为电极和填充金属。

焊接时,在焊接区的上面覆盖一层颗粒状焊剂,电弧在焊剂层下燃烧,将焊丝端部和局部母材熔化,形成焊缝。

与手弧焊相比,其最大的优点是焊缝质量好,焊接速度高。

因此,它特别适于焊接大型工件的直缝的环缝。

而且多数采用机械化焊接。

埋弧焊已广泛用于碳钢、低合金结构钢和不锈钢的焊接。

由于熔渣可降低接头冷却速度,故某些高强度结构钢、高碳钢等也可采用埋弧焊焊接。

(3)钨极气体保护电弧焊这是一种不熔化极气体保护电弧焊,是利用钨极和工件之间的电弧使金属熔化而形成焊缝的。

焊接过程中钨极不熔化,只起电极的作用。

同时由焊炬的喷嘴送进氩气或氦气作保护。

还可根据需要另外添加金属。

在国际上通称为TIG焊。

钨极气体保护电弧焊由于能很好地控制热输入,所以它是连接薄板金属和打底焊的一种极好方法。

先先进焊接方法

先先进焊接方法

特种焊方法:电子束焊、激光焊、机器人焊接等。

压力焊:电阻焊、超声波焊、搅拌摩擦焊、扩散焊等。

第一章电子束焊基本原理:利用空间定向高速运动的电子束,在强电场的作用下,以极快的速度轰击焊件表面,将部分动能转化为热能,从而使焊件熔化,形成焊缝.即:产生电子(发射材料受热发射电子)—-形成电子束——电子束会聚——焊件优点:1.穿透能力强,焊缝深宽比大2。

能量密度高 3.焊缝纯度高,接头质量好4.再现性好,工艺适应性强5。

可焊材料多缺点:1。

设备复杂,投资大,价格昂贵2。

焊前对接头加工、装配要求严格3。

真空电子束焊接时,被焊工件尺寸和形状常常受到工作室的限制4。

电子束易受杂散电磁场干扰,影响焊接质量5。

焊接时产生的X射线对操作人员有一定影响分类:1、高真空电子束焊、低真空电子束焊、非真空电子束焊2、高压电子束焊(固定式)、中压电子束焊(固定式和移动式)、低压电子束焊(移动式)应用:在航空、航天、原子能、核反应堆、汽车、压力容器。

电子电力工业应用广泛,能焊接稀有金属、活泼金属、难熔金属和非金属陶瓷,可以焊接热处理强化或冷作硬化的材料,接头的力学性能不发生变化,可焊厚板也能焊薄板,易于实现厚度相差很大的街头的焊接。

发展方向:1、大功率电子束焊接技术,焊接大厚板2、大工作空间,焊接大型构件3、向自动化方向发展电子枪是发射、形成和会聚电子束的装置,分为強流枪和弱流枪两种.枪内分为静电透镜和电磁透镜两部分。

设备组成:电子枪、高压电源、工作台及传动装置、真空室及抽空系统、电气控制系统。

电子束焦点的测量方法:小孔法、细丝法、平板法、缝隙法、倾斜试板法:直接测量电子束的焦点,是比较准确的方法。

采用下坡焊,焊后根据试板的倾斜角度θ、焊接速度v、烧化齿顶宽度,可以求得电子束的焦点位置及尺寸。

工艺参数及其影响:1。

工作距离:距离过大使电子束斑直径变大,降低了电子束功率密度;距离过小使金属蒸汽进入枪体造成放电现象。

因此,在不影响电子枪稳定工作的情况下,应尽量采用短的工作距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档