中考数学专题突破
2023学年中考数学高频考点专项突破——一元二次方程

2023学年中考数学高频考点专项突破——一元二次方程一、解答题1.将一元二次方程x 2-6x -5=0配方,化成(x +a)2=b 的形式.2.解方程:x 2﹣5=2(x+1)3.将一段铁丝围成面积为 的矩形,且它的长比宽多 ,求矩形的长. 4.把小圆形场地的半径增加5m 得到大圆形场地,大圆形场地面积是小圆形场地的4倍,求小圆形场地的半径.5.已知关于的x 方程 ()24x k 2x k 1-++= 有两个相等的实数根,求k 的值及这时方程的根.6.在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物— “福娃”平均每天可售出20套,每件盈利40元。
为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。
经市场调查发现:如果每套降价4元,那么平均每天就可多售出8套。
要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?7.已知关于x 的一元二次方程x 2+x+m 2﹣2m=0有一个实数根为﹣1,求m 的值及方程的另一实根.8.已知方程5x 2﹣kx ﹣6=0的一个根是﹣2,求它的另一个根及k 的值.9.某商场销售一批名牌衬衫,平均每天售出20件,每件可盈利40元.为了扩大销售增加盈利,尽快减少库存,商场决定采取适当降价措施.调查发现,每件少盈利1元,商场平均每天可多售出2件衬衫.那么每件衬衫少盈利多少元时,商场平均每天盈利是1250元?10.随着青奥会的临近,青奥特许商品销售逐渐火爆.甲.乙两家青奥商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二.三月份销售额的月平均增长率是乙店二.三月份月平均增长率的2倍.(1)若设乙店二.三月份销售额的月平均增长率为x ,则甲店三月份的销售额为多少万元?乙店三月份的销售额为多少万元?(用含x 的代数式表示)(2)甲店.乙店这两个月销售额的月平均增长率各是多少?11.奈曼旗某中学要组织一次篮球赛,赛制为双循环形式(每两队之间赛两场),计划安排12场比赛,应邀请多少支球队参加比赛?12.已知:关于x 的方程220x kx +-=⑴求证:方程有两个不相等的实数根;⑴若方程的一个根是-1,求另一个根及k值.13.某奶茶店每杯奶茶的成本价为5元,市场调查表明,若每杯定价a元,则一天可卖出(800﹣100a)杯,但物价局规定每件商品的利润率不得超过20%,商品计划一天要盈利200元,问每杯应定价多少元?一天可以卖出多少杯?14.某人把500圆存入银行,定期一年,到期他取出300元,将剩余部分(包括利息)继续存入银行,定期仍为一年,利率不变,到期后全部取出,正好是275元,求这种存款的年利率(不计利息税)15.阅读下面的例题:解方程x2﹣|x|﹣2=0解:当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去);当x<0时,原方程化为x2+x﹣2=0,解得:x1=1,(不合题意,舍去)x2=﹣2;∴原方程的根是x1=2,x2=﹣2.请参照例题解方程x2﹣|x﹣1|﹣1=0.答案解析部分1.【答案】解:原方程可化为x2-6x=5,配方得x2-6x+9=5+9,∴(x-3)2=14.2.【答案】解:方程整理得:x2﹣2x﹣7=0,这里a=1,b=﹣2,c=﹣7,∵⑴=4+28=32>0,∴2322,∴x12,x2=1﹣2.3.【答案】解:设矩形的长为cm,则解得:(不合题意,舍去),答:矩形的长为15cm.4.【答案】解:设小圆形场地的半径为r,根据题意得:,∴,∴,∴即,∴,∴小圆形场地的半径5m.5.【答案】解:()24x k 2x k 10-++-=∆ = ()()2k 244k 1-+-⨯⨯-⎡⎤⎣⎦= 2k 12k 20-+方程有两个相等的实数根0∴∆=, 即 2k 12k 200-+=12k 2k 10==,当 1k 2= , 24x 4x 1-+ =0121x x 2==当 1k 10= , 24x 12x 9-+ =0123x x 2== .6.【答案】解:设每套降价x 元,由题意得:(40-x )(20+2x )=1200即2x 2-60x+400=0,∴x 2-30x+200=0,∴(x-10)(x-20)=0,解之得:x=10或x=20为了减少库存,所以x=20.因此,每套应降价20元7.【答案】【解答】解:设方程的另一根为x 2,则﹣1+x 2=﹣1,解得x 2=0.把x=﹣1代入x 2+x+m 2﹣2m=0,得(﹣1)2+(﹣1)+m 2﹣2m=0,即m (m ﹣2)=0, 解得m 1=0,m 2=2.综上所述,m 的值是0或2,方程的另一实根是0. 8.【答案】解:∵关于x 的一元二次方程5x 2﹣kx ﹣6=0的一个根是x 1=﹣2, ∴5×(﹣2)2+2k ﹣6=0,解得k=﹣7.又∵x 1•x 2=﹣6,即﹣2x 2=﹣6,∴x 2=3.综上所述,k 的值是﹣7,方程的另一个根是3.9.【答案】解:设每件衬衫少盈利x 元,商场平均每天盈利1250元, 则()()402021250x x -+=所以1215x x ==,即每件衬衫少盈利15元时,商场平均每天盈利是1250元. 答:每件衬衫少盈利15元时,商场平均每天盈利是1250元. 10.【答案】解:(1)设乙店二.三月份销售额的月平均增长率为x , 则甲店三月份的销售额为10(1+2x )2万元,乙店三月份的销售额为15(1+x )2万元;(2)10(1+2x )2﹣15(1+x )2=10,解得 x 1=60%,x 2=﹣1(舍去),2x=120%,答:甲.乙两店这两个月的月平均增长率分别是120%.60%.11.【答案】解:设要邀请x 支球队参加比赛,由题意,得:x (x−1)=12,解得:x 1=4,x 2=−3(舍去).答:应邀请4支球队参加比赛.12.【答案】解:(1)∵a=1,b=k ,c=﹣2,∴⑴=b 2﹣4ac=k 2﹣4×1×(﹣2)=k 2+8>0,∴方程有两个不相等的实数根;(2)当x=﹣1时,(﹣1)2﹣k ﹣2=0,解得:k=﹣1,则原方程为:x 2﹣x ﹣2=0,即(x ﹣2)(x+1)=0,解得:x 1=2,x 2=﹣1,∴另一个根为2.13.【答案】解:依题意得:(a ﹣5)(800﹣100a )=200 解得a=6或a=7.因为a ﹣5≤5×20%,即a≤6.故a=6符合题意.所以800﹣100a=800﹣100×6=200(杯).答:每杯应定价6元,一天可以卖出200杯14.【答案】解:设定期一年的利率是x,根据题意得:一年时:500+500x=500(1+x),取出300后剩:500(1+x)-300,同理两年后是[500(1+x)-300](1+x),即方程为[500(1+x)-300]•(1+x)=275,解得:x1=10%,x2=- 32(不符合题意,故舍去).答:定期一年的利率是10%15.【答案】解:当x﹣1≥0即x≥1时,原方程化为x2﹣(x﹣1)﹣1=0,即x2﹣x=0,解得x1=0,x2=1,∵x≥1,∴x=1;当x﹣1<0即x<1时,原方程化为x2+(x﹣1)﹣1=0,即x2+x﹣2=0,解得x1=﹣2,x2=1 ∵x<1,∴x=﹣2,∴原方程的根为x1=1,x2=﹣2。
中考数学频考点突破--勾股定理的应用

