三角形中位线定理的证明

合集下载

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明以下容作者为:第四中学瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则,有ADFC ,所以FC BD ,则四边形BCFD 是平行四边形,DFBC 。

因为,所以DEBC 21.法2:如图所示,过C 作 交DE 的延长线于F ,则,有FCAD ,那么FC BD ,则四边形BCFD 为平行四边形,DFBC 。

因为,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形ADCF 为平行四边形,有AD CF ,所以FC BD ,那么四边形BCFD 为平行四边形,DFBC 。

因为,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。

法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系?AB C图⑴:⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗?C图⑵:说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜.2、教学重点:本课重点是掌握和运用三角形中位线定理。

三角形中位线定理及推论

三角形中位线定理及推论

三角形中位线定理及推论一、中位线定理中位线是指连接三角形一个顶点与对边中点的线段。

三角形中位线定理是指在一个三角形中,三条中位线交于一点,且这个交点与三个顶点的距离相等。

我们先来证明中位线交于一点这一结论。

假设ABC为一个三角形,AD是BC中点连线,BE是AC中点连线,CF 是AB中点连线。

我们可以得到△ADC和△BCD是全等三角形。

根据全等三角形的性质,我们可以得到∠ADC=∠CBD,∠ACD=∠BCD,且AD=BD。

同理,我们可以得到△AEB和△CEB是全等三角形,∠AEB=∠CEB,∠ABE=∠CBE,且AE=BE。

因为∠ADC=∠CBD,∠ACD=∠BCD,所以∠ADC+∠ACD=∠CBD+∠BCD,即∠ADC+∠ACD=180°。

同理,∠AEB+∠ABE=180°。

我们可以得到∠ADC+∠ACD+∠AEB+∠ABE=∠ADC+∠ACD+∠AEB+∠ABE+∠BCD+∠CBE。

而∠ADC+∠ACD+∠AEB+∠ABE+∠BCD+∠CBE=360°。

所以∠ADC+∠ACD+∠AEB+∠ABE+∠BCD+∠CBE=360°。

而∠ADC+∠ACD+∠AEB+∠ABE=360°。

所以∠BCD+∠CBE=0°。

由于∠BCD+∠CBE=0°,所以∠BCD=0°,∠CBE=0°。

因此,BD和CE是平行线。

根据平行线的性质,我们可以得到三角形BDF和三角形CEG是全等三角形,∠BFD=∠CGE,∠BDF=∠CEG,且BD=CE。

所以,我们可以得到BF=CG。

因此,在三角形ABC中,三条中位线AD、BE、CF交于一点G,且这个交点与三个顶点的距离相等。

二、中位线推论1. 三角形中位线推论一:中位线长度在一个三角形中,连接一个顶点与对边中点的中位线的长度等于对边的一半。

假设ABC为一个三角形,AD是BC中点连线。

我们已经证明了AD和BC是平行线,且AD=BD。

三角形中位线定理的证明过程

三角形中位线定理的证明过程

三角形中位线定理的证明
噫,今日咱来讲讲那个三角形中位线定理是啷个证明嘞。

说起这个定理哦,它就是说在一个三角形里头,你取任意两边嘞中点,然后连起来,这条线就叫中位线。

这条中位线嘞长度,刚好就是它所截嘞那边嘞一半。

听起来简单,证明起来还是有那么点意思嘞。

你看嘛,假设有个三角形ABC,D、E分别是AB、AC嘞中点。

那么DE就是ABC嘞中位线。

咱要证明DE嘞长度是BC嘞一半。

首先嘞,你可以延长DE到点F,使得EF等于DE,然后连结CF。

由于D是AB嘞中点,且DE等于EF,根据平行四边形嘞性质,四边形BCFE就是平行四边形。

为啥子嘞?因为一组对边平行且相等嘛,这就是平行四边形嘞定义。

平行四边形BCFE里头,BF等于CE,且BF平行CE。

但你看嘛,E又是AC嘞中点,所以AE等于CE,那就意味着BF等于AE。

现在你看三角形ADE跟三角形CFE,它们有两边分别相等,即DE等于EF,AE等于CF,且夹角AED等于角CEF(对顶角相等)。

所以,三角形ADE跟三角形CFE是全等嘞。

全等就意味着对应边相等,所以AD等于CF。

但CF又是平行四边形BCFE嘞一边,它等于另一边BC。

而AD是AB嘞一
半,因为D是AB嘞中点。

所以嘞,DE就等于BC嘞一半。

这就证明完咯三角形中位线定理。

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明一、三角形中位线定理的几种证明方法,则,,使,连结CF法1:如图所示,延长中位线DE至F DFFCBCFD 是平行四边形,BD,则四边形BC有ADFC,所以。

因为1DE,所以.BC 2,有F,则作FC交DE的延长线于法2C因为,DFBC。

为平行四边形,AD,那么BDFC ,则四边形BCFD1.所以DEBC 2,连接CF、DC、AF,则四边形ADCF至法3:如图所示,延长DEF,使BD,那么四边形BCFDCFAD,所以FC为平行四边形,为平行四边形,有1BC.DE,所以BCDF 。

