2016年中考数学第二部分专题突破七四边形

合集下载

中考数学总复习《二次函数中的特殊四边形存在性问题 》专题训练-附答案

中考数学总复习《二次函数中的特殊四边形存在性问题 》专题训练-附答案

中考数学总复习《二次函数中的特殊四边形存在性问题 》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,已知抛物线223y x x =+-的图像与坐标轴分别交于、、A B C 三点,连接AC ,点M 是AC 的中点,抛物线的对称轴交x 轴于点F ,作直线FM .(1)直接写出下列各点的坐标:F ______,M ______;(2)若点P 为直线FM 下方抛物线上动点,过点P 作PQ y ∥轴,交直线FM 于点Q ,当PQM 为直角三角形时,求点P 的坐标;(3)若点N 是x 轴上一动点,则在坐标平面内是否存在点E ,使以点F M N E 、、、为顶点的四边形是正方形?若存在,请直接写出点E 的坐标:若不存在,请说明理由.2.如图所示,在平面直角坐标系中,直线3y x =-+交坐标轴于B 、C 两点,抛物线23y ax bx =++经过B 、C 两点,且交x 轴于另一点()1,0A -.点D 为抛物线在第一象限内的一点,过点D 作DQ CO ∥,DQ 交BC 于点P ,交x 轴于点Q .(1)求抛物线的解析式;(2)设点P 的横坐标为m ,在点D 的移动过程中,存在DCP DPC ∠=∠,求出m 值;(3)在抛物线上取点E ,在平面直角坐标系内取点F ,问是否存在以C 、B 、E 、F 为顶点且以CB 为边的矩形?如果存在,请求出点F 的坐标;如果不存在,请说明理由.3.如图,已知抛物线223y x x =--+的顶点为D 点,且与x 轴交于B ,A 两点(B 在A 的左侧),与y 轴交于点C .点E 为抛物线对称轴上的一个动点:(1)当点E 在x 轴上方且CE BD ∥时,求sin DEC ∠的值;(2)若点Р在抛物线上,是否存在以点B ,E ,C ,P 为顶点的四边形是平行四边形﹖请求出点Р的坐标;(3)若抛物线对称轴上有点E ,使得55AE DE +取得最小值,连接AE 并延长交第二象限抛物线为点M ,请直接写出AM 的长度.4.如图,抛物线22y ax bx =++与x 轴交于()1,0A -和()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)如图1,若点D 是第一象限内抛物线上的一个动点,连接AC ,CD ,DB ,试求四边形ABDC 面积的最大值;(3)如图2,点(),1D m m -是第一象限内抛物线上的一点,连接AD ,BD ,点E 是线段AB 上的任意一点(不与点A ,B 重合),过点E 分别作EM AD ∥交BD 于点M ,EN BD ∥交AD 于点N .①判断四边形EMDN 的形状,并证明你的结论;①四边形EMDN 是否能成为正方形?若能,请直接写出点E 的坐标;若不能,请说明理由.5.如图,在平面直角坐标系中,AOC 绕原点O 逆时针旋转90︒得到DOB ,其中1OA =,OC=3.(1)若二次函数经过A 、B 、C 三点,求该二次函数的解析式;(2)在(1)条件下,在二次函数的对称轴l 上是否存在一点P ,使得PA PC +最小?若P 点存在,求出P 点坐标;若P 点不存在,请说明理由.(3)在(1)条件下,若E 为x 轴上一个动点,F 为抛物线上的一个动点,使得B 、C 、E 、F 构成平行四边形时,求E 点坐标.6.如图,在平面直角坐标系中,抛物线234y x bx c =++与直线AB 交于点()0,3A -和()4,0B .(1)求抛物线的函数解析式;(2)点P 是直线AB 下方抛物线上一点,过点P 作y 轴的平行线,交AB 于点E ,过点P 作AB 的垂线,垂足为点F ,求PEF 周长的最大值及此时点P 的坐标;(3)在(2)中PEF 取得最大值的条件下,将该抛物线沿水平方向向左平移3个单位,点Q 为点P 的对应点,点N 为原抛物线对称轴上一点.在平移后抛物线上确定一点M ,使得以点B ,Q ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的点M 的坐标,并写出求解点M 的坐标的其中一种情况的过程.7.如图,在平面直角坐标系中,抛物线()230y ax bx a =+-≠与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于C 点.(1)求抛物线的函数表达式;(2)点P 是直线BC 下方抛物上一动点,连接PB ,PC ,求PBC 面积的最大值以及此时点P 的坐标;(3)在(2)中PBC 的面积取得最大值的条件下,将该抛物线沿水平方向向左移动2个单位,平移后的抛物线顶点坐标为Q ,M 为y 轴上一点,在平移后的抛物线上确定一点N ,使得以点P ,Q ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.8.如图,在平面直角坐标系中,抛物线()240y ax bx a =+-≠与x 轴交于()4,0A ,()2,0B -两点,与y 轴交于点C ,连接BC ,y 轴上有一点()0,3D -.(1)求抛物线的函数表达式;(2)点P 是直线AD 下方抛物线上的一个动点,过点P 作PH x ⊥轴于点H ,PH 交直线AD 于点E ,作PF BC 交直线AD 于点F ,求11510PF PH +的最大值,及此时点P 的坐标; (3)在(2)的条件下,将点P 向右平移152个单位长度,再向上平移398个单位长度得到点P ';将抛物线沿着射线BC 方向平移5个单位长度得到一条新抛物线,点M 为新抛物线与y 轴的交点,N 为新抛物线上一点,Q 为新抛物线对称轴上一点,请写出所有使得以点P ',M ,Q ,N 为顶点的四边形是平行四边形的点Q 的坐标,并写出求解点Q 的坐标的其中一种情况的过程.9.如图,抛物线212y x bx c =-++的图象经过点C ,交x 轴于点()1,0A -、()4,0B (A 点在B 点左侧),顶点为D .(1)求抛物线的解析式;(2)点P 在直线BC 上方的抛物线上,过点P 作y 轴的平行线交BC 于点Q ,过点P 作x 轴的平行线交y 轴于点F ,过点Q 作x 轴的平行线交y 轴于点E ,求矩形PQEF 的周长最大值;(3)抛物线的对称轴上是否存在点M ,使45BMC ∠=︒?若存在,请直接写出点M 的纵坐标;若不存在,请说明理由.10.如图1,抛物线232y ax x c =++与x 轴交于点A 、(4,0)B (A 点在B 点左侧),与y 轴交于点(0,6)C ,点P 是抛物线上一个动点,连接,,PB PC BC(1)求抛物线的函数表达式;(2)如图2所示,当点P 在直线BC 上方运动时,连接AC ,求四边形ABPC 面积的最大值,并写出此时P 点坐标.(3)若点M 是x 轴上的一个动点,点N 是抛物线上一动点,P 的横坐标为3.试判断是否存在这样的点M ,使得以点,,,B M N P 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.11.如图,已知抛物线2y x bx c =-++与y 轴交于点C ,与x 轴交于(1,0)A -,(3,0)B 两点.(1)求抛物线的解析式. (2)连接AC ,在抛物线的对称轴上是否存在点P ,使得ACP △的周长最小?若存在,求出点P 的坐标和ACP △的周长的最小值,若不存在,请说明理由.(3)点M 为抛物线上一动点,点N 为x 轴上一动点,当以A ,C ,M ,N 为顶点的四边形为平行四边形时,直接写出点M 的横坐标.12.在平面直角坐标系中,抛物线24y x x c =--+与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,且点A 的坐标为()5,0-.(1)求点C 的坐标;(2)如图1,若点P 是第二象限内抛物线上一动点,求三角形ACP 面积的最大值;(3)如图2,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使以A ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,抛物线()10A -,,()30B ,和()01C -,三点.(1)求该抛物线的表达式与顶点坐标;(2)点Q 在y 轴上,点P 在抛物线上,要使Q 、P 、A 、B 为顶点的四边形是平行四边形,求所有满足条件点P 的坐标.14.如图,抛物线2()y a x h k =-+的顶点坐标是19,24⎛⎫ ⎪⎝⎭,与x 轴交于点A 、点()2,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线的对称轴上,点Q 在抛物线上,是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.15.综合与探究如图,抛物线2142y x x =+-与x 轴交于点A 和B ,点A 在点B 的左侧,与y 轴交于点C ,点P 在直线AC 下方的抛物线上运动.(1)求点B 的坐标和直线AC 的解析式;(2)如图1,过点P 作PD y ∥轴交直线AC 于点D ,过点P 作PE AC ⊥,垂足为E ,当PDE △的面积最大时,求点P 的坐标;(3)点M 在抛物线上运动,点N 在x 轴上运动,以点B ,C ,M 和N 为顶点的四边形是平行四边形,借助图2探究,请直接写出符合条件的点M 的坐标.参考答案: 1.(1)(1,0)F - 13(,)22M - (2)点P 的坐标为:1P (210322---,) 21555(,)22P ---- (3)存在,13(,)22E 或3(1,)2E --2.(1)223y x x =-++(2)2m =(3)存在,此时点F 的坐标为()4,1或()5,2--3.(1)55(2)存在 ()2,3P - ()4,5P -- ()2,5P -(3)754AM =4.(1)213222y x x =-++ (2)四边形ABDC 面积的最大值为9(3)①矩形①能,7,03E ⎛⎫ ⎪⎝⎭5.(1)2=23y x x --(2)存在(3)(72,0)-或(72,0)--或(1,0)6.(1)239344y x x =-- (2)365 92,2P ⎛⎫- ⎪⎝⎭ (3)13693,216M ⎛⎫ ⎪⎝⎭ 727,216M ⎛⎫-- ⎪⎝⎭ 333,216M ⎛⎫ ⎪⎝⎭7.(1)2=23y x x --(2)315(,)24P - (3)17(,)24N -或533(,)24N 或57(,)24N --8.(1)2142y x x =-- (2)11510PF PH +最大值为758,此时点P 的坐标为335,28⎛⎫- ⎪⎝⎭ (3)点Q 的坐标为()2,39或()2,29或()2,10-9.(1)213222y x x =-++ (2)9(3)3132+或3912--10.(1)233642y x x =-++ (2)2t =时,ABPC S 四边形有最大值,最大值为24,点P 的坐标为(2,6)(3)存在,点M 的坐标为(0,0)或()14,0-或(14,0)或(8,0)11.(1)223y x x =-++(2)(1,2)P 1032+(3)2或17+或17-12.(1)(0,5)(2)1258(3)存在,点M 的坐标为:()3,8-或()3,16-或(7,16)--13.(1)212133y x x =--,顶点坐标为413⎛⎫- ⎪⎝⎭, (2)()21-,或543⎛⎫ ⎪⎝⎭,或()47-,14.(1)22y x x =-++(2)存在,点Q 的坐标为:35,24Q ⎛⎫ ⎪⎝⎭或37,24⎛⎫-- ⎪⎝⎭或57,24⎛⎫- ⎪⎝⎭15.(1)点B 的坐标为()20,,直线AC 的解析式为4y x =-- (2)()24--,(3)()24--,或()1174--,或()1174-+,;。

2025年中考数学总复习专题16 特殊的平行四边形(附答案解析)

2025年中考数学总复习专题16 特殊的平行四边形(附答案解析)

2025年中考数学总复习专题16
特殊的平行四边形
一、矩形的性质与判定
1.矩形的性质:
1)四个角都是直角;2)对角线相等且互相平分;3)面积=长×宽=2S△ABD=4S△AOB
.(如图)
2.矩形的判定:
1)定义法:有一个角是直角的平行四边形;2)有三个角是直角;3)对角线相等的平行四边形.
二、菱形的性质与判定
1.菱形的性质:
1)四边相等;2)对角线互相垂直、平分,一条对角线平分一组对角;3)面积=底×高=对角线乘积的一半.2.菱形的判定:
1)定义法:有一组邻边相等的平行四边形;2)对角线互相垂直的平行四边形;3)四条边都相等的四边形.三、正方形的性质与判定
1.正方形的性质:
1)四条边都相等,四个角都是直角;2)对角线相等且互相垂直平分;3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:
1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;2)一组邻边相等的矩形;
3)一个角是直角的菱形;4)对角线相等且互相垂直、平分.
四、联系
第1页(共36页)。

2025年数学中考总复习第一部分整体知识梳理第五章四边形微专题“十字架”结构的解读

2025年数学中考总复习第一部分整体知识梳理第五章四边形微专题“十字架”结构的解读

AB上,求 的值.

图3
-15-
微专题“十字架”结构的解读
(3)如图2,过点D作EF⊥BC于点E,过点A作AF⊥EF于点F,连接AC,BD交于点O.
∵EF⊥BC,AF⊥EF,∠ABC=90°,
∴四边形ABEF为矩形.
∵AB=AD,BC=CD,


∴AC垂直平分DB,∴


∵AM⊥DN,∴
-5-
微专题“十字架”结构的解读
(2)当点E运动到AB的中点时,求CM的长.
(2)由(1)知△ABF≌△DAE,
∴BF=AE=BE=2.
解法1:如图1,过点F作FN⊥CM于点N.
由翻折可知FM=BF=2,∠AFB=∠AFM.
∵FM=FC,FN⊥CM,∴MN=NC,∠MFN=∠CFN,
图1
1
∴ (∠BFM+∠CFM)=∠AFM+∠MFN=∠AFN=90°,
(ⅱ)过点M作MN⊥AD,交AD的延长线于点N.
∵BF=DF,∴∠DBF=∠BDF.
∵∠DBF=∠AMD=∠ADB,
∴∠BDF=∠AMD=∠ADB.
∵∠DOG=∠MOD,
∴△ODG∽△OMD,
∴∠ODM=∠OGD=90°,
∴∠ADB+∠MDN=90°,∠BDF+∠FDM=90°,
∴∠FDM=∠MDN.
如图1,在矩形ABCD中,EF⊥GH,EF分别交AB,CD于点

E,F,GH分别交AD,BC于点G,H.求证:

图1
=

.