中考数学频考点突破--勾股定理的应用一、综合题1.已知Rt△ABC中,△C=90˚,AC=4,BC=8.动点P从点C出发,以每秒2个单位的速度沿射线..CB方向运动,连接AP.设运动时间为t s.(1)求斜边AB的长.(2)当t为何值时,△PAB的面积为6?(3)若t<4,请在所给的图中画出△PAB中AP边上的高BQ,问:当t为何值时,BQ长为4?并直接写出此时点Q到边BC的距离.2.如图,AB为△O的直径,弦CD△AB于E,点F在DC的延长线上,AF交△O于G.(1)求证:△FGC=△ACD;(2)若AE=CD=8,试求△O的半径.3.数学中,常对同一个量(图形的面积、点的个数等)用两种不同的方法计算,从而建立相等关系,我们把这种思想叫“算两次”.“算两次”也称作富比尼原理,是一种重要的数学思想,由它可以推导出很多重要的公式.(1)如图1,是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形.①用“算两次”的方法计算图2中阴影部分的面积:第一次列式为▲ ,第二次列式为▲ ,因为两次所列算式表示的是同一个图形的面积,所以可以得出等式▲ ;②在①中,如果a+b=7,ab=10,请直接用①题中的等式,求阴影部分的面积;(2)如图3,两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形,用“算两次”的方法,探究a,b,c之间的数量关系.4.关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.5.如图,在等边△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M,过点B作直线AE的垂线BH,垂足为H.(1)求证:△ACE△△BAD;(2)若BE=2EC=4.①求△ABC的面积;②求MH的长.6.如图1,有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积是,边长是.(2)把10个小正方形组成的图形纸(如图2),剪开并拼成正方形.①请在4×4方格图内画出这个正方形.②以小正方形的边长为单位长度画一条数轴,并在数轴上画出表示- √10的点.(3)这种研究和解决问题的方式,主要体现了的数学思想方法.A.数形结合B.代入C.换元D.归纳7.如图,已知AB为⊙O的直径,点C为⊙O外一点,AC=BC,连接OC,DF是AC的垂直平分线,交OC于点F,垂足为点E,连接AD、CD,且∠DCA=∠OCA.(1)求证:AD是⊙O的切线;(2)若CD=6,OF=4,求cos∠DAC的值.8.(1)如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,若AP=2,PC=2DP,则BC=;(2)如图2,四边形ABCD中,∠A=∠B=90°,AB=8,AD=10,点E在线段BC上且BE=6,连接DE,作FE⊥ED,交AB于点F,则四边形ADEF的面积是多少?(3)如图3,四边形ABCD中,AB=8,点C到AB的距离为10,∠C=90°,且BC=2CD.当四边形ABCD的面积是61时,求CD的长度是多少?9.如图,AD是▱ABDE的对角线,∠ADE=90°,延长ED至点C,使DC= ED,连接AC交BD于点O,连接BC.(1)求证:四边形ABCD是矩形;(2)连接OE,若AD=4,AB=2,求OE的长.10.阅读与计算,请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理,如图1,在△ABC中,AD平分△BAC,则AB AC=BDCD.下面是这个定理的部分证明过程.证明:如图2,过C作CE△DA.交BA的延长线于E.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图3,已知Rt△ABC中,AB=3,BC=4,△ABC=90°,AD平分△BAC,则△ABD的周长是.11.如图,在等边三角形ABC中,点D,E分别在边BC、AC上,若CD=3,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:△CDE为等边三角形;(2)求EF的长.12.如图,(1)作△ABC的外接△O(用尺规作图,保留作图痕迹,不写作法);(2)若AB=6cm,AC=BC=5cm,求△O的半径.13.如图,在四边形ABCD中,AB=CD=6,BC=10,AC=8,∠ABC=∠BCD.过点D作DE⊥BC,垂足为点E,延长DE至点F,使EF=DE,连接BF,CF.(1)求证:四边形ABFC是矩形;(2)求DE的长.14.(1)如图所示,Rt△ABC中,△BAC =90 °,AB=√3,AC=√6,点D是斜边BC的中点,连接AD,求AD的长.(2)如图,在平行四边形ABCD中,DE△AB,BF△CD,垂足分别是E、F.求证:△ADE△△CBF15.平面直角坐标系中,直线y=12x﹣1的图象如图所示,它与直线y=﹣2x+4的图象都经过A (2,0),且两直线与y轴分别交于B、C两点.(1)直接画出一次函数y=﹣2x+4的图象;(2)直接写出B、C两点的坐标;(3)判断△ABC的形状,并说明理由.16.如图,AB是⊙O的直径,C为⊙O上一点,作CE⊥AB于点E,AB= 6OE,延长AB至点D,使得BD=AB,P是弧AB(异于A,B)上一个动点,连接AC,BC,CD,PD,PE.(1)求证:CD是⊙O的切线;(2)若AO=3,求AC的长度.答案解析部分1.【答案】(1)解:在Rt△ABC 中,△C=90˚,AC=4,BC=8,AB =√AC 2+BC 2=√16+64=4√5.(2)解:AC=4,BC=8, ∵△PAB 的面积为6, ∴PB=3. ∵CP=2t ,∴当点P 在点B 的左侧时,PB=8−2t ;当点P 在点B 的右侧时,PB=2t ,∴t =52或 t =112.(3)解:作△PAB 中AP 边上的高BQ ,在△ACP 与△BQP 中,{∠ACP =∠BQP ∠APC =∠BPQ AC =BQ , ∴△ACP ≌△BQP(AAS),∴AP =BP. 在 Rt △ACP 中,∵CP 2+CA 2=AP 2 ,即 42+(2t)2=(8−2t)2, 解得 t =32,∴当 t =32时, PQ =3.BQ =4,BP =5,根据等面积法求出点Q 到边BC 的距离: PQ⋅BQ BP=125.【知识点】三角形的面积;勾股定理;一元一次方程的实际应用-几何问题;三角形全等的判定(AAS )【解析】【分析】(1)根据勾股定理即可求出.(2)分点 P 在 B 点左侧与右侧两种情况进行讨论即可;(3)作△PAB 中AP 边上的高BQ ,先根据 AAS 定理得出 △ACP ≌△BQP , 再由勾股定理得出 t 的值,进而可得出结论.2.【答案】(1)证明:∵AB 为△O 的直径,CD△AB ,∴AB垂直平分CD,∴AC=AD,∴△ACD=△D,∵四边形AGCD内接于△O,∴△AGC+△D=180°,∵△AGC+△FGC=180°,∴△D=△FGC,∴△ACD=△FGC;(2)解:连接OC,∵AB为△O的直径,CD△AB,AE=CD=8,∴CE=ED=4,设OA=OC=r,则OE=8-r,在Rt△COE中,OE2+CE2=OC2,即(8−r)2+42=r2,解得r=5,即△O的半径为5.【知识点】线段垂直平分线的性质;勾股定理;垂径定理;圆内接四边形的性质【解析】【分析】(1)利用垂径定理可证得AB垂直平分CD,利用垂直平分线的性质可得到AC=AD;利用等边对等角可知△ACD=△D;再利用圆内接四边形的性质及补角的性质可证得△D=△FGC,由此可证得结论.(2)连接OC,利用垂径定理求出CE的长;设OA=OC=r,可表示出OE的长;在Rt△COE,利用勾股定理可得到关于r的方程,解方程求出r的值.3.【答案】(1)解:①因为小正方形的边长为:a−b,所以第一次计算的面积为:(a−b)2,第二次计算的面积为:(a+b)2−4ab,所以:(a−b)2=(a+b)2−4ab;或(a+b)2−4ab,(a−b)2,(a+b)2−4ab=(a−b)2②∵a+b=7,ab=10∴(a−b)2=(a+b)2−4ab=72−4×10=9(2)解:第一次利用梯形的面积公式图形面积为:12(a+b)2,第二次利用图形的面积和计算为:2×12ab+12c2,∴12(a+b)2=2×12ab+12c2整理得:a2+2ab+b2=2ab+c2∴a2+b2=c2【知识点】列式表示数量关系;完全平方公式的几何背景;勾股定理的证明【解析】【分析】(1)①利用所给图形,再结合完全平方公式求解即可;②根据a+b=7,ab=10,计算求解即可;(2)先求出12(a+b)2=2×12ab+12c2,再整理计算求解即可。
专题二 二次函数的综合——2023届中考数学热点题型突破(含答案)