因为2法4:如图所示,过点E作MN∥AB,过点A作AM∥BC,则四边形ABNM为平行四边形,易证,从而点E是MN的中点,易证四边形ADEM和BDEN都CENAEM 1。

DEDE∥BC,即DE=AM=NC=BN为平行四边形,所以,BC2法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系?A BEDC图⑴:⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗?AEDBC图⑵:,上时A的顶点运动到直线BC说明:学生观察(几何画板制作的)课件演示:当△ABC上,这样由“二维”转化为“一维”,学生就不难猜想性质的BC 中位线DE也运动到如果教师直接叫学.两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.生去度量角度和长度,是强扭的瓜不甜、教学重点:本课重点是掌握和运用三角形中位线定理。

2第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。

三角形中位线定理的证明及其应用

三角形中位线定理的证明及其应用

例 l 如 图,在 四边形A B C D中, A B = C D, E、 盼 别
是B C 、 A D的 中点 ,延长B A和C D分别 与E F 的延 长线 交 于K、 日, 求证 : / _ _ B K E= C H E . ( 2 0 0 6 年 内 蒙 古 呼 和 浩 特市初 中数学 竞赛题 )
样 取 中点 比作平行 线好 . 证明: 连 接B D并取B D的中 点G, 连F G、 G E, 在 △D A B 和 △B C D 中,
・ .

F 是AD的中 点, E 是B C 的 中点 ,
・ . .
F G / / A B J  ̄ F G = A , E G / / / D G J  ̄ E G = 二D C .
・ .

A AE F ̄ A ABC EF =


E F / / B C J t E F =I - - B C
2 .
BC A B 2


A( 0,口)
‘ 、

钳 /
童(b ,o’
\ ‘ 专 f口


C‘ c- O)
证 明 二 : ’ 诜 4 ( o , , 日 ( 6 , 0 ) , c ( c , o ) . 贝 J l E ( 告 , 号 ) , 畸, 号 ) .
求证: E F <2 1( AB + C D) . ( 2 0 1 1 年银 川市 中考 题)

分 析 : 利 用 中 位 线 , 将 矾吉 B + c D ) 转 移 到 同 一 三 角 形 中 .
・ 。

直 线 E F 的 方 程 为 ) , = 号 ,

三角形中位线定理的证明

三角形中位线定理的证明

∴△ADE ≌ △CFE F ∴AD=FC 、∠A=∠ECF ∴AB∥FC 又AD=DB ∴BD∥ CF且 BD =CF ∴四边形BCFD是平行四边形
A
D
E
B
F
C
1.△ABC中,D、E分别是AB、AC的中点, 5㎝ ① BC=10cm,则DE=___. 60° ②∠A=50°, ∠B=70°,则∠AED=_____.
2. △ABC的周长为18cm,这个三角形的三条中 位线围成的△DEF的周长是多少? 9㎝
A D E C
B
A
D
F
E
C
B
(1题)
(2题)
通过这一节课的学习你有 那些收获?
请动手试一试!
1 求证:DE ∥ BC,且DE= 2 BC 。
A
D
已知:如图,DE是△ABC 的中位线
证明:如 图,延 长DE 到 F,使 EF=DE ,连 结CF. ∵DE=EF ∠1=∠2 AE=EC
1 E 2
C
B
∴DF∥BC,DF=BC 即DE∥BC 又∵DE=1/2EF ∴DE=1/2BC
A
D
B
E C
学习目标
1、学会三角形的中位线定理的证明; 2、会运用三角形中位线定理解决相 关问题。
三角形的中位线定理:
三角形的中位线平行于第三边,并且 等于第三边的一半。 如图: 在△ABC中 A
∵ DE是△ABC的中位线 ∴ DE∥BC
1 DE = BC 数量关系 2
B
位置关系
DECFra bibliotek怎样将一张三角形硬纸片剪成两部 分,使分成的两部分能拼成一个平行四 边形?

证明三角形中位线判定定理

证明三角形中位线判定定理

证明三角形中位线判定定理证明三角形中位线判定定理证明:已知△ABC中,D,E分别是AB,AC两边中点。

求证DE平行于BC且等于BC/2过C作AB的平行线交DE的延长线于G点。

∵CG∥AD∴∠A=∠ACG∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A)∴AD=CG(全等三角形对应边相等)∵D为AB中点∴AD=BD∴BD=CG又∵BD∥CG∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)∴DG∥BC且DG=BC∴DE=DG/2=BC/2∴三角形的中位线定理成立在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

证明三角形中位线判定定义在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

2DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。

证明:∵DE∥BC∴△ADE∽△ABC∴AD:AB=AE:AC=DE:BC=1:2∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。