-12-
微专题“十字架”结构的解读
【答案】(1)如图1,过点D作DM∥GH交BC于点M,过点C作CN∥EF

2020年江西省赣州市赣州三中中考数学专题复习课件:无刻度直尺作图 (共45张PPT)

2020年江西省赣州市赣州三中中考数学专题复习课件:无刻度直尺作图 (共45张PPT)

数学(江西)
第2部分 专题突破
解:(1)如图11,直线l即为所求; (2)如图12,点M即为所求.
图11
图12
数学(江西)
第2部分 专题突破
3.如图,将矩形纸片ABCD沿对角线BD折叠,点 C落在点C′处,BC′与AD相交于点O,请你仅用无刻度 的直尺,用两种不同的方法分别在图1、图2中作出 ∠BOD的平分线OP.
数学(江西)
第2部分 专题突破
训练 10.请仅用无刻度的直尺按照下列要求作 图.
(1)在图1所示的正方形网格中作出以AB为对角线 的正方形;
(2)在图2所示的菱形网格中作出线段CD的三等分 点.
图1
图2
数学(江西)
第2部分 专题突破
解:(1)如图27,正方形AEBF即为所求; (2)如图28,点M,N即为所求.
第2部分 专题突破
解:(1)如图9,CQ即为所求; (2)如图10,AF即为所求.
图9
图10
数学(江西)
第2部分 专题突破
2.已知矩形
ABCD,请仅用无刻
度的直尺按下列要
求作图.(不写作法)
(1) 如 图 1 , 点 P
为 CD 的 中 点 , 画 出
AB的垂直平分线l;
图1
图2
(2)如图2,在矩形ABCD中,以对角线AC为一边构 造一个正方形ACFE,画出EF的中点M.
图30
数学(江西)
第2部分 专题突破
12.如图,图1、图2均是4×4的正方形网格,每 个小正方形的顶点称为格点,四边形ABCD的顶点均在 格点上,仅用无刻度直尺,分别按下列要求画图,保 留作图痕迹.
数学(江西)
第2部分 专题突破
(1)在图1中的线段CD上找到一点E,连接AE,使

中考数学总复习专题三解答题重难点题型突破题型二几何图形探究题类型与三角形、四边形有关的探究题课件

中考数学总复习专题三解答题重难点题型突破题型二几何图形探究题类型与三角形、四边形有关的探究题课件

(2)如图②,过点 F 作 FG⊥AB 于 G,连接 FE.∵AF=BE,AF∥BE,∴ 四边形 ABEF 是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵32 3= 8×FG,∴FG=4 3,在 Rt△FAG 中,AF=8,∴∠FAG=60°,当点 G 在 线段 AB 上时,∠FAB=60°,当点 G 在线段 BA 延长线时,∠FAB=120°,
解:(1)原命题不成立,新结论为:∠APB=90°, AF+BE=2AB(或 AF=BE=AB),证明:∵AM∥BN, ∴∠MAB+∠NBA=180°,∵AE,BF 分别平分∠MAB,∠NBA,
∴∠EAB=12∠MAB,∠FBA=12∠NBA,
∴∠EAB+∠FBA=12(∠MAB+∠NBA)=90°, ∴∠APB=90°,∵AE 平分∠MAB,∴∠MAE=∠BAE, ∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA, ∴AB=BE,同理:AF=AB,∴AF+BE=2AB(或 AF=BE=AB);
辽宁专用
专题三 解答题重难点题型突破
题型二 几何图形探究题 类型1 与三角形、四边形有关的探究题
【例1】 (2016·抚顺)如图,在△ABC中,BC >AC,点E在BC上,CE=CA, 点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.
(1)如图①,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F. ①求证:FA=DE; ②请猜想三条线段DE、AD、CH之间的数量关系,直接写出结论; (2)如图②,当∠ACB=120°时,三条线段DE、AD、CH之间存在怎样的数量关 系?请证明你的结论.
(3)成立.∵四边形 ABCD 是正方形,∴BC=CD,∠FBC=∠ECD=90 °,

2018年中考数学呼伦贝尔兴安盟专版专题突破课件—专题二 三角形与四边形的综合证明与计算

2018年中考数学呼伦贝尔兴安盟专版专题突破课件—专题二 三角形与四边形的综合证明与计算

图 Z2-1
专题二

三角形与四边形的综合证明与计算

解:(1)证明:由折叠知∠EFA=∠DFA,EG=GD. ∵EG∥DC,∴∠DFA=∠EGF, ∴∠EFA=∠EGF, ∴EF=EG,∴EF=EG=FD=GD. ∴四边形 EFDG 是菱形. 1 (2)EG2= AF· GF. 2 理由如下:连接 ED 交 AF 于点 H, ∵四边形 EFDG 是菱形, 1 1 ∴DE⊥AF,FH=GH= GF,EH=DH= DE. 2 2 ∵∠EFH=∠AFE,∠EHF=∠AEF=90°, ∴△FE[2016· 襄阳]如图 Z2-1,将矩形 ABCD 沿 AF 折叠,使
点 D 落在 BC 边的点 E 处,过点 E 作 EG∥CD 交 AF 于点 G,连 接 DG. (1)求证:四边形 EFDG 是菱形; (2)探究线段 EG,GF,AF 之间的数量关系,并说明理由; (3)若 AG=6,EG=2 5,求 BE 的长.
专题二
三角形与四边形的综合证明与计算
3.如图 Z2-4,在矩形 ABCD 中,E、F 分别是 AB、CD 上的点, AE=CF,连接 EF、BF,EF 与对角线 AC 交于点 O,且 BE=BF,∠BEF =2∠BAC. (1)求证:OE=OF; (2)若 BC=2 3,求 AB 的长.
图 Z2-4
专题二
三角形与四边形的综合证明与计算
例题分层分析
(1)由折叠可知四边形中相等的线段有: ________,相等的角 有:________,由 EG∥CD,也可得哪些角相等,从而可转化为 边相等,最终可得四边相等的四边形是菱形. (2)连接 ED 交 AF 于点 H, 可利用 Rt△AEF 与 Rt△EFH 相似 可得这三边的关系. (3)由(2)可求出 GF 的长度,进一步可得到 AF 的长度,在 Rt △ADF 中利用勾股定理可得 AD 的长度,再利用 Rt△ADF∽Rt△ DCE 得对应边成比例求出 EC,从而求 BE 的长度.