专题二二次函数的综合——2023届中考数学热点题型突破题型1 二次函数与线段最值问题1.在平面直角坐标系中, 点B 的坐标为, 将抛物线向左平移 2 个单位长度后的顶点记为A. 若点P是x 轴上一动点, 则的最小值是( )A. 8B.C. 9D.2.如图, 抛物线与x轴正半轴交于点A, 与y 轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)点P为第四象限内且在对称轴右侧抛物线上一动点, 过点 P作轴, 垂足为C,PC交AB于点D, 求的最大值, 并求出此时点P的坐标;(3)将抛物线向左平移n个单位长度得到抛物线, 若抛物线与直线AB 只有一个交点, 求n的值.3.已知:如图,二次函数与x轴交于点A,B,点A在点B左侧,交y 轴于点C,.(1)求抛物线的解析式;(2)在第一象限的抛物线上有一点D,连接AD,若,求点D坐标;(3)点P在第一象限的抛物线上,于点Q,求PQ的最大值?题型2 二次函数与图形面积问题4.如图,抛物线与x轴的两个交点坐标为、.(1)求抛物线的函数表达式;(2)矩形的顶点P,Q在x轴上(P,Q不与A,B重合),另两个顶点M,N在抛物线上(如图).①当点P在什么位置时,矩形周长最大?求这个最大值并写出点P的坐标;②判断命题“当矩形周长最大时,其面积最大”的真假,并说明理由.5.在平面直角坐标系xOy 中, 已知抛物线经过,两点. P是抛物线上一点, 且在直线AB的上方.(1)请直接写出抛物线的解析式.(2)若面积是面积的 2 倍, 求点P的坐标.(3)如图, OP交AB于点C,交AB于点D. 记,,的面积分别为,,. 判断是否存在最大值. 若存在, 求出最大值; 若不存在, 请说明理由.6.已知抛物线与x轴相交于A、B两点,与y轴交于C点,且,.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,连结PB、PC.①如图1,过点P作轴交BC于点D,交x轴于点E,连结OD.设的面积为,的面积为,若,求S的最大值;②如图2,已知,Q为平面内一点,若以点A、C、P、Q为顶点的四边形是以CP为边的平行四边形,求点Q的坐标.题型3 二次函数与图形判定问题7.如图,已知二次函数(b,c为常数)的图象经过点,点,顶点为点M,过点A作轴,交y轴于点D,交该二次函数图象于点B,连接BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m()个单位,使平移后得到的二次函数图象的顶点落在的内部(不包括的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).8.如图, 已知点, 以点D为顶点的抛物线经过点A, 且与直线交于点B,.(1)求抛物线的表达式和点D的坐标.(2)在对称轴上存在一点M, 使得, 求出点M 的坐标.(3)已知点P 为抛物线对称轴上一点, 点Q 为平面内一点, 是否存在以P,B,C,Q为顶点的四边形是菱形的情形? 若存在, 直接写出点P 的坐标; 若不存在, 请说明理由.9.如图,已知抛物线与x轴交于点,,与y轴交于点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为,过点P作x轴的垂线l交抛物线于点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线l交直线BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)点P在线段AB上运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与相似?若存在,求出点Q的坐标;若不存在,请说明理由.答案以及解析1.答案:D解析:,平移后抛物线的解析式为,点A的坐标为.如图, 作点A关于 x轴对称的点连接交x轴于点P则此时有最小值,最小值为的长,易知,,的最小值是.2.答案: (1)(2)(3)解析: (1)对于,令, 则, 解得,,.令, 则,.设直线AB的解析式为,则解得直线AB的解析式为.抛物线顶点坐标为.(2)如图, 过点D作轴于点E, 则.,,.设点P的坐标为,则点D的坐标为,.,又,当时, 的值最大, 最大值为,此时,此时点P 的坐标为.(3)设抛物线的解析式为. 令,整理, 得,3.答案:(1)(2)(3)解析:(1)当时,,解得,,,.,,,抛物线的解析式为;(2)如图,作于E,,,设,则,,,解得,,,;(3)如图,作轴,交BC于F,则,,,,,由,可知,直线BC的解析式为,设,则,,,时,PF的最大值为,的最大值为.4.答案:(1)(2)①Р在时,矩形的周长最大,最大值为10;②命题是假命题解析:(1)解:将、代入中得,解得,抛物线的函数表达式为,(2)解:抛物线的对称轴为,设点,则,①P,Q关于对称,,则,矩形的周长为,当时,l的值最大,最大值为10,即Р在时,矩形的周长最大,最大值为10.②假命题.由①可知,当矩形周长最大时,长为3,宽为2,面积为6,当为正方形时,,解得,点Р的坐标为,点Q的坐标为,,正方形的面积;故命题是假命题.5.答案: (1)(2) 或(3) 存在,解析:(1)将,分别代入, 得解得所以抛物线的解析式为.(2)设直线AB的解析式为,将,分别代入, 得解得所以直线AB的解析式为.如图 (1), 过点P 作轴, 垂足为M,PM交AB于点N, 过点B 作, 垂足为E,所以因为,,所以.因为的面积是面积的 2 倍,所以, 所以.设,则,所以, 即,解得,,所以点P的坐标为或.(3) 存在.因为, 所以,, 所以,所以.因为,,所以.设直线AB交y轴于点F, 则.如图 (2), 过点P作轴, 垂足为H,PH交 AB于点G.因为, 所以.因为, 所以,所以,所以.设.由 (2) 可得,所以.又,所以当时, 的值最大, 最大值为.6.答案:(1)(2)见解析①6②或解析:(1)由题意,得,,此抛物线的解析式为:.(2)①由可得:设直线BC的解析式为:,则,,直线BC的解析式为:,设,则,,,当时,S的最大值为6.②在OB上截取,则,,又,,,,,运用待定系数法法可求:直线CF的解析式为:,直线BP的解析式为:,,解得或4,,,轴,ACPQ是以CP为边构成平行四边形,,点Q在x轴上,或.7.答案:(1)二次函数解析式为;点M的坐标为(2)(3),,,解析:(1)把点,点代入二次函数得,,解得,二次函数解析式为,配方得,点M的坐标为;(2)设直线AC解析式为,把点,代入得,,解得,直线AC的解析式为,如图所示,对称轴直线与两边分别交于点E、点F.把代入直线AC解析式解得,则点E坐标为,点F坐标为,,解得;(3)连接MC,作轴并延长交AC于点N,则点G坐标为,,,,把代入解得,则点N坐标为,,,,,由此可知,若点P在AC上,则,则点D与点C必为相似三角形对应点①若有,则有,,,,,,若点P在y轴右侧,作轴,,,,把代入,解得,;同理可得,若点P在y轴左侧,则把代入,解得,;②若有,则有,,,若点P在y轴右侧,把代入,解得;若点P在y轴左侧,把代入,解得;;.所有符合题意得点P坐标有4个,分别为,,,.8.答案: (1)(2)(3)存在, 点P的坐标为,, ,或解析: (1) 将代入, 得,将,分别代入, 得解得故抛物线的表达式为.抛物线的顶点D的坐标为.(2)易知抛物线的对称轴为直线, 且点A,C 关于对称轴对称.作直线AB, 交直线于点M, 则点M即为所求.令,解得,,故.设直线AB 的表达式为,将,分别代入, 得解得故直线AB 的表达式为,当时, , 故.(3)设,易得,①当时,该四边形是以BC为对角线的菱形, 则, 即, 解得,点P 的坐标为.②当时,该四边形是以PC 为对角线的菱形, 则, 即,解得, 故点P的坐标为或.③当时,该四边形是以PB为对角线的菱形, 则, 即, 解得,故点P 的坐标为或.综上可知, 点P的坐标为,,,或9.答案:(1)(2)当时,四边形CQMD是平行四边形(3)点Q的坐标为或解析:(1)设抛物线的解析式为,把点的坐标代入,得,解得抛物线的解析式为,即.(2)点D与点C关于x轴对称,点,,设直线BD的表达式为,把,代入得,,解得,直线BD的关系表达式为,设,,,,当时,四边形CQMD为平行四边形,,解得,(不合舍去),故当时,四边形CQMD是平行四边形;(3)在中,,,,当以点B、M为顶点的三角形与相似时,分三种情况:①若时,,如图1所示,当时,,即,,,,,,解得,,(不合舍去),,,,,点Q的坐标为;②若时,如图2所示,此时点P、Q与点A重合,,③由于点M在直线BD上,因此,这种情况不存在,综上所述,点Q的坐标为或.。
中考数学高频考点突破:实际问题与二次函数——拱桥问题