在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

2D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2证明:取AC中点E,连接DE,则有AD=BD,AE=CE∴DE是三角形ABC的中位线∴DE∥BC又∵DE∥BC∴DE和DE重合(过直线外一点,有且只有一条直线与已知直线平行)∴E是中点,DE=BC/2注意:在三角形内部,经过一边中点,且等于第三边一半的线段不一定是三角形的中位线!证明三角形中位线判定性质延长DE到点G,使EG=DE,连接CG∵点E是AC中点∴AE=CE∵AE=CE、∠AED=∠CEG、DE=GE∴△ADE≌△CGE (S.A.S)∴AD=CG、∠G=∠ADE∵D为AB中点∴AD=BD∴BD=CG∵点D在边AB上∴DB∥CG∴BCGD是平行四边形∴DE=DG/2=BC/2∴三角形的中位线定理成立:向量DE=DA+AE=(BA+AC)/2=BC/2∴DE//BC且DE=BC/2三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使,连结CF ,则,有ADFC ,所以FCBD ,则四边形BCFD 是平行四边形,DF BC 。

因为 ,所以DEBC 21.法2C 作交DE 的延长线于F ,则,有FCAD ,那么FCBD ,则四边形BCFD 为平行四边形,DFBC 。

因为 ,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形ADCF 为平行四边形,有ADCF ,所以FCBD ,那么四边形BCFD 为平行四边形,DF BC 。

因为 ,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。

法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系?AB C图⑴:⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗?C图⑵:说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜.2、教学重点:本课重点是掌握和运用三角形中位线定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备课偶得——
三角形中位线定理的再证明
王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。

关于它的证明方法,课本上给出了一种证法。

笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。

已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:DE ∥BC 且
证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、
DC
∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF
为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形
∴DF BC ∴DE=EF ∴DE ∥BC 且
证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△ADE ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD
∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE
∴DE=EF ∴DE ∥BC 且 证法三、(同一法)如图4,过D 作DE ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则
∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点
∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF
即 ∴DE ∥BC 且
证法四、(相似法)如图5,
图1 B
C
A
D
E 图2
B
C
A
D
E
F
图3
B
C
A
D E
F
C
图4
B A
D
E
F E ′ 图5
B
C
A
D
E
12
DE BC =1
2
DE BC =1
2
DE BC =12DE BC =12DE BC =1
2
AD AE AB AC ==
∵D 、E 分别为AB 、AC 中点 ∴ ∵∠A=∠A
∴△ADE ∽△ABC ∴ ∠ADE=∠B ∴DE ∥BC 且
证法五、(旋转拼图法)如图6,以AC 的中点E 为中心,将△ABC 绕点E 旋转180°得△ACF ,取CF 中点G ,连结EG 、DG ,则四边形ABCF 为平行四边形

AF BC ∵D 、G 分别为AB 、CF 的中点 ∴AD FG ∴四边形ADGF 为平行四边形
∴DG AF BC ∵CF ∥AB ∴∠DAE=∠GCE ∴△ADE ≌△CGE (SAS )
∴∠AED=∠CEG ∴D 、E 、G 在一条直线上 ∴DE ∥BC ∵△ADE ≌△CGE
∴DE=EG ∴ ∴DE ∥BC 且
证法六、(面积法)如图7,取BC 中点F ,连结AF 、EF ,分别过A 、E 作
AH ⊥BC ,EG ⊥BC ,垂足分别为H 、G ,过D 作DM ⊥BC 于M ,则
∴ ∵F 为BC 中点 ∴ 同理 ∴DM EG ∴四边形DMGE 为矩形 ∴DE ∥BC 同理 EF ∥AB ∴四边形DBFE 为平行四边形
∴DE=BF ∵ ∴DE ∥BC 且 证法七、(解析法)如图8,以点B 为坐标原点,建立如图所示平面直
角坐标系,不妨设A (a ,b )C (c ,0)(c >0)则,D ( ),E ( )
则DE ∥x 轴,DE= ∵BC=c ∴DE ∥BC 且
证法八、(三角法)如图9,取BC 中点F ,连结EF ,设AB=2c ,AC=2b BC=2a ,∠A=α则AD=c ,AE=b ,在△ADE 中,
在△ABC 中,
图6
B C
A
D
E
F
G 图7
B
C
F M A
D
E
1
2
DE
AD
BC AB ==12
DE BC =1
2
DE BC =12
DE BC =,ABF ACF AEF CEF S S S S ==1
4CEF ABC
S S =12CF BC =111242CF EG BC AH =⨯1
2
DM AH
=1
2
BF CF BC
==12
DE BC =12
EG AH =,22
a b
,22
a c
b +222
a c
a c +-=12
DE BC =22
2222cos 2cos AD AE A bc c b DE AD AE α=+-=+-2
2
2
2
2
2cos 2(2)(2)cos (2)(2)AB AC A c b c b BC AC AB α=+-=+-⨯⨯2
2
4(2cos )bc c b α
=+-
∴ ∴BC=2DE ∵F 为BC 的中点 ∴DE=BF 同理 EF=BD ∴四边形DBFE 为平行四边形
∴DE ∥BF 即DE ∥BC 且
图9
B
C
A
D E
F 2
2
4BC DE =1
2
DE BC =。

相关文档
最新文档