云南省中考数学复习难题突破专题七:图形变换综合探究题

难题突破专题七图形变换综合探究题图形的轴对称、平移、旋转是近年中考的新题型、热点题型,它主要考查学生的观察与实验能力,探索与实践能力,因此在解题时应注意以下方面:1.熟练掌握图形的轴对称、图形的平移、图形的旋转的基本性质和基本方法.2.结合具体问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法.3.注重图形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等.类型1 平移变换问题1 两个三角板ABC,DEF按如图Z7-1所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点、线都在同一平面内),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC =DE=6 cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________cm;图Z7-1(2)求y关于x的函数表达式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N,直接写出在三角板平移过程中,点M与点N之间距离的最小值.例题分层分析(1)当点C落在EF边上时记为C′,此时A点的对应点记为A′,根据锐角三角函数,可得A′E=________ cm,所以x=AA′=AE-A′E=______cm.(2)分类讨论:①当0≤x≤6时,根据三角形的面积公式可得答案;②当6<x≤12时,根据面积的和差可得答案;③当12<x≤15时,根据面积的和差可得答案.(3)根据点与直线上所有点的连线中垂线段最短,可得当NM⊥BD时,MN最小.根据线段的和差即可求得答案.类型2 折叠问题2 [2019·衢州] 如图Z7-2①,将矩形ABCD沿DE折叠使顶点A落在点A′处,然后将矩形展平,沿EF折叠使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图②.(1)求证EG=CH;(2)已知AF=2,求AD和AB的长.图Z7-2例题分层分析(1)由折叠的性质及矩形的性质可知________=________=________,__________=________,再根据四边形ABCD是矩形,可得____________=________,等量代换即可证明EG=CH;(2)由折叠的性质可知∠ADE=________°,∠FGE=∠A=90°,AF=2,那么DG=________,利用勾股定理求出DF=________,于是可得AD=AF+DF=________;再利用AAS证明△AEF≌△BCE,得到____________,于是AB=AE+BE=________.解题方法点析折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决折叠问题要注意折叠前后对应点的位置;掌握辅助线的作法;折痕两边折叠部分是全等的;折叠的某点与所落位置之间线段被折痕垂直平分.类型3 旋转变换问题3 [2019·成都] 如图Z7-3①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.图Z7-3(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连结AE.(ⅰ)如图②,当点F落在AC上时(F不与C重合),若BC=4,tanC=3,求AE的长;(ⅱ)如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连结GH,试探究线段GH与EF之间满足的等量关系,并说明理由.例题分层分析(1)先判断出AH=BH,再证明△BHD≌△AHC即可;(2)(ⅰ)在Rt△AHC中,tanC=________=3.由AH=BH及BC=4可求得AH=________,CH=________,过点H作HP⊥AE于P,然后根据△EHA∽△FHC,得到HP=________AP,AE=________AP,最后用勾股定理求解即可;(ⅱ)设AH与CG交于点Q.先判断出△AGQ∽△CHQ,得到________,然后判断出△AQC∽△GQH,最后用相似比求解即可.专题训练1.[2019·菏泽] 如图Z7-4,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=25°,则∠BAA′的度数是( )A.55° B.60° C.65° D.70°图Z7-4 图Z7-52.[2019·舟山] 如图Z7-5,在平面直角坐标系xOy中,已知点A(2,0),B(1,1).若平移点A 到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是( )A.向左平移1个单位,在向下平移1个单位B.向左平移(2-1)个单位,再向上平移1个单位C.向右平移(2-1)个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位3.[2019·聊城] 如图Z7-6,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )A.115° B.120° C.130° D.140°图Z7-6 图Z7-74.[2019·温州] 如图Z7-7,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处,将纸片展平做第二次折叠,使点B落在C处,再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是( ) A.c>a>b B.b>a>c C.c>b>a D.b>c>a5.[2019·贵港] 如图Z7-8,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连结PM.若BC=2,∠BAC=30°,则线段PM的最大值是( )图Z7-8A.4 B.3 C.2 D.16.如图Z7-9,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕的两端点分别在AB,BC上(含端点),且AB=6,BC=10.设AE=x,则x的取值范围是________.图Z7-97.[2019·武汉] 如图Z7-10,在△ABC中,AB=AC=23,∠BAC=120°,点D,E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.图Z7-108.如图Z7-11,是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角板ABC,使其直角顶点C恰好落在三角板A1B1C1的斜边A1B1上.当∠A=30°,AC=10时,两直角顶点C,C1的距离是________.图Z7-11 图Z7-129.[2019·德阳] 如图Z7-12,将△ABC沿BC翻折得到△DBC,再将△DBC绕点C逆时针旋转60°得到△FEC,延长BD交EF于H,已知∠ABC=30°,∠BAC=90°,AC=1,则四边形CDHF的面积为________.10.[2019·舟山] 一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12 cm(如图Z7-13①),点G为边BC(EF)的中点,边FD与AB相交于点H,现将三角板DEF绕点G按顺时针方向旋转(如图Z7-13②),在∠CGF从0°到60°的变化过程中,观察点H的位置变化,点H相应移动的路径长共为________.(结果保留根号)图Z7-1311.[2019·自贡] 如图Z7-14①,在平面直角坐标系中,O为坐标原点,点A(-1,0),点B(0,3).(1)求∠BAO的度数.(2)如图①,将△AOB绕点O顺时针旋转得△A′OB′,当点A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2,S1与S2有何关系?为什么?(3)若将△AOB绕点O顺时针旋转到如图Z7-14②所示的位置,S1与S2的关系发生变化了吗?证明你的判断.图Z7-1412.[2019·赤峰] △OPA和△OQB分别是以OP,OQ为直角边的等腰直角三角形,点C,D,E分别是OA,OB,AB的中点.(1)当∠AOB=90°时,如图Z7-15①,连结PE,QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时,如图Z7-15②,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC,QD交于点G,使△ABG为等边三角形,如图Z7-15③,求∠A OB的度数.图Z7-15参考答案类型1 平移变换问题 例1 【例题分层分析】 (1)3 15解:(1)在Rt △ABC 中,∠ABC =30°, 则∠BAC=60°,AB =2AC =12cm ,BC =6 3cm.如图①,当点C 在EF 上时,∠C ′A ′E =60°,则A′E=12A′C′=3 cm ,所以AA′=AE -A′E=15 cm.故x =15 cm.(2)如图②,当0≤x≤6时,BD =x ,DG =12x ,则BG =32x ,所以y =12DG·BG=38x 2.如图③,当6<x≤12时,BD =x ,BE =x -6, 则DG =12x ,BG =32x ,EH =33(x -6),所以y =12DG·BG-12EH·BE=38x 2-36(x -6)2=-324x 2+2 3x -6 3.如图④,当12<x≤15时,BE =x -6, 则EH =33(x -6), 则y =12AC·BC-12EH·BE=18 3-36(x -6)2=-36x 2+2 3x +12 3.(3)当NM⊥BD 时,MN 最小.如图⑤,由题意可知DN =FN =12DF =6cm ,DP =12DN =3cm ,则PN =3 3cm.BM =CM =12BC =3 3cm ,则PM =32 3cm ,所以MN =PN -PM =323cm.故点M ,N 之间距离的最小值为32 3 cm.类型2 折叠问题 例2 【例题分层分析】 (1)AE AD EG BC CH AD BC (2)452 22+2 AF =BE 2 2+2解:(1)证明:由折叠知AE =AD =EG ,BC =CH , ∵四边形ABCD 是矩形, ∴AD =BC ,∴EG =CH.(2)∵∠ADE=45°,∠FGE =∠A=90°,AF =2, ∴DG =FG =2,DF =2, ∴AD =AF +DF =2+2.由折叠知∠AEF=∠GEF,∠BEC =∠HEC, ∴∠GEF +∠HEC=90°,∠AEF +∠BEC=90°. ∵∠AEF +∠AFE=90°, ∴∠BEC =∠AFE.在△AEF 与△BCE 中,⎩⎪⎨⎪⎧∠AFE=∠BEC,∠A =∠B=90°,AE =BC ,∴△AEF ≌△BCE ,∴AF =BE ,∴AB =AE +BE =2+2+2=2 2+2. 类型3 旋转变换问题 例3 【例题分层分析】(2)(ⅰ)AH CH 3 1 3 2 (ⅱ)AQ CQ =GQHQ解:(1)证明:在Rt △AHB 中,∠ABH =45°, ∴AH =BH.在△BHD 和△AHC 中,⎩⎪⎨⎪⎧BH =AH ,∠BHD =∠AHC=90°,DH =CH ,∴△BHD ≌△AHC ,∴BD =AC. (2)(ⅰ)如图,在Rt △AHC 中, ∵tanC =3,∴AHCH=3. 设CH =x ,则BH =AH =3x , ∵BC =4,∴3x +x =4, ∴x =1, ∴AH =3,CH =1.由旋转知,∠EHF =∠BHD=∠AHC=90°,EH =AH =3,CH =DH =FH =1, ∴∠EHA =∠FHC,EH AH =FHHC=1, ∴△EHA ∽△FHC ,∴∠EAH =∠C, ∴tan ∠EAH =tanC =3. 过点H 作HP⊥AE 于点P ,则HP =3AP ,AE =2AP , 在Rt △AHP 中,AP 2+HP 2=AH 2, ∴AP 2+(3AP)2=9,∴AP =3 1010,∴AE =3 105.(ⅱ)EFHG =2.理由:设AH 与GC 交于点Q ,由旋转的性质可得△AEH 和△FHC 都为等腰三角形,且∠AHE=∠CHF=120°,∴∠GAH =∠HCG=30°. 又∵∠AQG=∠CQH, ∴△AGQ ∽△CHQ , ∴AQ CQ =GQ HQ ,∴AQ GQ =CQ HQ, ∵∠AQC =∠GQH,∴△AQC ∽△GQH , ∴EF HG =AC GH =AQ GQ =1sin30°=2. 专题训练1.C [解析] 根据旋转的性质可得AC =A′C,因为△ACA′是等腰直角三角形,所以∠CA′A=45°,所以∠CAB=∠CA′B′=45°-25°=20°,所以∠BAA′=20°+45°=65°.2.D [解析] 根据点A(2,0),B(1,1)可得OA =2,OB =2,将点A 向右平移1个单位,再向上平移1个单位,可得AC =2,BC =2,利用“四边相等的四边形为菱形”,可得当点A 向右平移1个单位,再向上平移1个单位时,以点O ,A ,C ,B 为顶点的四边形是菱形.3.A [解析] ∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,∴∠BFE =∠EFB′,∠B ′=∠B=90°, ∵∠2=40°,∴∠CFB ′=50°, ∴∠1+∠EFB′-∠CFB′=180°,即∠1+∠1-50°=180°,解得∠1=115°, 故选A.4.D [解析] 第一次折叠如图①,折痕为DE , 由折叠得AE =EC =12AC =12×4=2,DE ⊥AC,∵∠ACB =90°,∴DE ∥BC , ∴a =DE =12BC =12×3=32.第二次折叠如图②,折痕为MN ,由折叠得BN =NC =12BC =12×3=32,MN ⊥BC ,∵∠ACB =90°,∴MN ∥AC , ∴b =MN =12AC =12×4=2.第三次折叠如图③,折痕为GH , 由勾股定理得AB =32+42=5,由折叠得AG =BG =12AB =12×5=52,GH ⊥AB ,∴∠AGH =90°.∵∠A =∠A,∠AGH =∠ACB,∴△ACB∽△AGH, ∴AC AG =BC GH ,∴452=3GH ,∴GH =158,即c =158. ∵2>158>32,∴b >c >a ,故选D.5.B 6.2≤x≤6 7.3 3-3 8.5 9.33[解析] 考虑用割补法计算四边形CDHF 的面积,即S 四边形CDHF =S △CFE -S △DEH . ∵AC =1,∠ABC =30°,∴BC =2,AB = 3.由翻折,得CD =AC =1,∠BDC =∠BAC=90°,∠DBC =∠CBA=30°. 由旋转,得∠E=∠DBC=30°,CE =BC =2, ∴DE =CE -CD =1,DH =13,∴S △DHE =12×1×13=36.又S △CFE =S △CAB =32,则S四边形CDHF=S △CFE -S △DEH=33. 10.(12 3-18)cm11.解:(1)∵A(-1,0),B(0,3), ∴AO =1,BO =3, ∴tan ∠BAO =BO AO =31=3,∴∠BAO =60°.(2)S 1=S 2.理由:根据旋转的性质可得AO =A ′O ,∠OA ′B ′=60°. ∵∠BAO =60°,∴△AOA ′是等边三角形, ∴∠AOA ′=60°,∴∠AOA ′=∠OA′B′, ∴A ′B ′∥x 轴,∴A ′B ′⊥y 轴. 如图,设A′B′与y 轴交于点C.在Rt △A ′CO 中,A ′O =1,∠A ′OC =90°-60°=30°, ∴A ′C =12,CO =32.∴S 1=12AO·CO=12×1×32=34,S 2=12BO·A ′C =12×3×12=34,∴S 1=S 2.(3)关系没有变化.理由:如图,过点B′作B′D⊥x 轴于D , 过点B 作BE⊥OA′于点E ,∴∠ODB ′=∠OEB=90°. ∵∠AOA ′=∠BOB′, ∴∠BOE =∠B′OD.又∵OB=OB′,∴△OBE ≌△OB ′D ,∴BE =B′D. 又∵OA=OA′,∴S 1=S 2. 12.解:(1)EP =EQ.连结OE.∵∠AOB =90°,E 是AB 的中点,∴OE =AE.又∵OP=AP ,∴PE 垂直平分OA ,∵C 为OA 的中点,∴点C 在PE 上. ∵∠OPA =90°,∴∠OPE =12∠OPA=45°.同理可证∠OQE=45°.∴EP =EQ.(2)成立.∵△OPA 为等腰直角三角形,点C 是OA 的中点, ∴OC =PC ,∠PCA =90°.∵点C ,D ,E 分别是OA ,OB ,AB 的中点, ∴CE ∥OD ,OC ∥DE ,∴四边形ODEC 是平行四边形, ∠ACE =∠AOD=∠EDB. ∴OC =DE ,∴PC =DE.同理可证CE =DQ ,∠BDQ =90°. ∴∠PCE =∠EDQ. ∴△PCE ≌△EDQ. ∴EP =EQ. (3)连结OG.∵△OPA 为等腰直角三角形,点C 是OA 的中点, ∴OC =PC ,∠PCA =90°. ∴PC 垂直平分OA. ∵点G 在PC 上,∴AG =OG. 同理可证点G 在QD 上,∴BG =OG. ∴∠GAO =∠GOA,∠GOB =∠GBO. ∵△ABG 为等边三角形, ∴∠AGB =60°.∵四边形AOBG 的内角和为360°,∠AOB =∠GOA+∠GOB, ∴∠AOB =12×(360°-60°)=150°.2019-2020学年数学中考模拟试卷一、选择题1.下列四个数中,最大的数是( ) A .﹣2B .﹣1C .0D .|﹣3|2.如图,矩形ABCD 中,AB =4,AD =6,E 为AD 中点,分别以B 、E 为圆心,以AB 、AE 为半径画弧,两弧交于点F ,连接AF 、BE ,则AF 的长为( )A.125B.135C.245D.53.如图,从A 点出发的光线,经C 点反射后垂直地射到B 点,然后按原路返回A 点.若∠AOC =33°,OC =1,则光线所走的总路线约为( )A .3.8B .2.4C .1.9D .1.24.如果a 2+3a ﹣2=0,那么代数式() 的值为( )A.1B.C.D.5.如图所示的运算程序中,若开始输入的x 值为18,我们发现第一次输出的结果为9,第二次输出的结果为12,……,则第10次输出的结果为( )A .0B .3C .5D .66.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m ,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为( )A .22.4mB .23.2mC .24.8mD .27.2m7.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .8.分式方程22111x x x -=--,解的情况是( ) A .x =1B .x =2C .x =﹣1D .无解9.