中考数学高频考点突破:实际问题与二次函数——拱桥问题一、选择题1.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行( )A.2.76米B.7米C.6米D.6.76米2.如图是拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=−0.01(x−20)2+4,桥拱与桥墩AC的交点C恰好位于水面,且AC⊥x轴,若OA=5米,则桥面离水面的高度AC为( )A.5米B.4米C.2.25米D.1.25米3.如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面 1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A.4√3米B.5√2米C.2√13米D.7米二、填空题4.如图所示是一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的髙度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.5.一个拱形桥架可以近似看做是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成的.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45∘,AC1=4米,点D2的坐标为(−13,−1.69),则桥架的拱高OH=米.6.闵行体育公园的圆形喷水池的水柱(如图1),如果曲线APB表示落点B离点O最远的一条水流(如图2),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式,那么圆形水池的半径至少为米时,才能使喷出的水流不落在为y=−x2+4x+94水池外.三、解答题7.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1) 求抛物线的解析式;(2) 一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗?8.如图是一个抛物线形拱桥示意图,已知河床宽度AB=40米,拱桥高度为10米.(1) 建立适当的坐标系,并求出抛物线的解析式;(2) 若测量得拱桥内水面宽度为28米,求拱桥内的水深.9.已知一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,且矩形的一条边长为2.5m.(1) 写出隧道截面的面积y(m2)与截面上部半圆的半径x(m)之间的函数表达式;(2) 当隧道截面上部半圆的半径为2m时,隧道截面的面积约是多少(精确到0.1m2)?10.桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A,C,B三点的抛物线,以桥面的水平线为x轴,经过抛物线的顶点C与x轴垂直的直线为y轴,建立平面直角坐标系,已知此桥垂直于桥面的相邻两柱之间的距离为2米(图中用线段AD,FG,CO,BE等表示桥柱),CO=1米,FG=2米.(1) 求经过A,B,C三点的抛物线的函数解析式;(2) 求桥柱AD的高度.11.有一个抛物线形蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示,已知OA=8米,距离O点2米处的棚高BC为9米.4(1) 求该抛物线的解析式;(2) 若借助横梁DE(DE∥OA)建一个门,要求门的高度为1.5米,则横梁DE的长度是多少米?12.如图,在喷水池的中心A处竖直安装一个水管AB.水管的顶端安有一个喷水管,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m.水柱落地点D离池中心A处3m,建立适当的平面直角坐标系,解答下列问题.(1) 求水柱所在抛物线的函数解析式;(2) 求水管AB的长.13.如图为一座桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.(1) 建立平面直角坐标系,并求该抛物线的函数表达式.(2) 若水面上升1m,水面宽度将减少多少?14.如图①,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,以AB的中点O为原点,按如图②所示建立平面直角坐标系.(1) 求该抛物线对应的函数关系式;(2) 通过计算说明该货车能安全通过的最大高度.15.秋风送爽,学校组织同学们去颐和园秋游,昆明湖西堤六桥中的玉带桥非常令人喜爱,如图所示,玉带桥的桥拱是抛物线形,水面宽度AB=10m,桥拱最高点C到水面的距离为6m.(1) 建立适当的平面直角坐标系,求抛物线的表达式;(2) 现有一艘游船高度是 4.5m,宽度是4m,为了保证安全,船顶距离桥拱顶部至少0.5m,通过计算说明这艘游船能否安全通过玉带桥.16.如图是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1) 经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填“方案一”“方案二”或“方案三”),则B点坐标是,求出你所选方案中的抛物线的表达式.(2) 因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.17.如图,隧道的截面由抛物线ADC和矩形AOBC构成,矩形的长OB是12m,宽OA是4m.拱顶D到地面OB的距离是10m.若以O原点,OB所在的直线为x轴,OA所在的直线为y轴,建立直角坐标系.(1) 画出直角坐标系xOy,并求出抛物线ADC的函数表达式;(2) 在抛物线型拱壁E,F处安装两盏灯,它们离地面OB的高度都是8m,则这两盏灯的水平距离EF是多少米?18.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起,据试验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1) 求足球开始飞出到第一次落地时,该抛物线的解析式.(2) 足球第一次落地点C距守门员多少米?(取4√3≈7)(3) 运动员乙要在第二个落地点D抢到足球,他应再向前跑多少米?(取2√6≈5)答案一、选择题1. 【答案】D【解析】设该抛物线的表达式为 y =ax 2,把 x =10,代入表达式得 −4=a ×102,解得 a =−125,故此抛物线的表达式为 y =−125x 2,∵ 桥下水面宽度不得小于 18m ,∴ 令 x =9 时,可得 y =−125×81=−3.24(m ), 此时水深 6+4−3.24=6.76(m ), 即桥下水深 6.76m 时正好通过, ∴ 超过 6.76m 时则不能通过.2. 【答案】C3. 【答案】B【解析】建立如图所示的平面直角坐标系,则 MN =4 米,EF =14 米,BC =10 米,DO =32 米,设大孔所在抛物线的解析式为 y =ax 2+32(a ≠0),∵BC =10 米, ∴ 点 B (−5,0),∴0=a ×(−5)2+32, ∴a =−350,∴ 大孔所在抛物线的解析式为 y =−350x 2+32,设点 A (b,0),则设顶点为 A 的小孔所在抛物线的解析式为 y =m (x −b )2, ∵EF =14 米,∴ 点 E 的横坐标为 −7, ∴ 点 E 的坐标为 (−7,−3625),当 m (x −b )2=−3625 时,解得 x 1=65√−1m +b ,x 2=−65√−1m +b , ∵MN =4 米, ∴∣∣∣∣65√−1m +b −(−65√−1m +b)∣∣∣∣=4, ∴m =−925,∴ 顶点为 A 的小孔所在抛物线的解析式为 y =−925(x −b )2,∵ 大孔水面宽度为 20 米,∴ 当 x =−10 时,y =−92, ∴−92=−925(x −b )2, ∴x 1=5√22+b ,x 2=−5√22+b ,∴ 当大孔水面宽度为 20 米时,单个小孔的水面宽度 =∣∣∣(5√22+b)−(−5√22+b)∣∣∣=5√2(米). 故选B .二、填空题4. 【答案】 36【解析】如图所示:设在 10 秒时到达 A 点,在 26 秒时到达 B , ∵10 秒时和 26 秒时拱梁的高度相同,∴A ,B 关于对称轴对称,则从 A 到 B 需要 16 秒,则从 A 到 D 需要 8 秒, ∴ 从 O 到 D 需要 10+8=18 秒, 从 O 到 C 需要 2×18=36 秒.5. 【答案】 7.24【解析】设抛物线 D 1OD 8 的解析式为 y =ax 2,将 x =−13,y =−1.69 代入,可得 a =−1100.因为横梁 D 1D 8=C 1C 8=AB −2AC 1=36 m ,所以点 D 1 的横坐标是 −18,代入 y =−1100x 2,得 y =−3.24. 因为 ∠A =45∘,所以 D 1C 1=AC 1=4 m ,所以 OH =3.24+4=7.24 m .6. 【答案】 92三、解答题7. 【答案】(1) 根据题意,A (−4,2),D (4,2),E (0,6),设抛物线的解析式为 y =ax 2+6(a ≠0),把 A (−4,2) 或 D (4,2) 代入得 16a +6=2,得 a =−14,抛物线的解析式为 y =−14x 2+6.(2) 根据题意,把 x =±1.2 代入解析式,得 y =5.64, ∵5.64>4.5,∴ 货运卡车能通过.【解析】(1) 方法二:设解析式为y=ax2+bx+c,代入A,D,E三点坐标得{16a−4b+c=216a+4b+c=2c=6,得{a=−14b=0c=6,抛物线的解析式为y=−14x2+6.8. 【答案】(1) 建立如图所示坐标系,设抛物线铁板式为y=ax2;由题意得,B(20,−10),∴−10=202a,解得a=−140,∴y=−140x2.(2) 由题意得,点D横坐标为28÷2=14,当x=14时,y=−140×142=−4.9,−4.9−(−10)=5.1.∴拱桥内的水深5.1米.9. 【答案】(1) y与x之间的函数表达式是y=12πx2+5x;(2) 当x=2时,y=12π×22+5×2=2π+10≈16.3(m2).所以隧道截面上部半圆的半径为2m时,隧道截面的面积约是16.3m2.10. 【答案】(1) 由题意可知:点C的坐标为(0,1),点F的坐标为(−4,2).设抛物线的函数解析式为y=ax2+c,所以{1=c,2=16a+c,解得{a=116,c=1.所以抛物线的函数解析式为y=116x2+1.(2) 点A的横坐标为−8,当x=−8时,y=5,所以桥柱AD的高度为5米.11. 【答案】(1) 由题意可得,抛物线经过(2,94),(8,0),故{64a+8b=0,4a+2b=94,解得{a=−316,b=32,故拋物线的解析式为y=−316x2+32x.(2) 由题意可得,当y=1.5时,1.5=−316x2+32x,解得x1=4+2√2,x2=4−2√2,故DE=x1−x2=4+2√2−(4−2√2)=4√2(米).12. 【答案】(1) 以池中心A为原点,竖直安装的水管为y轴,与水管垂直的方向为x轴建立平面直角坐标系.由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为y =a (x −1)2+3,代入 (3,0),求得 a =−34, 故所求的函数解析式为 y =−34(x −1)2+3(0≤x ≤3).(2) 令 x =0,则 y =94=2.25.故水管 AB 的长为 2.25 m .13. 【答案】(1) 以 C 为坐标原点建立坐标系,则 A (−6,−4),B (6,−4),C (0,0),设 y =ax 2,把 B (6,−4) 代入上式,36a +4=0,解得:a =−19,∴y =−19x 2.(2) 令 y =−3 得:−19x 2=−3,解得:x =±3√3, ∴ 若水面上升 1 m ,水面宽度将减少 12−6√3.14. 【答案】(1) 如图,A (−4,0),C (0,4),设抛物线的解析式为 y =ax 2+k (a ≠0),由题意,得 {16a +k =0,k =4,解得 {a =−14,k =4,∴ 抛物线的解析式为 y =−14x 2+4.(2) 2+0.42=2.2,当 ∣x ∣=2.2 时,y =−14×2.22+4=2.79,2.79−0.5=2.29(m ).答:该货车能够安全通行的最大高度为 2.29 m .15. 【答案】(1) 以 AB 的中点为原点,建立如下的坐标系, 则点 C (0,6),点 B (5,0).设函数的表达式为 y =ax 2+c =ax 2+6(a ≠0),将点 B 的坐标代入上式,得 0=25a +6,解得 a =−625,故抛物线的表达式为 y =−625x 2+6.(2) 设船从桥的中心进入,则其最右侧点的横坐标为 2,当 x =2 时,y =−625x 2+6=−625×4+6=12625=5.04,船的顶部高为 4.5,4.5+0.5=5<5.04,故顶部通过符合要求,故这艘游船能安全通过玉带桥.16. 【答案】(1) 方案二;(10,0);由题意知,抛物线的顶点坐标为 A (5,5),且经过点 O (0,0),B (10,0), 设抛物线的解析式为 y =a (x −5)2+5(a ≠0),把点 (0,0) 代入,得 0=a (0−5)2+5,解得a=−15.∴抛物线的解析式为y=−15(x−5)2+5.(2) 在方案二的前提下,由题意知,当x=5−3=2时,−15(x−5)2+5=165,所以水面上涨的高度为165米.17. 【答案】(1) 画出直角坐标系xOy,如图:由题意可知,抛物线ADC的顶点坐标为(6,10),A点坐标为(0,4),可设抛物线ADC的函数表达式为y=a(x−6)2+10,将x=0,y=4代入得:a=−16,∴抛物线ADC的函数表达式为y=−16(x−6)2+10.(2) 由y=8得:−16(x−6)2+10=8,解得:x1=6+2√3,x2=6−2√3,则EF=x1−x2=4√3,即两盏灯的水平距离EF是4√3米.18. 【答案】(1) 根据题意,可设足球开始飞出到第一次落地时,抛物线的解析式为y=a(x−6)2+4,将点A(0,1)代入,得36a+4=1,解得a=−112,∴足球开始飞出到第一次落地时,该抛物线的解析式为y=−112(x−6)2+4.(2) 令y=0,得−112(x−6)2+4=0,解得x1=4√3+6≈13,x2=−4√3+6<0(舍去),∴足球第一次落地点C距守门员13米.(3) 如图,足球第二次弹起后的水平距离为CD,根据题意知CD=EF(即相当于将抛物线AEMFC向下平移了2个单位),∴−112(x−6)2+4=2,解得x1=6−2√6,x2=6+2√6,∴CD=x2−x1=4√6≈10(米),∴BD=13−6+10=17(米).答:运动员乙要在第二个落地点D抢到足球,他应再向前跑17米.。
中考数学一轮复习专题突破练习—有理数的运算(含解析)

中考数学一轮复习专题突破练习—有理数的运算(含解析)一、单选题1.(2022·陕西西安交大第二附属中学南校区九年级其他模拟)﹣23的倒数是()A.32B.23C.﹣32D.﹣23【答案】C【分析】根据:除0外的数都存在倒数,两个乘积是1的数互为倒数,0没有倒数;判断即可.【详解】解:﹣23的倒数是﹣32.故答案为:C.2.(2022·重庆字水中学九年级三模)下列各数中,相反数最大的是()A.-5 B.-2 C.-1 D.0【答案】A【分析】求得各选项的相反数,然后比较大小即可. 【详解】解:各选项的相反数分别为5,2,1,0∵5210>>>∴-5的相反数最大故答案为A .3.(2022·西安市铁一中学九年级其他模拟)据新浪财经2022年4月2日报到,第一龙头股贵州茅台一路走高,截至收盘涨近6%至2162元,收涨5.75%,市值激增至272000000元.数据272000000用科学记数法表示为( ) A .627210⨯B .82.7210⨯C .90.27210⨯D .927210⨯ 【答案】B 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:8272000000 2.7210=⨯,故选:B.4.(2022·长春市解放大路学校九年级其他模拟)下列各数中,比2021-小的数为()A.2022-B.2020-C.0 D.2020【答案】A【分析】根据有理数的大小比较方法即可求解.【详解】∵2022-<2020-<2021-<0<2020故比2021--小的数为2022故选A.5.