如图,有一块边长为的正方形厚纸板ABCD ,做成如图①所示的一套七巧板(点O 为正方形纸板对角线的交点,点E 、F 分别为AD 、CD 的中点,CE ∥BI ,IH ∥CD ),将图①所示七巧板拼成如图②所示的“鱼形”,则“鱼尾”MN 的长为( )A.2C.310.如图,点A 在x 轴上,点B ,C 在反比例函数y =(k >0,x >0)的图象上.有一个动点P 从点A 出发,沿A→B→C→O 的路线(图中“→”所示路线)匀速运动,过点P 作PM ⊥x 轴,垂足为M ,设△POM 的面积为S ,点P 的运动时间为t ,则S 关于t 的函数图象大致为( )A .B .C .D .11.下列运算正确的是( ) A .2m×3m=6m B .(m 3)2=m 6C .(﹣2m )3=﹣2m 3D .m 2+m 2=m 412.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有( )种. A .3 B .4 C .5 D .6二、填空题13.若x 2-4x+1=0,则221x x +=______. 14.若关于x 的一元二次方程()2k 1x 4x 10-++=有两个不相等的实数根,则k 的取值范围是______. 15.如图,直线a ∥b ,∠A=38°,∠1=46°,则∠ACB 的度数是______.16.如图,∠APB=30°,圆心在PB 上的⊙O 的半径为1cm ,OP=3cm ,若⊙O 沿BP 方向平移,当⊙O 与PA 相切时,圆心O 平移的距离为_____cm .17.在半径为2 cm 的⊙O 中,用刻度尺(单位:cm )测得弦AB 的长如图所示,则劣弧AB 的长为____cm .18.将数201900000用科学记数法表示为_____. 三、解答题19.解不等式组:{30240x x-≤+>20.如图1,△ACB为等腰直角三角形,△EDF为非等腰直角三角形,∠ACB=∠EDF=90°,且AB=EF.(1)如图2,将两个直角三角形按如图2将斜边重叠摆放.当AB=EF=6,①DA=______;②求DC的长.(2)若将题中两个直角三角形的斜边重叠摆放,那么线段CD、AD、BD之间存在怎样的数量关系?请直接写出答案.21.化简:(1)a(a﹣b)﹣(a+b)(a+2b);(2)2233222 a aaa a a-⎛⎫÷--⎪++⎝⎭22.中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)m=,n=;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?23.231125123x x x x +≥+⎧⎪+⎨-<-⎪⎩24.如图,已知△ABC .按如下步骤作图:①以A 为圆心,AB 长为半径画弧;②以C 为圆心,CB 长为半径画弧,两弧相交于点D ;③连结BD ,与AC 交于点E ,连结AD ,CD(1)求证:△ABC ≌△ADC ;(2)若∠BAC =30°,∠BCA =45°,BC =2; ①求∠BAD 所对的弧BD 的长;②直接写出AC 的长. 25.先化简,再求值22142x x x ---,其中x =2019.【参考答案】*** 一、选择题二、填空题 13.1414.k <5且k≠1. 15.96°. 16.1或5 17.23π 18.019×108 三、解答题 19.-2<x≤3. 【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解不等式x-3≤0,得:x≤3, 解不等式2x+4>0,得:x >-2, 则不等式组的解集为-2<x≤3. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 20.(1) ①CD, 【解析】 【分析】(1)直接用勾股定理即可求出DA ,在AD 上截取AE=BD ,连接CE ,可证△ACE ≌△BCD (SAS ),从而判断出∠ECD=90°,在Rt △CDE 中,由勾股定理可得出DE 的值,即可求解. (2)由(1)题②中的过程可直接求得. 【详解】解:(1)①在Rt △ABD 中,∠ADB=90°,由勾股定理,得==②在AD 上截取AE=BD ,连接CE ,如图∵∠ACB=∠ADB=90° ∴∠CAE+∠CFA=∠DBA+∠DFB ∵∠CFA=∠DFB ∴∠CAE=∠DBC 在△ACE 和△BCD 中AC BC CAE CBD AE BD =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BCD (SAS ) ∴∠ACE=∠BCD ,CE=CD ∵∠ACE+∠ECB=90°∴∠ECD=∠ECB+∠BCD=∠ACE+∠ECB=90° 在Rt △CDE 中,由勾股定理,得==∴CD DE 22==(AD-AE )555⎛⎫-= ⎪⎝⎭.(2)CD ,理由:在AD 上截取AE=BD ,如图,连接CE ,由(1)题②中可知CD ,∴CD ,即CD . 【点睛】此题主要考查等腰直角三角形,在运用勾股定理的过程中,关键在于利用辅助线构建直角三角形. 21.(1)﹣4ab ﹣2b 2;(2)237a a --. 【解析】 【分析】(1)根据整式乘法的运算法则即可得出答案; (2)根据分式混合运算法则即可化简原式. 【详解】解:(1)原式22222a ab a ab ab b -+++-=()22222a ab a ab ab b --=--- 242ab b =--;(2)原式2(3)7(2)2a a a a a a ---=÷++2(3)2(2)7a a a a a a --+=+-237aa -=-. 【点睛】本题主要考查了整式的化简与分式化简,熟知掌握整式化简的方法与分式化简的法则是解题关键. 22.(1)70,0.2(2)70(3)750 【解析】 【分析】(1)根据题意和统计表中的数据可以求得m 、n 的值;(2)根据(1)中求得的m 的值,从而可以将条形统计图补充完整;(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人. 【详解】解:(1)由题意可得,m =200×0.35=70,n =40÷200=0.2, 故答案为:70,0.2; (2)由(1)知,m =70,补全的频数分布直方图,如下图所示; (3)由题意可得,该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人), 答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 23.原不等式组无解. 【解析】 【分析】分别解两个不等式后,利用“同大取大,同小取小,大小小大中间找,大大小小找不到”确定不等式组的解集即可. 【详解】231125123x x x x +≥+⎧⎪⎨+-<-⎪⎩①② 解不等式①得,x≥8; 解不等式②得,x<45; 所以,原不等式组无解. 【点睛】本题考查的是解一元一次不等式组,掌握解一元一次不等式组一般步骤及方法是关键. 24.(1)见解析;(2)①BD;②AC =【解析】 【分析】(1)由“SSS”可证△ABC≌△ADC;(2)①由题意可得AC垂直平分BD,可得BE=DE,AC⊥BD,由直角三角形的性质可得,,由等腰三角形的性质可得∠BAD=2∠BAC=60°,由弧长公式可求弧BD的长;②由AC=AE+CE可求解.【详解】证明:(1)由题意可得AB=AD,BC=CD,又∵AC=AC∴△ABC≌△ADC(SSS);(2)①∵AB=AD,BC=CD∴AC垂直平分BD∴BE=DE,AC⊥BD∵∠BCA=45°,BC=2;∴BE=CE,且∠BAC=30°,AC⊥BD∴AB=2BE=,AE∵AB=AD,AC⊥BD∴∠BAD=2∠BAC=60°∴BD==②∵AC=AE+CE∴AC+【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,弧长公式,灵活运用这些性质解决问题是本题的关键.25.12x+,12021【解析】【分析】根据分式的运算法则即可求出答案.【详解】解:原式=22 (2)(2)(2)(2)x xx x x x+-+-+-=2 (2)(2)xx x-+-=12 x,当x=2019时,∴原式=1 2021;【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.2019-2020学年数学中考模拟试卷一、选择题1.在数学课上,甲、乙、丙、丁四位同学共同研究二次函数y =x 2﹣2x+c (c 是常数).甲发现:该函数的图象与x 轴的一个交点是(﹣2,0);乙发现:该函数的图象与y 轴的交点在(0,﹣4)上方;丙发现:无论x 取任何值所得到的y 值总能满足c ﹣y≤1;丁发现:当﹣1<x <0时,该函数的图象在x 轴的下方,当3<x <4时,该函数的图象在x 轴的上方.通过老师的最后评判得知这四位同学中只有一位同学发现的结论是错误的,则该同学是( ) A .甲B .乙C .丙D .丁2.把二次函数y =(2x ﹣1)2+3的图象,先向左平移1个单位,再向上平移1个单位,平移后的二次函数解析式为( ) A .y =2x 2+4B .y =4x 2+4x+5C .y =4x 2﹣4x+5D .y =4x 2+4x+43.若正比例函数y =(a ﹣4)x ) A.a ﹣3 B.3﹣aC.(a ﹣3)2D.(3﹣a )24.如图,将矩形绕点顺时针旋转到知形的位置,旋转角为.若,则的大小是( )A.32°B.20°C.22°D.28°5.下列运算正确的是( ) A .2m 2+m 2=3m 4 B .(mn 2)2=mn 4 C .2m•4m 2=8m 2D .m 5÷m 3=m 26.如图,在中,,分别是上两点,,点分别是的中点,则的长为( )A.10B.8C.D.207.若关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x +y >2,则a 的取值范围为( )A .a <−2B .a >−2C .a <2D .a >28.如图,P 的半径为5,A B 、是圆上任意两点,且6AB =,以AB 为边作正方形ABCD (点、D P 在直线AB 两侧).若AB 边绕点P 旋转一周,则CD 边扫过的面积为( )A .5πB .6πC .8πD .9π9.下列运算中正确的是( ) A .235()a a = B .()()2212121x x x +-=-C .824a a a =D .22(3)69a a a -=-+10.如图,AB 是⊙O 的直径,△ACD 内接于⊙O ,延长AB ,CD 相交于点E,若∠CAD =35°,∠CDA =40°,则∠E 的度数是( )A.20°B.25°C.30°D.35°11.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,若∠DHO =20°,则∠ADC 的度数是( )A.120°B.130°C.140°D.150°12.如图,在矩形ABCD 中,6AB =,4BC =,动点E 从点A 出发,沿A B C →→的路线运动,当点E 到达点C 时停止运动,过点E 作FE AE ⊥,交CD 于点F ,设点E 运动的路程为x ,FC y =.则y 关于x 的图象大致为( )A .B .C .D.二、填空题13.如果反比例函数y=kx(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式_____(只需写一个).14.二次函数y= +bx+c的图象如图所示,其对称轴与x轴交于点(-1,0),图象上有三个点分别为(2,),(-3,),(0,),则、、的大小关系是________(用“>”“<”或“=”连接).15.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则20192018A B的长是_____.16.如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件________使其成为菱形(只填一个即可).17.如图,点P为定角∠AOB的平分线上的一个定点,点M,N分别在射线OA,OB上(都不与点O重合),且∠MPN与∠AOB互补.若∠MPN绕着点P转动,那么以下四个结论:①P M=PN恒成立;②MN的长不变;③OM+ON的值不变;④四边形PMON的面积不变.其中正确的为_____.(填番号)18.53的倒数是________. 三、解答题19.计算下列各式: (1)11112323x y x y ⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭;(2)2222113322x y y x ⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭.20.先化简,再求值:211211a a a a ⎛⎫÷- ⎪+++⎝⎭,其中1a =.21.小松想利用所学数学知识测量学校旗杆高度,如图,旗杆AB 的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C 处且与地面成60°角,小松拿起绳子末端,后退至E 处,并拉直绳子,此时绳子末端D 距离地面2m 且绳子与水平方向成45°角.求旗杆AB 的高度.22.如图,在小正方形的边长均为1的方格纸中点A 、B 、C 均在格点上; (1)在图1中画出凸四边形ABCD,使四边形ABCD 是轴对称图形,点D 在格点上;(2)在图2中画出凸四边形ABCE,点E 在格点上,∠AEC=90°,EC>EA,直接写出四边形ABCE 的周长_____.23.为提升城市品味、改善居民生活环境,我省某市拟对某条河沿线十余个地块进行片区改造,其中道路改造是难度较大的工程如图是某段河道坡路的横截面,从点A 到点B ,从点B 到点C 是两段不同坡度的坡路,CM 是一段水平路段,CM 与水平地面AN 的距离为12米.已知山坡路AB 的路面长10米,坡角BAN =15°,山坡路BC 与水平面的夹角为30°,为了降低坡度,方便通行,决定降低坡路BC 的坡度,得到新的山坡AD ,降低后BD 与CM 相交于点D ,点D ,A ,B 在同一条直线上,即∠DAN =15°.为确定施工点D 的位置,求整个山坡路AD 的长和CD 的长度(sin15°≈0.26,cos15°≈0.97,tan 15°≈0.27,sin30°=0.50,cos30°≈0.87,tan30°≈0.58结果精确到0.1米)24|12sin 60︒-25.精准扶贫”是巩固温饱成果,加快脱贫致富步伐,实现中华民族伟大复兴“中国梦”的重要保障某驻村帮扶小组因地制宜,积极筹集资金帮助所驻村建起了一个民族工艺品加工厂.现在,工厂计划加工100件A 、B 两种工艺品,现有生产这两种工艺品所需的甲种材料445米,乙种材料510米,毎生产1件A 工艺品和1件B 工艺品所需甲、乙两种材料及生产成本、利润如表设生产A 种工艺品x 件,1000件A 、B 两种工艺品销售完的总利润为y 元,根据上述信息,解答下列问题 (1)求y 与x 的函数解析式(也称关系式),并直接写出x 的取值范围(2)若要使加工成本不超过53400元,则有几种加工方案?那种方案的利润最大?最大利润是多少?【参考答案】*** 一、选择题二、填空题 13.y=1x(答案不唯一). 14.<<.15.201923π16.AC ⊥BC 或∠AOB=90°或AB=BC (填一个即可). 17.①③④ 18.35. 三、解答题 19.(1)221149x y -;(2)44194x y -.【解析】 【分析】(1)根据平方差公式计算即可. (2)根据平方差公式计算即可. 【详解】(1)原式222211112349x y x y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭(2)原式=()2222222244111133392224x y x y x y x y ⎛⎫⎛⎫⎛⎫-+--=--=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭【点睛】本题考查平方差公式,解答关键是熟记平方差的形式及找准公式中的“a”“b”.20.11a +,2. 【解析】 【分析】原始第一项先化简括号里面的,再利用除法法则变形,约分后利用同分母分式得到最简结果,将a 的值代入即可 【详解】 解:21(1)211a a a a ÷-+++ =211(1)1a a a a +-÷++=21(1)a a a a ++ =1+1a ,当a=2.【点睛】此题考察分式的化简求值,关键在于约分21.6 【解析】 【分析】过点D 作DF ⊥AB 于点F ,设BC =x ,由题意可知AD =AC =2x ,AF =DF x ,然后根据tan30°=BCAB列出方程解出x 的值即可求出答案. 【详解】解:过点D 作DF ⊥AB 于点F , 设BC =x , ∵∠ACB =60°,∴∠CAB=30°,∴AC=2x,∵AD=AC=2x,∠ADF=45°,∴由勾股定理可知:AF=DF x,∵DE=BF=2,AB2∴=+,∵tan30°=BC AB,3=,解得:x==∴AB26+=.【点睛】本题考查解直角三角形,解题的关键是熟练运用特殊角三角函数的值,本题属于中等题型.22.(1)如图所示,见解析;(2)如图所示,周长为6+【解析】【分析】(1)根据轴对称的性质画出图形即可;(2)画出四边形 ABCDE,再求出其周长即可.【详解】(1)如图所示,(2)如图所示,四边形ABCE的周长为6+【点睛】此题考查作图-轴对称变换,掌握作图法则是解题关键23.修整后山坡路AD的长约为46.2米,CD的长约为18.8米.【解析】【分析】过B作BE⊥AN于E,过D作DF⊥AN于F,过C作CG⊥AN于G,过B作BH⊥CG于H,根据矩形的性质得到BE=GH,EG=BH,CD=GF,CG=DF,求得CH=DF-GH,解直角三角形即可得到结论.【详解】过B作BE⊥AN于E,过D作DF⊥AN于F,过C作CG⊥AN于G,过B作BH⊥CG于H,则四边形CGFD和四边形BEGH是矩形,∴BE=GH,EG=BH,CD=GF,CG=DF,∴CH=DF﹣GH,由题意得,DF=12,AB=10,在Rt△ABE中,BE=AB•sin15°=10×0.26=2.6,在Rt△ADF中,DF=AB•sin15°,AD=12÷0.26=46.2,∴CH=DF﹣BE=9.4,在Rt△CBH中,CH=BC•sin30°,BC=CH÷0.5=18.8,∵CD∥AN,∴∠CDB=∠BAN=15°,∵∠CBH=30°,∴∠DBC=15°,∴∠CDB=∠CBD,∴CD=CB=18.8(米),答:修整后山坡路AD的长约为46.2米,CD的长约为18.8米.【点睛】本题考查了作图-应用与设计作图,解直角三角形的应用,正确的作出辅助线是解题的关键.24.5【解析】【分析】根据二次根式的乘法法则、绝对值的意义和特殊角的三角函数值计算.【详解】12-⨯2=+61=5.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.25.(1)y=5x+20000(550≤x≤700);(2)在足条件的11种方案中,当A种工艺品加工560,B种工艺品加工440个时,可获得最大利润22800元.【解析】【分析】(1)由题意即可列出y与x的关系式,化简可得y=5x+20000。

2021年九年级中考数学复习知识点易错部分突破训练:四边形(附答案)

2021年中考数学复习知识点易错部分突破训练:四边形(附答案)1.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°2.选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.任意四边形B.正方形C.正六边形D.正十边形3.如图,Rt△ABC中,∠BAC=90°,AC=6,∠ACB=30°,点P为BC上任意一点,连接P A,以P A、PC为邻边作平行四边形P AQC,连接PQ,与AC交于点O,则PQ的最小值为()A.1B.2C.3D.44.点A,B,C,D在同一平面内,从四个条件中(1)AB=CD,(2)AB∥CD,(3)BC=AD,(4)BC∥AD中任选两个,使四边形ABCD是平行四边形,这样的选法有()A.3种B.4种C.5种D.6种5.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB:②GC平分∠BGD;③S四边形BCDG=CG2;④∠BGE的大小为定值.其中正确的结论个数为()A.1B.2C.3D.46.如图,在▱ABCD中,对角线AC⊥AB,O为AC的中点,经过点O的直线交AD于E交BC于F,连结AF、CE,现在添加一个适当的条件,使四边形AFCE是菱形,下列条件:①OE=OA;②EF⊥AC;③E为AD中点,正确的个数有()A.0B.1C.2D.37.下列说法中,错误的是()A.如果一个四边形绕对角线的交点旋转90°后,所得的图形能与原图形重合,那么这个四边形是正方形B.在一个平行四边形中,如果有一条对角线平分一个内角,那么该平行四边形是菱形C.在一个四边形中,如果有一条对角线平分一组内角,则该四边形是菱形D.两张等宽的纸条交叠在一起,重叠的部分是菱形8.下列结论中,菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对边相等且平行9.下列说法错误的是()A.16的平方根为±4B.⼀组对边平行,⼀组对⻆相等的四边形是平行四边形C.⼀限不循环小数是无理数D.对⻆线相等的四边形是矩形10.如图,在正方形ABCD中,AB=4,E是BC上的一点且CE=3,连接DE,动点M从点A以每秒2个单位长度的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点M的运动时间为t秒,当△ABM和△DCE全等时,t的值是()A.3.5B.5.5C.6.5D.3.5或6.511.下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.每一条对角线都平分一组对角的四边形是菱形D.对角线互相垂直且相等的四边形是正方形12.下列说法正确的是()A.对角线互相垂直的平行四边形是正方形B.一组对边平行另一组对边相等的四边形是平行四边形C.一组对边平行且一组对角相等的四边形是平行四边形D.对角线互相垂直的四边形是菱形13.在一个n边形内加1个点(点不在边上),可以把这个n边形分成个三角形?加2个点,最多可以把这个n边形分成个三角形?如果加m个点,最多可以把这个n边形分成个三角形?14.若一个多边形的内角和为900°,则其对角线的总条数为条.15.如下图,有A、B、C三种型号的卡片,其中A型卡片1张,B型卡片4张,C型卡片5张,现在要从这10张卡片中拿掉一张卡片,余下的全部用上,能拼出(或镶嵌)一个矩形(或正方形),如果图中的小正方格边长均为1cm,则拼出的矩形(或正方形)的面积为cm2.16.如图,平行四边形ABCD的顶点A是等边△EFG边FG的中点,∠B=60°,EF=4,则四边形ALEH部分的面积为.17.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出个平行四边形.18.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是.19.在菱形ABCD中,∠BAD=120°,AB=2,点E在直线BC上,CE=1,连接AE,则线段AE的长为.20.如图,在矩形ABCD中,AB=2,AD=3,E为BC边上一动点,作EF⊥AE,且EF=AE.连接DF,AF.当DF⊥EF时,△ADF的面积为.21.如图,直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点D是AB上的一个动点,过点D作DE⊥AC于E点,DF⊥BC于F点,连接EF,则线段EF长的最小值为.22.在边长为4的正方形ABCD中,点E在AB边上,点N在AD边上,点M为BC中点,连接DE、MN、CN,若DE=MN,tan∠ADE=,则CN的长为.23.如图1.已知大圆的直径为16米,小圆的直径比大四的直径少(注:π取3)(1)求小圆的周长;(2)德强学校的操场上有一个五彩的奥运五环图案,是由5个与图1完全相同的圆环构成,若每两个环形相交的部分是曲边四边形,每个曲边四边形面积都是平方米,求这个五环图形的面积.(3)在(2)的条件下,为了迎接11月1日在我校举行的全国“70节好课致敬新中国70年”观摩课活动,学校决定重新粉剧操场上的奥运五环,学校雇佣2个师傅和4个徒弟来完成这项任务(每名师傅每小时粉刷的面积相同,每个徒弟每小时粉剧的面积相同),已知1个师傅1小时粉刷的面积是师徒6人1小时粉刷面积的.工作2小时后,4个徒弟比两个师傅多粉刷24平方米,这时两个师傅因有其它任务离开,剩下的工作由4个徒弟完成,工作完成,学校每小时支付师傅工资270元,每小时支付徒弟工资150元,学校共支付工资多少元.24.如图,在四边形ABCD中,∠ABC、∠ADC的平分线分别交CD、AB于点E、F,且∠1与∠2互余,∠A与∠C有怎样的数量关系?为什么?25.如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,判断四边形ABFC的形状,并说明理由.26.如图,已知△ABD、△ACE、△BCF都是等边三角形,点E、C、F不在同一直线上.你能说明四边形CFDE是平行四边形吗?27.如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)证明:四边形AECF是平行四边形.28.如图,菱形ABCD的边长是10厘米,对角线AC,BD相交于点O,且AC=12厘米,点P,N分别在BD,AC上,点P从点D出发,以每秒2厘米的速度向终点B运动,点N从点C出发,以每秒1厘米的速度向点A运动,点P移动到点B后,点P,N停止运动.(1)当运动多少秒时,△PON的面积是8平方厘米;(2)如果△PON的面积为y,请你写出y关于时间t的函数表达式.29.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD 于点E,交CB于点F.(1)若∠B=30°,AC=6,求CE的长;(2)过点F作AB的垂线,垂足为G,连接EG,试判断四边形CEGF的形状,并说明原因.30.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.31.如图,在▱ABCD中,各内角的平分线相交于点E,F,G,H.(1)求证:四边形EFGH是矩形;(2)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.32.如图,四边形ABCD是正方形,点E,H分别在BC,AB上,点G在BA的延长线上,且CE=AG,DE⊥CH于F.(1)求证:四边形GHCD为平行四边形.(2)在不添加任何辅助线的情况下,请直接写出图中所有与∠ECF互余的角.参考答案1.解:如图,∵∠D+∠C=210°,∠DAB+∠ABC+∠C+∠D=360°,∴∠DAB+∠ABC=150°.又∵∠DAB的角平分线与∠ABC的外角平分线相交于点P,∴∠P AB+∠ABP=∠DAB+∠ABC+(180°﹣∠ABC)=90°+(∠DAB+∠ABC)=165°,∴∠P=180°﹣(∠P AB+∠ABP)=15°.故选:B.2.解:A、任意四边形的内角和为360°,在同一顶点处放4个,能密铺;B、正方形的每个内角是90°,能整除360°,能密铺;C、正六边形每个内角是120°,能整除360°,能密铺;D、正十边形每个内角是144°,不能整除360°,不能密铺;故选:D.3.解:∵∠BAC=90°,AC=6,∠ACB=30°,∴AB=2,BC=4,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴=,∴=,∴OP′=,∴则PQ的最小值为2OP′=3.故选:C.4.解:任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有(1)(2);(3)(4);(1)(3);(2)(4)共四种.故选:B.5.解:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°又∵AE=DF,AD=BD,∴△AED≌△DFB(SAS),故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,故本选项正确;③过点C作CM⊥GB于M,CN⊥GD于N(如图),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGNS四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=CG2,故本选项正确;④∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①②③④,故选:D.6.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEO=∠CFO,∵O为AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,∴四边形AFCE是平行四边形;①∵OE=OA,∴AC=EF,∴四边形AFCE是矩形;故错误;②∵EF⊥AC,∴四边形AFCE是菱形;故正确;③∵AC⊥AB,AB∥CD,∴AC⊥CD,∵E为AD中点,∴AE=CE=AD,∴四边形AFCE是菱形;故正确.故选:C.7.解:A.如果一个四边形绕对角线的交点旋转90°后,所得的图形能与原图形重合,那么这个四边形是正方形,本选项正确;B.在一个平行四边形中,如果有一条对角线平分一个内角,那么该平行四边形是菱形,本选项正确;C.在一个四边形中,如果有一条对角线平分一组内角,则该四边形不一定是菱形,本选项错误;D.两张等宽的纸条交叠在一起,重叠的部分是菱形,本选项正确;故选:C.8.解:A.因为矩形的对角线相等,所以A选项不符合题意;B.因为矩形和菱形的对角线都互相平分,所以B选项不符合题意;C.因为菱形对角线互相垂直,所以C选项符合题意;D.因为矩形和菱形的对边都相等且平行,不符合题意.9.解:A、由于(±4)2=16,所以16的平方根为±4.故本选项说法正确.B、一组对边平行,一组对角相等的四边形可证出另一组对边也平行,所以该四边形是平行四边形.故本选项说法正确.C、无理数是⼀限不循环小数,故本选项说法正确.D、对⻆线相等的四边形不一定是矩形,例如等腰梯形,故本选项说法错误.故选:D.10.解:如图,当点M在BC上时,∵△ABM′和△DCE全等,∴BM=CE,由题意得:BM′=2t﹣4=3,所以t=3.5(秒);当点M在AD上时,∵△ABM″和△CDE全等,∴AM″=CE,由题意得:AM″=16﹣2t=3,解得t=6.5(秒).所以,当t的值为3.5秒或6.5秒时.△ABM和△DCE全等.11.解:A、一组对边平行,另一组对边相等的四边形可能是等腰梯形,故本选项不符合题意;B、对角线相等的平行四边形是矩形,故本选项不符合题意;C、∵在△ADB和△CDB中,∴△ADB≌△CDB(ASA),∴AD=CD,AB=CB,同理△ACD≌△ACB,∴AB=AD,BC=DC,即AB=BC=CD=AD,∴四边形ABCD是菱形,故本选项符合题意;D、对角线相等且垂直的平行四边形是正方形,故本选项不符合题意;故选:C.12.解:A、对角线互相垂直且相等的平行四边形是正方形,所以A选项错误.B、当一组对边平行,另一组对边相等时,该四边形可能为等腰梯形,故B选项错误.C、由一组对边平行,一组对角相等可得另一组对边平行,所以是平行四边形,故C选项正确.D、对角线互相垂直的平行四边形是菱形,所以D选项错误;故选:C.13.解;一个n边形内加1个点(点不在边上),可以把这个n边形分成n个三角形;加2个点,最多可以把这个n边形分成2n个三角形;如果加m个点,最多可以把这个n边形分成mn个三角形.故答案为:n,2n,mn.14.解:设这个多边形的边数为n,则(n﹣2)×180°=900°,解得,n=7,∴七边形的对角线的总条数为:×7×4=14,故答案为:14.15.解:易得这10张卡片的面积为1+2×4+4×5=29,若为长方形,那么面积应为28,应去掉一块A型的;若为正方形,面积应为25,去掉一块C型的即可,所以拼出的矩形(或正方形)的面积为25或28cm2.16.解:如图,过A作AM⊥EF于E,AN⊥EG于N,连接AE.∵△ABC是等边三角形,AF=AG,∴∠AEF=∠AEN,∵AM⊥EF,AN⊥EG,∴AM=AN,∵∠MEN=60°,∠EMA=∠ENA=90°,∴∠MAN=120°,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠DAB=180°﹣∠B=120°,∴∠MAN=∠DAB,∴∠MAH=∠NAL,∴△AMH≌△ANL(ASA),∴S阴=S四边形AMEN,∵EF=4,AF=2,∴AE=2,AM=,EM=3,∴S四边形AMEN=2××3×=3,∴S阴=S四边形AMEN=3.故答案为:.17.解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.18.解:如图1,过P作PH⊥OY交于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt△HEP中,∠EPH=30°,∴EH=EP=a,∴a+2b=2(a+b)=2(EH+EO)=2OH,当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2;当P在点B时,如图2,OC=1,AC=BC=,Rt△CHP中,∠HCP=30°,∴PH=,CH=,则OH的最大值是:OC+CH=1+=,即(a+2b)的最大值是5,∴2≤a+2b≤5.19.解:当点E在菱形边BC上时,如图1,∵四边形ABCD是菱形,∴AB=BC=2,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=BC=2,∠AEC=90°,∠EAC=30°,∵CE=1,AC=2,∴AE=;当点E在BC延长线上时,如图2,过点A作AF⊥BC于点F,∵CE=1,在Rt△AEF中,AF=,EF=CE+CF=2,根据勾股定理,得AE==.则AE的长为:或.20.解:如图,过D作DH⊥AE于H,过E作EM⊥AD于M,连接DE,∵EF⊥AE,DF⊥EF,∴∠DHE=∠HEF=∠DFE=90°,∴四边形DHEF是矩形,∴DH=EF=AE,∵四边形ABCD是矩形,∴∠B=∠BAD=90°,∵∠AME=90°,∴四边形ABEM是矩形,∴EM=AB=2,设AE=x,则S△ADE=,∴3×2=x2,∴x=±,∵x>0,∴x=,即AE=,由勾股定理得:BE==,过F作PQ∥CD,交AD的延长线于P,交BC的延长线于Q,∴∠Q=∠ECD=∠B=90°,∠P=∠ADC=90°,∵∠BAE+∠AEB=∠AEF=∠AEB+∠FEQ=90°,∴∠FEQ=∠BAE,∵AE=EF,∠B=∠Q=90°,∴△ABE≌△EQF(AAS),∴FQ=BE=,∴PF=2﹣,∴S△ADF===3﹣.21.解:如图,连接CD.∵∠ACB=90°,AC=3,BC=4,∴AB==5,∵DE⊥AC,DF⊥BC,∠ACB=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短,可得当CD⊥AB时,CD最短,即线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×4×3=×5•CD,解得CD=2.4,∴线段EF长的最小值为2.4.故答案为:2.422.解:根据题意可分两种情况画图:①如图1,取AD的中点G,连接MG,∴AG=DG=AD=2,∵点M为正方形ABCD的边BC中点,∴MG⊥AD,MG=AB=AD,∴∠MGN=∠A=90°,在Rt△ADE和Rt△GMN中,,∴Rt△ADE≌Rt△GMN(HL),∴∠GMN=∠ADE,∴tan∠GMN=tan∠ADE=,∴=,∵GM=AB=4,∴GN=1,∴DN=DG+GN=2+1=3,在Rt△CDN中,根据勾股定理,得CN===5;②如图2,取AD的中点G,同理可得Rt△ADE≌Rt△GMN(HL),∴∠GMN=∠ADE,∴tan∠GMN=tan∠ADE=,∴=,∵GM=AB=4,∴GN=1,∴DN=DG﹣GN=2﹣1=1,在Rt△CDN中,根据勾股定理,得CN===.综上所述:CN的长为5或.故答案为:5或.23.解:(1)由题意得:小圆的直径为:(1﹣)×16=14(米),则小圆的周长为:π×14=3×14=42(米),答:小圆的周长是42米;(2)[5×﹣5×]﹣8×,=5×3×15﹣9,=216(米2),答:这个五环图形的面积是216米2;(3)设1个徒弟每小时刷墙x米2,则1个师傅每小时刷墙(2x﹣6)米2,由题意得:2x﹣6=,解得:x=12,2x﹣6=2×12﹣6=18,即设1个徒弟每小时刷墙12米2,则1个师傅每小时刷墙18米2,=1,即设4个徒弟干了3个小时,2个师傅干了2个小时,3×150×4+2×270×2=2880(元),答:学校共支付工资2880元.24.解:∠A+∠C=180°,理由如下:∵∠1与∠2互余,∴∠1+∠2=90°,∵BE、DF分别平分∠ABC、∠ADC,∴∠ABC=2∠2,∠ADC=2∠1,∴∠ABC+∠ADC=2(∠1+∠2)=2×90°=180°,∵∠A+∠ABC+∠C+∠ADC=360°,∴∠A+∠C=180°.25.解:四边形ABFC是矩形,理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E为BC的中点,∴EB=EC,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF.∵AB∥CF,∴四边形ABFC是平行四边形,∵AD=BC,AD=AF,∴BC=AF,∴四边形ABFC是矩形.26.证明:∵△ABD、△ACE都是等边三角形,∴AD=AB,AE=AC,∠BAD=∠CAE=60°,∴∠BAC=∠DAE,∴△BAC≌△DAE(SAS),∴DE=BC,又∵等边三角形BCF中,CF=BC,∴DE=CF,同理可得,DF=EC,∴四边形DECF是平行四边形.27.解:(1)∵四边形ABCD是平行四边形,∴AO=OC,AB∥CD.∴∠E=∠F.∵在△AOE与△COF中,,∴△AOE≌△COF(AAS);(2)如图,连接EC、AF,由(1)可知△AOE≌△COF,∴OE=OF,∵AO=CO,∴四边形AECF是平行四边形.28.解:(1)∵菱形ABCD的边长是10厘米,AC=12厘米,∴OC=6厘米,OD=8厘米,设运动t秒时,△PON的面积是8平方厘米,根据题意,得DP=2t,CN=t,∴OP=8﹣2t,ON=6﹣t,∴S△PON=OP•ON,∴(8﹣2t)(6﹣t)=8,解方程得,t1=2,t2=8,均符合题意,答:当运动2秒或8秒时,△PON的面积是8平方厘米;(2)根据题意,得①当0<t≤4时,y=(8﹣2t)(6﹣t);②当4<t<6时,y=(2t﹣8)(6﹣t);③当6<t≤8时,y=(2t﹣8)(t﹣6).29.解:(1)∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,∵AF平分∠CAB,∴∠CAF=∠BAF=30°,∴CE=AE,过点E用EH垂直于AC于点H,∴CH=AH∵AC=6,∴CE=2答:CE的长为2;(2)∵FG⊥AB,FC⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=GF,在Rt△ACF与Rt△AGF中,AF=AF,CF=GF,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∴四边形CEGF是菱形30.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,DO=BO,∴∠EDO=∠FBO,又∵EF⊥BD,∴∠EOD=∠FOB=90°,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA);(2)解:∵由(1)可得,ED∥BF,ED=BF,∴四边形BFDE是平行四边形,∵EF⊥BD,∴四边形BFDE是菱形,根据AB=6,AD=8,设AE=x,可得BE=ED=8﹣x,在Rt△ABE中,根据勾股定理可得:BE2=AB2+AE2,即(8﹣x)2=x2+62,解得:,∴,∴四边形BFDE的周长=.31.解:(1)∵GA平分∠BAD,GB平分∠ABC,∴∠GAB=∠BAD,∠GBA=∠ABC,∵▱ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA=(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得,∠DEC=90°,∠AHD=90°=∠EHG,∴四边形EFGH是矩形;(2)依题意得,∠BAG=∠BAD=30°,∵AB=6,∴BG=AB=3,AG=3=CE,∵BC=4,∠BCF=∠BCD=30°,∴BF=BC=2,CF=2,∴EF=3﹣2=,GF=3﹣2=1,∴矩形EFGH的面积=EF×GF=.32.解:(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠GAD=∠DCE=90°,在△GAD和△ECD中,,∴△GAD≌△ECD(SAS),∴DE=DG,∠GDA=∠EDC,∴∠GDA+∠ADF=∠EDC+∠ADF,即∠GDF=∠ADC=90°,∵DE⊥CH,∴∠DFH=∠CFD=90°,∴DG∥CH,∵∠HCB+∠HCD=∠EDC+∠DCF=90°,∴∠HCB=∠EDC,在△HBC和△ECD中,,∴△HBC≌△ECD(ASA)∴CH=DE,∴DG=CH,∵DG∥CH,∴四边形GHCD为平行四边形;(2)∵△HBC≌△ECD,∴∠BHC=∠CED,∵∠ECF+∠FEC=90°,∴∠FEC,∠BHC与∠ECF互余;∵AD∥BC,∴∠ADE=∠DEC,∴∠ADE与∠ECF互余;∵∠DGA=∠CHB,∴∠DGA与∠ECF互余;∵∠DCF+∠ECF=90°,∴∠DCF与∠ECF互余;∴与∠ECF互余的角有:∠FEC、∠DCF、∠BHC、∠DGA、∠ADE.。