(2022·福建泉州市·泉州五中九年级其他模拟)据报道,2020年泉州GDP总量突破万亿大关,约为10159亿元,居全国第18位,其中数10159亿元用科学记数法表示为()A.12⨯元C.4⨯元D.51.0159100.1015910⨯元B.131.015910⨯元0.1015910【答案】A【分析】根据题意,运用科学记数法的表示方法可直接得出答案,要注意绝对值大于1的数字科学记数法的表示形式为:10n a ⨯,其中110a ≤<,n 为正整数.【详解】解:10159亿用科学记数法表示为121.015910⨯,故选:A .6.(2022·山东省诸城市树一中学九年级三模)若x x +=0,那么实数x 一定是( )A .负数B .正数C .零D .非正数 【答案】D【分析】先整理,然后根据绝对值等于它的相反数进行解答.【详解】解:由x +|x |=0得,|x |=−x ,∵负数或零的绝对值等于它的相反数,∴x 一定是负数或零,即非正数.故选:D .7.(2022·江苏南京·)下列四个实数中,是负数的是( )A .-(-1)B .(-1)2C .|-1|D .(-1)3【答案】D 【分析】根据相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念判断可得. 【详解】解:A .-(-1)=1,是正数,不符合题意;B .(-1)2=1,是正数,不符合题意;C .|-1|=1,是正数,不符合题意;D .(-1)3=-1,是负数,符合题意;故选:D .8.(2022·河南师大附中九年级三模)1长度单位“埃”,等于一亿分之一厘米,那么一本杂志长为35厘米,等于( )埃.A .73.510⨯B .83.510⨯C .93.510⨯D .83.510-⨯ 【答案】C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:35cm=35×108埃=3.5×109埃.故选:C.9.(2019·宁夏)如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是()A.8 B.12 C.16 D.17【答案】C【解析】试题分析:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=4个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12,第五个图案有三角形1+3+4+4+4=16,故选C.考点:规律型:图形的变化类.10.(2022·江苏苏州·)21÷(-7)的结果是()A.3 B.-3 C.13D.13【答案】B【分析】直接根据有理数的除法法则进行求解即可;【详解】21÷(-7)=-3,故选:B.二、填空题11.(2022·厦门市第九中学九年级二模)2022年厦门中考生大约39700人,这个数字可用科学记数法表示为__________【答案】3.97×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:39700=3.97×104.故答案为:3.97×104. 12.(2022·广东)已知a ,b 为有理数,如果规定一种新的运算“※”,规定:23a b b a =-※,例如:122231431=⨯-⨯=-=※,计算:()235=※※_________ .【答案】10 【分析】根据a ※b =2b -3a ,可以计算出所求式子的值. 【详解】解:∵a ※b =2b -3a ,∴(2※3)※5=(2×3-3×2)※5=(6-6)※5=0※5=2×5-3×0 =10-0=10,故答案为:10.13.(2022·贵州)某同学在银行存入1000元,记为1000+元,则支出500元,记为______元.【答案】500【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:“正”和“负”相对,所以,若向银行存入1000元,记作“+1000元”,那么向银行支出500元,应记作“﹣500元”.故答案为:﹣500.14.(2022·浙江)已知实数a,b互为相反数,且|a+2b|=1,b<0,则b=_____.【答案】-1【分析】直接利用互为相反数的定义得出a+b=0,进而化简得出答案.【详解】解:∵实数a,b互为相反数,∴a+b=0,∴|a+2b|=|a+b+b|=|b|=1,∵b<0,∴b=﹣1.故答案为:﹣1.15.(2019·云南)如果x的相反数是2019,那么x的值是__________.【答案】2019-【解析】【分析】根据相反数的定义进行分析即可.【详解】解:∵2019-的相反数是2019,x的值是:2019-.故答案为2019-三、计算题16.(2020·河北九年级一模)小盛和丽丽在学完了有理数后做起了数学游戏(1)规定用四个不重复(绝对值小于10)的正整数通过加法运算后结果等于12,小盛:1+2+3+6=12:丽丽:1+2+4+5=12,问是否还有其他的算式,如果有请写出来一个,如果没有,请简单说明理由:(2)规定用四个不重复(绝对值小于10)的整数通过加法运算后结果等于12;【答案】(1)见解析;(2)答案不唯一,-1-3+7+9=12.【分析】(1)由于1+2+3+4=10,要想和为12,在此基础上要加上2,据此进行思考即可;(2)根据有理数加减法法则按要求进行计算即可(答案不唯一).【详解】(1)没有其他算式了,四个小于10的不同的正整数最小的和为1+2+3+4=10,要想得到和为12,需要加2,则任何两个数加1或者任意一个数加2,又因为数字不能重复,所以只能是3+1或4+1,3+2,或4+2;故符合条件的算式有1+2+4+5,1+2+3+6;只有两个;(2)答案不唯一,如:-1-3+7+9=12,写出一个即可.17.(2020·河北保定市·)计算下列各式的值.(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)﹣3.61×0.75+0.61×3+(﹣0.2)×75%.4【答案】(1)0;(2)-2.4【分析】(1)根据有理数的加减运算法则,先省略括号,再进行计算即可得解;(2)逆运用乘法分配律进行计算即可得解.【详解】解:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)=﹣53+21+69﹣37=﹣90+90=0;(2)33.610.750.61(0.2)75%-⨯+⨯+-⨯4=﹣3.61×0.75+0.61×0.75+(﹣0.2)×0.75=0.75×(﹣3.61+0.61﹣0.2)=0.75×(﹣3.2)=﹣2.4.18.(2022·河南九年级一模)计算下列各题(1)3-----(2)|25|(15)(2)15351-+-+÷-()()2681224(3)23122--⨯--÷-3[(1)()6||]293(4)3331⨯--⨯+-⨯+⨯-2(1)213(1)5(13)7474;(4)-49【答案】(1)4;(2)-9;(3)34【分析】(1)原式先计算乘方及绝对值的代数意义计算即可求出值;(2)原式利用除法法则变形,再利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式逆用乘法分配律计算即可求出值.【详解】解:(1)原式83154=--+=;(2)原式1535=-+-+⨯-()(24)26812=-+-1220910=-;9(3)原式2723=--⨯--⨯9[()6]8923=-++9943=;4(4)原式3311(25)13(2)=-⨯+-⨯+74410=-⨯-⨯71337=--1039=-;4919.(2018·石家庄市第四十一中学九年级二模)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)【答案】-57.5【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣54﹣9÷(﹣2),=﹣62+4.5,=﹣57.5.20.(2020·河北九年级其他模拟)利用运算律有时能进行简便计算.例198×12=(100-2)×12=1 200-24=1 176;例2-16×233+17×233=(-16+17)×233=233.请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(-15);(2)999×11845+999×1-5⎛⎫⎪⎝⎭-999×1835.【答案】(1)-14 985;(2)99 900.【详解】(1)原式=(1 000-1)×(-15)=-15 000+15=-14 985.(2)原式=999×413 118-18555⎡⎛⎫⎤+-⎪⎢⎥⎣⎝⎭⎦=999×100=99 900.21.(2019·浙江中考模拟)计算:–23+6÷3×23.圆圆同学的计算过程如下:原式=–6+6÷2=0÷2=0,请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】–203.【详解】圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+2×23=﹣8+43=﹣203.22.(2022·山东课时练习)求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a﹣2(a<2);(6)a﹣b.【答案】(1)38;(2)0.15;(3)﹣a;(4)3b;(5)2﹣a;(6)a﹣b≥0时,a ﹣b;a﹣b<0时,b﹣a.【详解】(1)|﹣38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=﹣a;(4)∵b>0,∴3b>0,∴|3b|=3b;(5)∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a;(6)a﹣b≥0时,|a﹣b|=a﹣b;a﹣b<0时,|a﹣b|=b﹣a.23.(2022·全国课时练习)某沙漠可以粗略看成一个长方体,该沙漠的长度约是4800000m,沙层的深度大约是366cm,已知该沙漠中的体积约为33345km3立方千米.(1)请将沙漠中沙的体积用科学记数法表示出来(单位:m3);(2)该沙漠的宽度是多少米(精确到万位)?(3)如果一粒沙子体积大约是0.036mm3,那么,该沙漠中有多少粒沙子(用科学记数法表示)?【答案】(1)3.334 5×1013m3;(2)1.90×104m;(3)9.26×1023【详解】【分析】(1)首先把3 3345km3换算成33 345 000 000 000m3,再写成科学记数法.(2)沙漠的体积÷撒哈拉沙漠的长度÷沙层的深度=撒哈拉沙漠的宽度.(3)沙漠的体积÷一粒沙子体积=沙漠沙子的粒数.(1)33 345km3=33 345 000 000 000m3=3.334 5×1013m3;(2)3.334 5×1013m3÷4800000m÷366m≈1.90×104m.答:沙漠的宽度是1.90×104m.(3)3.334 5×1013m3=3.334 5×1022mm3,3.3345×1022mm3÷0.036mm3=9.26×1023(粒).答:沙漠中有9.26×1023粒沙子.。
2025年中考数学总复习第一部分专题突破专题7 二次函数压轴专练

∵y的最大值与最小值之和为2,∴-m2-6m-3+(-3)=2,
解得m=-2或m=-4(舍去).
ⅱ)当m≤-3时,可得x=-3时,y取得最大值,为6.
∵y的最大值与最小值之和为2,∴y的最小值为-4,
∴易知-m2 -6m-3=-4,解得m=-3- 10或m=-3+
10(舍去).综上所述,m=-2或m=-3- 10.
2a
2a
最小值;
[3]如图③,对称轴x=-
b
在m≤x≤n右侧,当x=n时,y取最
2a
小值.
类型1
类型2
类型3
3.(1)已知函数y=-x2 +bx+c(b,c为常数)的图象经过点(0,
-3),(-6,-3).
①当-4≤x≤0时,y的最大值为______;
6
类型1
类型2
类型3
②当m≤x≤0时,若y的最大值与最小值之和为2,求m的值;
专题突破篇
专题七
二次函数压轴专练
类型1 二次函数值的大小比较
例1:已知抛物线y=ax2-2ax+b(a>0)经过A(2n+3,y1),B(n
-1,y2)两点,若A,B分别位于抛物线对称轴的两侧,且y1<
-1<n<0
y2,则n的取值范围是________________.[2023福建4分]
类型1
类型2
类型1
类型2
类型3
(2)已知二次函数y=(x-h)2(h为常数),当自变量x的值满足-
1≤x≤3时,与其对应的函数值y的最小值为 4,则h的值为
-3或5
____________.
类型1
类型2
类型3
类型3 二次函数的定点、定值、定线
专题一 反比例函数的综合——2023届中考数学热点题型突破(含答案)

专题一反比例函数的综合——2023届中考数学热点题型突破题型1 反比例函数与一次函数图象交点问题1.已知正比例函数与反比例函数的图象交于A、B两点,若点,则点B的坐标为( )A. B. C. D.2.如图,在平面直角坐标系中,点,点B与点A关于直线对称,过点B 作反比例函数的图像.(1)____________;(2)若对于直线,总有y随x的增大而增大,设直线与双曲线交点的横坐标为t,则t的取值范围是___________.3.如图, 一次函数的图象与反比例函数的图象相交于A,B两点, 其中点A的坐标为, 点B 的坐标为.(1)根据图象, 直接写出满足的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上, 连接OA,OB,OP, 恰有, 求点P 的坐标.题型2 反比例函数与一次函数图形面积问题4.如图,P是反比例函数的图象上一点,过点P分别作x轴,y轴的平行线,交反比例函数的图象于点M,N,则的面积为( )A.1B.1.2C.2D.2.45.如图, 一次函数的图象与x轴和y轴分别交于点A 和点B, 与反比例函数的图象在第一象限内交于点C,轴, 轴, 垂足分别为点D,E. 当矩形ODCE与的面积相等时, k的值为___________.6.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数(m≠0)的图象相交于A,B两点,过点A作AD⊥x轴于点D, y=mxAO=5,,B点的坐标为(―6,n)(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)P是y轴上一点,且△AOP是等腰三角形,请直接写出所有符合条件的P点坐标.题型3 反比例函数与几何图形结合7.如图, 点A在双曲线上, 连接 AO并延长, 交双曲线于点C. 以AC为对角线作菱形ABCD, 点B,D在反比例函数的图象上, 且, 则k的值是( )A. B. C. D. -18.如图,已知,在矩形AOBC中,,,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数的图象与AC边交于点E,将沿EF对折后,C点恰好落在OB上的点D处,则k的值为___________.9.如图, 在平面直角坐标系中, 直线与反比例函数的图象交于点,, 过点 A作交反比例函数图象于另一点D, 过点B作交反比例函数图象于另一点C, 连接CD.(1)求直线AB的解析式;(2)判断四边形 ABCD的形状, 并说明理由.答案以及解析1.答案:A解析:把点代入,得,又正比例函数与反比例函数交点关于原点对称,则.2.答案:(1)12(2)解析:(1)点,点B与点A关于点线对称,,将代入,解得,.(2)对于直线,总有y随x的增大而增大,,,当时,,直线过定点,把代入,得,解得,故.3.答案: (1) 或.(2)(3)解析: (1) 由题图可知, 当或时, 一次函数的图象在反比例函数的图象的上方,当或时, 满足.(2) 点在反比例函数的图象上, , 解得,故反比例函数的表达式为.点在反比例函数的图象上, ,点B的坐标为.将点 A,B的坐标分别代入, 得解得故一次函数的表达式为.(3)设直线与x 轴交于点C, 当时, ,,点C的坐标为.,.,.点P在线段AB上,设点P 的坐标为.,,解得,,故点P的坐标为.4.答案:A解析:设,则,,,,的面积为:.故选:A.5.答案:2解析:对于一次函数, 当时, , 当时, ,即, 故.结合反比例函数中的几何意义, 可知.,, 解得,(舍去).6.答案:(1)(2)9(3)P点坐标为:(0,8)或(0,5)或(0,―5)或(0,258)..