2016年中考数学选择压轴题专题练习及解析

2016年中考数学《选择压轴题》专题练习1. (2015年广东3分)如图,已知正ΔABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设ΔEFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【 】A. B.C. D.2. (2015年广东深圳3分)如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①ADG FDG ∆∆≌;②2GB AG =;③GDE BEF ∆∆∽;④725BEF S ∆=.在以上4个结论中,正确的有【 】 A. 1 B. 2 C.3D. 43. (2015年广东汕尾4分)对于二次函数2 2y x x =-+有下列四个结论:①它的对称轴是直线1x =;②设22111222 2 2y x x y x x =-+=-+,,则当21>x x 时,有21>y y ;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<<2x 时,>0y .其中正确结论的个数为【 】 A. 1 B.2 C. 3 D. 44. (2015年广东广州3分)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为【 】A. 10B. 14C. 10或14D. 8或10 5. (2015年广东佛山3分)下列给出5个命题:①对角线互相垂直且相等的四边形是正方形;②六边形的内角和等于720°; ③相等的圆心角所对的弧相等; ④顺次连结菱形各边中点所得的四边形是矩形;⑤三角形的内心到三角形三个顶点的距离相等.其中正确命题的个数是【 】A. 2个B. 3个C. 4个D. 5个 6. (2015年广东梅州3分)对于二次函数2 2y x x =-+有下列四个结论:①它的对称轴是直线1x =;②设22111222 2 2y x x y x x =-+=-+,,则当21>x x 时,有21>y y ;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<<2x 时,>0y .其中正确结论的个数为【 】 A. 1 B.2 C. 3 D. 47. (2015年浙江衢州)如图,已知等腰,ABC AB BC ∆= ,以AB 为直径的圆交AC 于点D ,过点D 的O e 的切线交BC 于点E ,若5,4CD CE == ,则O e 的半径是【 】 A. 3 B. 4 C.256 D. 2588. (2015年浙江绍兴4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走【 】 A. ②号棒 B. ⑦号棒 C. ⑧号棒 D. ⑩号棒 9. (2015年浙江台州4分)(2015年浙江义乌3分)某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人” ;乙说:“两项都参加的人数小于5人” .对于甲、乙两人的说法,有下列四个命题,其中真命题的是【 】A.若甲对,则乙对B.若乙对,则甲对C.若乙错,则甲错D.若甲粗,则乙对10. (2015年浙江温州4分)如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG ,DE ,FG ,»»AC BC,的中点分别是M ,N ,P ,Q. 若MP+NQ=14,AC+BC=18,则AB 的长是【 】 A.29 B.790C. 13D. 16 11. (2015年浙江舟山3分)(2015年浙江嘉兴4分) 如图,抛物线221y x x m =-+++交x 轴于点A (a ,0)和B (b , 0),交y 轴于点C ,抛物线的顶点为D .下列四个命题:①当>0x 时,>0y ;②若1a =-,则4b =;③抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG周长的最小值为. 其中真命题的序号是【 】A. ①B. ②C. ③D. ④ 12.(2015年浙江杭州3分)设二次函数11212())0(()y a x x x x a x x =--≠≠,的图象与一次函数()20y dx e d =+≠的图象交于点1(0)x ,,若函数21y y y =+的图象与x 轴仅有一个交点,则【 】A. 12()a x x d -=;B. 21()a x x d -=; C. 212()a x x d -=;D. ()212a x x d +=(第11题) (第13题) (第14题) 13.(2015年浙江湖州3分)如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A 是函数1y x=(x <0)图象上一点,AO 的延长线交函数2k y x=(x >0,k 是不等于0的常数)的图象于点C ,点A 关于y 轴的对称点为A ′,点C 关于x 轴的对称点为C ′,连接CC ′,交x 轴于点B ,连结AB ,AA ′,A ′C ′,若ΔABC 的面积等于6,则由线段AC ,CC ′,C ′A ′,A ′A 所围成的图形的面积等于【 】【来A.8B.10C.D.14.(2015年浙江金华3分)如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EFGH的值是【 】【 A.26B. 2C. 3D. 215.(2015年浙江丽水3分)如图,在方格纸中,线段a ,b ,c ,d 的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有【 】A. 3种B. 6种C. 8种D. 12种(第15题) (第16题)16.(2015年浙江宁波4分) 如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为【 】A. ①②B. ②③C. ①③D. ①②③ 17. (2015年安徽4分)如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是【 】A.B .C .D .18. (2015年北京3分)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成. 为记录寻宝者的进行路线,在BC 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为【 】A 、A→O→B B 、B→A→CB 、C 、B→O→CD 、C→B→O19. (2015年上海4分)如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是【 】A 、AD BD =B 、OD CD =C 、CAD CBD ∠=∠ D 、OCA OCB ∠=∠ 20. (2015年重庆A4分)如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A ,B 两点,则菱形ABCD 的面积为【 】A. 2 B. 4C.D.(第19题) (第20题) (第21题)21. (2015年重庆B4分)如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m,,反比例函数ky x=的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是【 】A.B. -C.D. -22. (2015年江苏苏州3分)如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为【 】A .4km B.(2+km C. D.(4km(第22题) (第23题)23. (2015年江苏无锡3分)如图,Rt △ABC 中,∠ACB =90º,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为【 】A.35 B. 45 C. 23D. 24. (2015年福建福州3分)已知一个函数图像经过()()1422-- ,,,两点,在自变量x 的某个取值范围内,都有函数值y 随x 的增大而减小,则符合上述条件的函数可能是【 】A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数25. (2015年福建泉州3分)在同一平面直角坐标系中,函数2y ax bx =+与y bx a =+的图象可能是【 】A.B.C.D.26. (2015年福建厦门4分)如图,在ΔABC 中,AB =AC ,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是【 】A .线段AE 的中垂线与线段AC 的中垂线的交点B .线段AB 的中垂线与线段AC 的中垂线的交点 C .线段AE 的中垂线与线段BC 的中垂线的交点D .线段AB 的中垂线与线段BC 的中垂线的交点(第26题) (第28题)27. (2015年内蒙古呼和浩特3分)函数22x xy x+=的图象为【 】A.B.C.D.28. (2015年江苏徐州3分)若函数y kx b =-的图像如图所示,则关于x 的不等式()3>0kx b --的解集为【 】A. <2xB. >2xC. <5xD. >5x 29.(2015年福建漳州4分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是【 】A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 30. (2015年湖南株洲3分)有两个一元二次方程:M :20ax bx c ++=N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是【 】A 、如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B 、如果方程M 有两根符号相同,那么方程N 的两根符号也相同;C 、如果5是方程M 的一个根,那么15是方程N 的一个根; D 、如果方程M 和方程N 有一个相同的根,那么这个根必是1x =.31. (2015年江西南昌3分)如图,在ΔABC 中,AB =BC =4,AO =BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当ΔP AB 为直角三角形时,AP 的长为 ▲ .(第31题) (第32题)32. (2015年江西3分)已知抛物线()20y ax bx c a ++>=过()()2023- ,,,两点,那么抛物线的对称轴【 】A. 只能是x =-1B. 可能是y 轴C. 在y 轴右侧且在直线x =2的左侧D. 在y 轴左侧 33. (2015年四川成都3分)如图,正六边形ABCDEF 内接于圆O ,半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为【 】A.2、3πB. 32、π C. 3、23π D. 32、43π34. (2015年四川宜宾3分)在平面直角坐标系中,任意两点()()1122,,,A x y B x y 规定运算:①()1212,⊕=++A B x x y y ;②1212=⊗+A B x x y y ;③当x 1= x 2且y 1= y 2时,A =B.有下列四个命题: (1)若A (1,2),B (2,–1),则(),31⊕= A B ,0=⊗A B ;(2)若⊕=⊕A B B C ,则A =C ; (3)若=⊗⊗A B B C ,则A =C ; (4)对任意点A 、B 、C ,均有()()⊕⊕=⊕⊕A B C A B C 成立.其中正确命题的个数为【 】A. 1个B. 2个C. 3个D. 4个 35. (2015年四川资阳3分)如图,在ΔABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB =②当点E 与点B 重合时,12MH =;③AF BE EF +=;④MG•MH =12,其中正确结论为【 】A. ①②③B. ①③④C. ①②④D. ①②③④ 36. (2015年四川泸州3分)在平面直角坐标系中,点A ,B ,动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为【 】A.2B.3C.4D.537. (2015年广东茂名3分)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时加工这种零件x 个,则下面列出的方程正确的是【 】A. 1201005x x =- B. 1201005x x =-C.1201005x x=+ D. 1201005x x =+(第35题) (第38题)38. (2015年广东珠海3分)如图,在⊙O 中,直径CD 垂直于弦AB ,若∠C=25°,则∠BOD 的度数是( ) A. 25° B. 30° C. 40° D. 50°39. (2015年贵州铜仁4分)如图,在平面直角坐标系系中,直线12y k x =+与x 轴交于点A ,与y 轴交于点C ,与反比例函数2k y x=在第一象限内的图象交于点B ,连接BO .若113OBCS tan BOC =∠=V ,,则k 2的值是【 】A. 3-B. 1C. 2D. 340. (2015年河南3分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是【 】A. (2014,0)B. (2015,-1)C. (2015,1)D. (2016,0)41. (2015年湖北黄冈3分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D. 42. (2015年湖北黄石3分)如图是自行车骑行训练场地的一部分,半圆O 的直径AB =100,在半圆弧上有一运动员C 从B 点沿半圆周匀速运动到M (最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A 点停止.设运动时间为t ,点B 到直线OC 的距离为d ,则下列图象能大致刻画d 与t 之间的关系是【 】A.B.C.D.43. (2015年江苏连云港3分)如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位;天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是【 】A. 第24天的销售量为200件;B. 第10天销售一件产品的利润是15元;C. 第12天与第30天这两天的日销售利润相等;D. 第30天的日销售利润是750元44. (2015年江苏南京2分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为【 】 A.133 B. 92C.D.(第44题) (第45题)45. (2015年江苏泰州3分)如图,ΔABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交 AC 、AD 、AB 于点E 、O 、F ,则图中全等的三角形的对数是【 】 A. 1对 B. 2对 C. 3对 D. 4对 46. (2015年陕西3分)下列关于二次函数()2211y ax ax a =-+>的图象与x 轴交点的判断,正确的是【 】A. 没有交点B. 只有一个交点,且它位于y 轴右侧C. 有两个交点,且它们均位于y 轴左侧D. 有两个交点,且它们均位于y 轴右侧 47. (梅州市2015年3分)对于二次函数x x y 22+-=.有下列四个结论:①它的对称轴是直线1=x;②设12112x x y +-=,22222x x y +-=,则当12x x >时,有12y y >;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当20<<x 时,0>y .其中正确的结论的个数为( )A .1B .2C .3D .4 48. (3分)(2015•济南)如图,抛物线y=﹣2x 2+8x ﹣6与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作C 1,将C 1向右平移得C 2,C 2与x 轴交于点B ,D .若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣49.(2015•菏泽3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CB D.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)50.(2015年四川省自贡市3分)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的小值是()A、2102-B、6 C、2132-D、4参考答案1.【答案】D.【考点】由实际问题列函数关系式(几何问题);二次函数的性质和图象.【分析】根据题意,有AE=BF=CG,且正三角形ABC的边长为2,∴2===-BE CF AG x. ∴△AEG、△BEF、△CFG三个三角形全等.在△AEG 中,2==-,A E x A G x ,∴()1224=⋅⋅⋅=-V AEGS AE AG sinA x x .∴()2332442=-=-=-+V V ABC AEGy S S x x x x .∴其图象为开口向上的二次函数.故选D. 2. 【答案】C.【考点】折叠问题;正方形的性质;全等、相似三角形的判定和性质;勾股定理.【分析】由折叠和正方形的性质可知,0,90D F D C D A D F C C ==∠=∠=, ∴090DFG A ∠=∠=.又∵DG DG =,∴()ADG FDG HL ∆∆≌. 故结论①正确.∵正方形ABCD的边长为12,BE =EC ,∴6BE EC EF ===.设AG FG x ==,则6,12E G x B G x =+=-,在Rt BEG ∆中,由勾股定理,得222EG BE BG =+,即()()222662x x +=+-,解得,4x =.∴4,8AG GF BG === .∴2GB AG =. 故结论②正确.∵6BE EF ==,∴BEF ∆是等腰三角形.易知GDE ∆不是等腰三角形,∴GDE ∆和BEF ∆不相似. 故结论③错误. ∵11682422BEG S BE BG ∆=⋅⋅=⋅⋅=,∴67224105BEFBEG EF S S EG ∆∆=⋅=⋅=.故结论④正确. 综上所述,4个结论中,正确的有①②④三个.故选C. 3. 【答案】C.【考点】二次函数的图象和性质.【分析】∵()22211y x x x =-+=--+,∴二次函数图象的对称轴是直线1x =.故结论①正确.∴当1x ≥时,y 随x 的增大而减小,此时,当21>x x 时,有21<y y .故结论②错误.∵2 20y x x =-+=的解为120,2x x == ,∴二次函数x 轴的两个交点是(0,0)和(2,0) .故结论③正确.∵二次函数图象与x 轴的两个交点是(0,0)和(2,0),且有最大值1,∴当0<<2x 时,>0y .故结论④正确. 综上所述,正确结论有①③④三个.故选C. 4. 【答案】B.【考点】一元二次方程的解和解一元二次方程;确定三角形的条件.【分析】∵2是关于x 的方程2230x mx m -+=的一个根,∴4430m m -+=,解得4m =. ∴方程为28120x x -+=,解得122,6x x == .∵这个方程的两个根恰好是等腰三角形ABC 的两条边长, ∴根据三角形三边关系,只能是6,6,2.∴三角形ABC 的周长为14.故选B.5.【答案】A.【考点】命题和定理;正方形的判定;多边形内角和定理;圆周角定理;三角形中位线定理;菱形的性质;矩形的判定;三角形的内心性质.【分析】根据相关知识对各选项进行分析,判作出断: ①对角线互相垂直且相等的平行四边形才是正方形,命题不正确.②根据多边形内角和公式,得六边形的内角和等于()62180720-⨯︒=︒,命题正确.③同圆或等圆满中,相等的圆心角所对的弧才相等,命题不正确.④根据三角形中位线定理、菱形的性质和矩形的判定可知:顺次连结菱形各边中点所得的四边形是矩形,命题正确. ⑤三角形的内心到三角形三边的距离相等,命题不正确.其中正确命题的个数是2个.故选A.6. 【答案】C.【考点】二次函数的图象和性质.【分析】∵()22211y x x x =-+=--+,∴二次函数图象的对称轴是直线1x =.故结论①正确. ∴当1x ≥时,y 随x 的增大而减小,此时,当21>x x 时,有21<y y .故结论②错误.∵220y x x =-+=的解为120,2x x == ,∴二次函数图象与x 轴的两个交点是(0,0)和(2,0) .故结论③正确.∵二次函数图象与x 轴的两个交点是(0,0)和(2,0),且有最大值1,∴当0<<2x 时,>0y .故结论④正确.综上所述,正确结论有①③④三个.故选C. 7. 【答案】D .【考点】等腰三角形的性质;切线的性质;平行的判定和性质;矩形的判定和性质;勾股定理;方程思想的应用. 【分析】如答图,连接OD ,过点B 作BF OD ⊥于点F , ∵AB BC =,∴A C ∠=∠.∵AO DO =,∴A ADO ∠=∠.∴C ADO ∠=∠.∴//OD BC .∵DE 是O e 的切线,∴DE OD ⊥.∴DE BC ⊥. ∴90CED ∠=︒,且四边形DEBF 是矩形. ∵5,4CD CE == ,∴由勾股定理,得3DE =. 设O e 的半径是x , 则(),3,244OB x BF OF x BE x x x ===-=--=- .∴由勾股定理,得222OB OF BF =+,即()22234x x =+-,解得258x =.∴O e 的半径是258.故选D . 8. 【答案】D.【考点】探索规律题(图形变化类).【分析】当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,故选D.9. 【答案】B.【考点】逻辑判断推理题型问题;真假命题的判定. 【分析】针对逻辑判断问题逐一分析作出判断:A.若甲对,即只参加一项的人数大于14人,等价于等于15或16或17或18或19人,则两项都参加的人数为5或4或3或2或1人,故乙不对;B.若乙对,即两项都参加的人数小于5人,等价于等于4或3或2或1人,则只参加一项的人数为等于16或17或18或19人,故甲对;C.若乙错,即两项都参加的人数大于或等于5人,则只参加一项的人数小于或等于15人,故甲可能对可能错;D.若甲粗,即只参加一项的人数\小于或等于14人,则两项都参加的人数大于或等于6人,故乙错.综上所述,四个命题中,其中真命题是“若乙对,则甲对”. 故选B.10. 【答案】C.【考点】正方形的性质;垂径定理;梯形的中位线定理;方程思想、转换思想和整体思想的应用.【分析】如答图,连接OP 、OQ ,∵DE ,FG ,»»AC BC,的中点分别是M ,N ,P ,Q , ∴点O 、P 、M 三点共线,点O 、Q 、N 三点共线. ∵ACDE ,BCFG 是正方形, ∴AE=CD=AC ,BG=CF=BC.设AB=2r ,则,OM MP r ON NQ r =+=+ . ∵点O 、M 分别是AB 、ED 的中点, ∴OM是梯形ABDE的中位线.∴()()()1112222OM AE BD AE CD BC AC BC =+=++=+,即()122M P r A CB C +=+.同理,得()122NQ r BC AC +=+.两式相加,得()322MP NQ r AC BC ++=+.∵MP+NQ=14,AC+BC=18,∴3142182132r r +=⨯⇒=.故选C. 11. 【答案】C.【考点】真假命题的判断;二次函数的图象和性质;曲线上点的坐标与方程的关系;轴对称的应用(最短线路问题);勾股定理.【分析】根据二次函数的图象和性质对各结论进行分析作出判断:①从图象可知当>>0x b 时,<0y ,故命题“当>0x 时,>0y ”不是真命题;②∵抛物线221y x x m =-+++的对称轴为212x =-=-,点A 和B 关于轴对称,∴若1a =-,则3b =,故命题“若1a =-,则4b =”不是真命题;③∵故抛物线上两点P (1x ,1y )和Q (2x ,2y )有12<1<x x ,且12>2x x +,∴211>1x x --,又∵抛物线221y x x m =-+++的对称轴为1x =,∴12>y y ,故命题“抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ” 是真命题;④如答图,作点E 关于x 轴的对称点M ,作点D 关于y 轴的对称点N ,连接MN ,ME 和ND 的延长线交于点P ,则MN 与x 轴和y 轴的交点G ,F 即为使四边形EDFG 周长最小的点.2∵2m =, ∴223y x x =-++的顶点D 的坐标为(1,4),点C 的坐标为(0,3).∵点C 关于抛物线对称轴的对称点为E ,∴点E 的坐标为(2,3).∴点M 的坐标为()2,3- ,点N 的坐标为()1,4- ,点P 的坐标为(2,4).∴DE MN ==∴当2m =时,四边形EDFG 周长的最小值为DE MN +=故命题“点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为 不是真命题. 综上所述,真命题的序号是③.故选C.12. 【答案】B.【考点】一次函数与二次函数综合问题;曲线上点的坐标与方程的关系.【分析】∵一次函数()20y dx e d =+≠的图象经过点1(0)x ,,∴110dx e e dx =+⇒=-.∴()211y dx dx d x x =-=-.∴()()[]2112112()()()y y y a x x x x d x x x x a x x d =+=--+-=--+.又∵二次函数112()()(0)y ax x x x a x x =--≠≠,的图象与一次函数()20y dx e d =+≠的图象交于点1(0)x ,,函数21y y y =+的图象与x 轴仅有一个交点,∴函数21y y y =+是二次函数,且它的顶点在x 轴上,即()2211y y y a x x =+=-.∴()[]()()212121()()x x a x x d a x x a x x d a x x --+=-⇒-+=-.. 令1x x =,得()1211()a x x d a x x -+=-,即1221()0()0a xx d ax x d -+=⇒--=.故选B. 13. 【答案】B.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;轴对称的性质;特殊元素法和转换思想的应用. 【分析】如答图,连接A ′C , ∵点A 是函数1y x= (x <0)图象上一点,∴不妨取点A ()1,1-- . ∴直线AB :y x =.∵点C 在直线AB 上,∴设点C (),x x .∵△ABC 的面积等于6,∴()1162x x ⋅⋅+=,解得123,4x x ==- (舍去).∴点C ()3,3 .∵点A 关于y 轴的对称点为A ′,点C 关于x 轴的对称点为C ′,∴点A ′()1,1- ,点C ′()3,3- .∴由线段AC ,CC ′,C ′A ′,A ′A 所围成的图形的面积等于'''1124621022AA C CA C S S ∆∆+=⨯⨯+⨯⨯=.故选B.14. 【答案】C.【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接AC,EC ,AC 与EF 交于点M .则根据对称性质,AC 经过圆心O ,∴AC 垂直 平分EF ,01EAC FAC EAF 302∠=∠=∠=.不妨设正方形ABCD 的边长为2,则A C =∵AC 是⊙O 的直径,∴0AEC 90∠=. 在Rt ACE ∆中,A E c o=⋅=1CE AC sin EAC 2=⋅∠=在Rt MCE ∆中,∵0FEC FAC 30∠=∠=,∴1CM CE sin EAC 2=⋅∠=易知G C H ∆是等腰直角三角形,∴GF 2CM ==又∵A EF ∆是等边三角形,∴EF AE ==.∴EF GH ==故选C. 15. 【答案】B .【考点】网格问题;勾股定理;三角形构成条件;无理数的大小比较;平移的性质;分类思想的应用. 【分析】由图示,根据勾股定理可得:a b c d =∵<,<,,<<a b c a d c b d c b a d b d +++=-+ ,∴根据三角形构成条件,只有,,a b d 三条线段首尾相接能组成三角形.如答图所示,通过平移,,a b d 其中两条线段,使得和第三条线段首尾相接组成三角形,能组成三角形的不同平移方法有6种.故选B .16. 【答案】A.【考点】多元方程组的应用(几何问题).【分析】如答图,设原住房平面图长方形的周长为2l ,①的长和宽分别为,a b ,②③的边长分别为,c d .根据题意,得2a c d c b d a b c l =+⎧⎪=+⎨⎪++=⎩ ①②③,-①②,得2a c c b a b c -=-⇒+=,将2a b c +=代入③,得1422c l c l =⇒=(定值), 将122c l =代入2a b c +=,得()122a b l a b l+=⇒+=(定值),而由已列方程组得不到d .∴分割后不用测量就能知道周长的图形标号为①②.故选A. 17. 【答案】A .【考点】一次函数和二次函数综合问题;曲线上点的坐标与方程的关系;数形结合思想的应用. 【分析】∵y =ax 2+(b -1)x +c =ax 2+bx +c -x ,∴函数y =ax 2+(b -1)x +c 的图象上点的纵坐标是二次函数y 2=ax 2+bx +c 图象上点的纵坐标与一次函数y 1=x 图象上点的纵坐标之差.∵一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,而P 、Q 两点都在第一象限,∴函数y =ax 2+(b -1)x +c 的图象与x 轴相交于两点,且这两点都在x 轴的正方向.故选A . 18. 【答案】C【考点】单动点问题;函数图象的识别;垂线段最短的性质;排他法的应用.【分析】从图2可知,寻宝者与定位仪器之间的距离开始和结束时是相同的,因此,可排除A 、D 选项;从图2可知,寻宝者与定位仪器之间的距离的最近点,相对于开始和结束时位置离中点更近,因此,如答图,过点M分别作,,,OB OC AB AC 的垂线,垂足分别为点,,,E F P Q ,此时,根据垂线段最短的性质,点,,,E F P Q 是寻宝者与定位仪器之间的距离的最近点. 显然,,OE OF BE CF AP =<==,即点,E F离中点的距离小于开始和结束时的距离;点,P Q离中点的距离大于开始和结束时的距离.∴寻宝者的行进路线可能为B→O→C. 故选C.19.【答案】B.【考点】菱形的判定;垂径定理;平行四边形的判定.【分析】要判定四边形OACB为菱形,根据菱形的判定可知,一组邻边相等的平行四边形是菱形,由于OA OB=,且半径OC⊥AB,根据垂径定理有AD BD=,从而根据对角线互相平分的四边形是平行四边形的判定,只要另一条对角线也平分即可,从而只要添加条件OD CD=即可. 因此,这个条件可以是OD CD=.故选B.20.【答案】D.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;菱形的性质;勾股定理.【分析】∵A,B两点的纵坐标分别为3,1,反比例函数3 yx =的图像经过A,B两点,∴A(1,3),B(3,1).∴AB=∵四边形ABCD是菱形,∴AD AB==AD 与BC的距离为2.∴菱形ABCD的面积为2=故选D.21.【答案】D.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;菱形的性质;锐角三角函数定义;特殊角的三角函数值.【分析】如答图,AC交y轴于点H,则CH⊥y轴.∵∠BOC=60°,∴∠COH=30°,∵点C的坐标为(m,),∴,CH m OH==∴6cosOHOCCOH===∠.∵四边形ABOC是菱形,∴6OB OC==,∠BOD=30°.∵BD⊥x轴,∴6BD OB tan BOD=⋅∠==∴点D的坐标为(6,-.∵点D在反比例函数kyx=的图像上,∴()6-⋅=-故选D.22.【答案】B.【考点】解直角三角形的应用(方向角问题);矩形的判定和性质;等腰直角三角形的判定和性质.【分析】如答图,过点B作BE⊥AC交AC于点E,过点E作EF⊥CD交CD于点F,则根据题意,四边形BDEF是矩形,△ABE、△EFC和△ADC都是等腰直角三角形,∵AB=2,∴DF=BF= AB=2,AE=∵∠EBC=∠BCE=22.5°,∴CE=BE=2.∴CF==∴2CD DF CF=+=km).∴船C离海岸线l的距离为(2+km.故选B.23.【答案】B.【考点】翻折变换(折叠问题);折叠的性质;等腰直角三角形的判定和性质;勾股定理.【分析】根据折叠的性质可知34CD AC B C BC ACE DCE BCF B CF CE A=='==∠=∠∠=∠'⊥,,,,,∴431B D DCE B CF ACE BCF '=-=∠+∠'=∠+∠,.∵90ACB ∠=︒,∴45ECF ∠=︒. ∴ECF V 是等腰直角三角形. ∴45EF CE EFC =∠=︒,.∴135BFC B FC ∠=∠'=︒. ∴90B FD ∠'=︒. ∵1122ABC S AC BC AB CE =⋅⋅=⋅⋅V ,∴AC BC AB CE ⋅=⋅.在Rt ABC V 中,根据勾股定理,得A B=5,∴123455CE CE ⋅=⋅⇒=.∴125EF CE ==. 在Rt AECV 中,根据勾股定理,得95AE ==,∴95ED AE ==.∴35DF EF ED =-=.在Rt B FD 'V 中,根据勾股定理,得45B F '==.故选B .24. 【答案】D.【考点】正比例函数、一次函数、反比例函数、二次函数的图象和性质.【分析】∵函数图像经过()()1422-- ,,,两点,∴该函数不可能是正比例函数.∵若一次函数的图像经过()()1422-- ,,,两点,则函数值y 随x 的增大而增大, ∴该函数不可能是一次函数.∵若反比例函数的图像经过()()1422-- ,,,两点,则函<0和>0x 两个范围内,函数值y 随x的增大而增大,∴该函数不可能是反比例函数.∵若二次函数的图像经过()()1422-- ,,,两点,则当图像开口向下,对称轴在2x =右侧时,在对称轴右侧,函数值y 随x 的增大而减小;当图像开口向上,对称轴在1x =左侧时,在对称轴左侧,函数值y 随x 的增大而减小.2∴该函数可能是二次函数.故选D. 25. 【答案】C .【考点】一次函数、二次函数图象与系数的关系. 【分析】根据一次函数、二次函数图象与系数的关系对各选项逐一分析,作出判断:A 、对于直线y bx a =+来说,由图象可以判断,00a b >,>;而当00a b >,>时,对于抛物线2y ax bx=+来说,对称轴02bx a=-<,应在y 轴的左侧,故不合题意,图形错误.B 、对于直线y bx a =+来说,由图象可以判断,00a b <,<;而当0a <时,对于抛物线2y ax bx =+来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y bx a =+来说,由图象可以判断,00a b <,>;而当00a b <,>时,对于抛物线2y ax bx=+来说,图象开口向下,对称轴>02bx a=-位于y 轴的右侧,故符合题意.D 、对于直线y bx a =+来说,由图象可以判断,00a b >,>;而当0a >时,对于抛物线2y ax bx =+来说,图象开口向下,故不合题意,图形错误.故选C .26. 【答案】C.【考点】线段中垂线的性质;切线的性质;垂径定理. 【分析】根据线段中垂线的性质、切线的性质和垂径定理,该圆的圆心是线段AE 的中垂线与线段BC 的中垂线的交点. 故选C. 27. 【答案】D.【考点】代数式化简;一次函数的图象;分类思想的应用.【分析】∵()()22>022<0x x x x y x x x ⎧++⎪==⎨--⎪⎩,∴当>0x 时,函数的图象为直线2y x =+的一部分;当<0x 时,函数的图象为直线2y x =--的一部分.符合此条件的是图象D.故选D.。

(完整版)八年级下数学勾股定理平行四边形及特殊平行四边形2016年中考专题

(完整版)八年级下数学勾股定理平行四边形及特殊平行四边形2016年中考专题 新人教八年级下期几何部分 2016 年中考专题 一填空、选择 1. (2016 泸州 )如图, □ABCD 的对角线 AC 、 BD A D

订交于点 O,且 AC+BD=16 ,CD=6 ,则△ ABO 的周长是

A.10 B.14 O

C.20 D.22 B C

2.(2016 绵阳 )7.如图,平行四边形 ABCD 的周长是 26cm,对角线 AC 与 BD 交于点 O, AC ⊥ AB ,E 是 BC 中点,△ AOD 的周长比△ AOB 的周长多 3cm,则 AE 的长度为( )

A.3cm B.4cm C.5cm D.8cm 3.(2016 巴中 )如图, ?ABCD 中, AC=8 , BD=6 , AD=a ,则 a 的取值范围

4. (2016 成都 )如图,在矩形 ABCD 中, AB=3 ,对角线 AC , BD 订交于点 O, AE 垂直均分 OB 于点 E

,则 AD 的长为 _________.

5(2016 巴中 )如图,延长矩形 ABCD 的边 BC 至点 E,使 CE=BD ,连结 AE ,假如∠ ADB=30 ° ,则∠ E= 度.

6.(2016 内江 )如图 4,在菱形 ABCD 中,对角线 AC 与 BD 订交于点 O, AC= 8, BD = 6, OE⊥ BC,垂足为点 E,则 OE= ______.

D

A O C B E 图 4 7( 2016 宜 宾 ).如 图 ,点 P 是 矩 形 ABCD 的 边 AD 上 的 一 动 点 ,矩 形 的 两 条 边 AB 、 BC 的 长 分 别 是 6 和 8 , 则 点 P 到 矩 形 的 两 条 对 角 线 AC 和 BD 的 距 离 之 和 是 ( )

A . 4.8 B . 5 C . 6 D . 7.2 (完整版)八年级下数学勾股定理平行四边形及特殊平行四边形2016年中考专题 8.(2016 眉山 ) 把边长为 3 的正方形 ABCD 绕点 A 顺时针旋转 45°获得正方形 AB ′C′D′,

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
专题七 四边形
⊙热点一:平行四边形的判定与性质
1.(2015年广西桂林)如图Z7­8,在ABCD中,E,F分别是AB,CD的中点.
(1)求证:四边形EBFD为平行四边形;
(2)对角线AC分别与DE,BF交于点M,N,求证:△ABN≌△CDM.

图Z7­8
2
⊙热点二:特殊四边形的判定与性质
2.(2015年江苏南京)如图Z7­9,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF,∠
CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H
.

(1)求证:四边形EGFH是矩形;
(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过
H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP
是菱

形,请在下列框中补全他的证明思路.

图Z7­9
⊙热点三:四边形综合题
3.(2015年湖南衡阳)如图Z7­10,四边形OABC是边长为4的正方形,点P为OA边上任意
一点(与点O,A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作
MN
∥OA,交BO于点N,连接ND,BM,设OP=t.
(1)求点M的坐标(用含t的代数式表示).
(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.
3

(3)当t为何值时,四边形BNDM的面积最小.
图Z7­10

专题七 四边形
【提升·专项训练】
1.(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵E,F分别是AB,CD的中点,∴BE=DF.
∵BE∥DF,∴四边形EBFD为平行四边形.
(2)证明:∵四边形EBFD为平行四边形,∴DE∥BF.
∴∠CDM=∠CFN.
∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.
∴∠BAC=∠DCA,∠ABN=∠CFN.
∴∠ABN=∠CDM.
在△ABN与△CDM中,






∠BAN=∠DCM,
AB=CD

∠ABN=∠CDM,

∴△ABN≌△CDM(ASA).
2.(1)证明:∵EH平分∠BEF,∴∠FEH=12∠BEF.

∵FH平分∠DFE,∴∠EFH=12∠DFE.
∵AB∥CD,∴∠BEF+∠DFE=180°.
∴∠FEH+∠EFH=12(∠BEF+∠DFE)=12×180°=90°.
∵∠FEH+∠EFH+∠EHF=180°,
∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°.
同理可得∠EGF=90°.

∵EG平分∠AEF,∴∠GEF=12∠AEF.
4

∵EH平分∠BEF,∴∠FEH=12∠BEF.
∵点A,E,B在同一条直线上,
∴∠AEB=180°,即∠AEF+∠BEF=180°.

∴∠FEG+∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°.
∴四边形EGFH是矩形.
(2)解:答案不唯一:
由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证MNQP是菱形,只要证
MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH
,易证

GE=FH,∠GME=∠FQH
.

故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.
3.解:(1)作ME⊥x轴于E,如图D113.


图D113 图D114
则∠MEP=90°,ME∥AB,∴∠MPE+∠PME=90°.
∵四边形OABC是正方形,
∴∠POC=90°,OA=OC=AB=BC=4,∠BOA=45°.
∵PM⊥CP,∴∠CPM=90°.
∴∠MPE+∠CPO=90°.∴∠PME=∠CPO.
在△MPE和△PCO中,






∠MEP=∠POC=90°,
∠PME=∠CPO,
PM=CP

∴△MPE≌△PCO(AAS).
∴ME=PO=t,EP=OC=4.∴OE=t+4.
∴点M的坐标为(t+4,t).
(2)线段MN的长度不发生改变;理由如下:
连接AM,如图D114.
∵MN∥OA,ME∥AB,∠MEA=90°,
∴四边形AEMF是矩形.
又∵EP=OC=OA,∴AE=PO=t=ME.
∴四边形AEMF是正方形.
∴∠MAE=45°=∠BOA.∴AM∥OB.
∴四边形OAMN是平行四边形.∴MN=OA=4.
(3)∵ME∥AB,∴△PAD∽△PEM.

∴ADME=APEP,即ADt=4-t4.∴AD=-14t2+t.
5

∴BD=AB-AD=4--14t2+t=14t2-t+4.
∵MN∥OA,AB⊥OA,∴MN⊥AB.
∴四边形BNDM的面积S=12MN·BD=12×414t2-t+4=12(t-2)2+6.

∵S是t的二次函数且12>0,
∴S有最小值,当t=2时,S的值最小.
∴当t=2时,四边形BNDM的面积最小.

相关文档
最新文档