解析:(1)(1)AO=5,AD=3,设:OD=3a,AD=4a,则AD=5a=5,解得:a=1,故点A(3,4),则m=3×4=12,故反比例函数的表达式为:y=12x,故B(―6,―2),将点A,B的坐标代入一次函数表达式y=kx+b得:,解得:k=23b=2,故一次函数的表达式为:y=23x+2;(2)设一次函数交y轴于点M(0,2),△AOB的面积;(3)设点,而点A ,O 的坐标分别为:,,AP 2=9+(m ―4)2,,PO 2=m 2,当时,解得:或0(舍去0);当时,同理可得:;当时,同理可得:m =258;综上,P 点坐标为:或或或(0,258)..7.答案:C解析:如图, 过点A 作 轴于点F ,过点B 作 轴于点E , 则,四边形 ABCD 是菱 形, ,. 又,,,,. 反比例函数的图象位于第二、四象限,,.8.答案:解析:解:如图,过点E 作轴于点M ,将沿EF 对折后,C 点恰好落在OB 上的D 点处,,,,,而,,,;又,,,,;,而,,在中,,即,解得,故答案为.9.答案: (1)(2)四边形ABCD是矩形,理由见解析解析:(1)点在反比例函数的图象上,,反比例函数的解析式为.点在反比例函数的图象上,,点.将,分别代入, 得解得直线AB的解析式为.(2) 四边形ABCD是矩形.理由如下:, 直线AB的解析式为, 易知可设直线AD的解析式为.将代入, 得,,直线AD的解析式为.令, 解得,,点,.由, 点, 易得直线BC的解析式为,令, 解得,,点,,.又,四边形ABCD 是平行四边形.又,四边形ABCD 是矩形.。
2023年中考数学复习专项突破——二次函数解答题附解析

2023年数学中考复习专项突破——二次函数解答题一、解答题1.已知二次函数y=x 2+3x+m 的图象与x 轴交于点A (﹣4,0).(1)求m 的值;(2)求该函数图象与坐标轴其余交点的坐标.2.已知如图,抛物线的顶点D 的坐标为(1,-4),且与y 轴交于点C (0,-3).(1)求该函数的关系式;(2)求该抛物线与x 轴的交点A ,B 的坐标.3.如图,在△ABC 中,∠B=90°,AB=12,BC=24,动点P 从点A 开始沿边AB 向终点B 以每秒2个单位长度的速度移动,动点Q 从点B 开始沿边BC 以每秒4个单位长度的速度向终点C 移动,如果点P 、Q 分别从点A 、B 同时出发,那么△PBQ 的面积S 随出发时间t (s )如何变化?写出函数关系式及t 的取值范围.4.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x≥60)元,销售量为y 套.(1)求出y 与x 的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax 2+bx+c (a≠0)的顶点坐标是(2b a -,244ac ba-)].5.如图,二次函数y=(x+2)2+m 的图象与y 轴交于点C ,点B 在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的表达式.(2)根据图象,写出满足(x+2)2≥kx+b-m的x的取值范围6.某种产品的年产量不超过1000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图(2).若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣费用)7.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.若商场想平均每天盈利达1200元,那么每件衬衫应降价多少元?你若是商场经理,为获得最大利润,每件衬衫应降价多少元,此时最大利润是多少?8.某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p) 3.9万台 4.0万台 4.1万台 4.2万台 4.3万台 4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.9.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(1)求抛物线的解析式和直线BC的解析式;(2)当点P在线段OB上运动时,若△CMN是以MN为腰的等腰直角三角形时,求m的值;(3)当以C、O、M、N为顶点的四边形是以OC为一边的平行四边形时,求m的值.10.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(Ⅰ)求过B,C两点的抛物线y=ax2+bx﹣1解析式;(Ⅱ)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?最大值是多少?并说明理由.11.如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成长方形零件PQMN,使长方形PQMN的边QM在BC上,其余两个顶点P,N分别在AB,AC上,求这个长方形零件PQMN面积S的最大值.12.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为()()11206006001000k x xyk x b x≤<⎧⎪=⎨+≤≤⎪⎩,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.13.如图,在矩形ABCD中,AB=18,AD=12,点M是边AB的中点,连结DM,DM与AC交于点G。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【点拨交流】
(1)要判断△APC 是等腰三角形,应具备什么条件? (2)怎样得到 PO⊥AC 呢? (3)当 PO⊥AC 时,点 P 在⊙O 的位置有几种情况?此 时∠ACP 的大小是多少? (4)当∠ACP=30°时,点 P 在⊙O 的位置有几种情况? 此时△BPC 的形状有什么特征?
专题一┃ 选择、填空题难题分析
二、 填空题难题分析 例 2 [2013·安徽] 如图 X1-2,已知矩形纸片 ABCD 中,
AB=1,BC=2,将该纸片折叠成一个平面图形,折痕 EF 不经 过 A 点(E,F 是该矩形边界上的点),折叠后点 A 落在点 A′处, 给出以下判断:
图 X1-2
①当四边形 A′CDF 为正方形时,EF= 2;
(3)当 PO⊥AC 时,根据垂径定理,点 P 可能是劣弧 AC 中点,也可能是优弧 ABC 的中点,此时∠ACP=30°或 60°;
(4)当∠ACP=30°时,分两种情况:点 P 可能在劣弧 AC 上,也可能在劣弧 AB 上.根据圆周角定理,结合等边三角形 的性质易得到△BPC 均是直角三角形.
专题一┃ 选择、填空题难题分析 【方法总结】
与①中的折痕平行时,折痕 EF= 2,此时四边形 A′CDF 为
直角梯形,故②不正确;当 EF= 5时,折痕为对角线 BD, 此时四边形 BA′CD 为等腰梯形,故③正确;当四边形 BA′CD 为等腰梯形时,折痕 EF 就是矩形 ABCD 对角线 BD 的长,此 时 EF 一定等于 5,故④正确.
【点拨交流】 (1)图形的折叠能得到什么性质? (2)当四边形 A′CDF 为正方形时,折痕 EF 具有什么特征?怎 样求 EF?
一、 选择题难题分析
例 1 [2013·安徽] 如图 X1-1,点 P 是等边三角形 ABC 外
接圆⊙O 上一点,在以下判断中,不.正.确.的是
(C )
图 X1-1 A.当弦 PB 最长时,△APC 是等腰三角形 B.当△APC 是等腰三角形时,PO⊥AC C.当 PO⊥AC 时,∠ACP=30° D.当∠ACP=30°时,△BPC 是直角三角形
品在第 x 天销售的相关信息如下表所示.
销售量 p(件)
p=50-x
销售单价 q(元/件)
当 1≤x≤20 时,q=30+21x; 当 21≤x≤40 时,q=20+5x25.
(1)请计算第几天该商品的销售单价为 35 元/件? (2)求该网店第 x 天获得的利润 y 关于 x 的函数关系式; (3)这 40 天中该网店第几天获得的利润最大?最大利润 是多少?
解析
A.当弦 PB 最长时,PB 是⊙O 的直径,O 既是等边△ABC 的内心,也是外心,所以∠ABP=∠CBP,根据圆周角性质, 弧 PA=弧 PC,所以 PA=PC,选项 A 正确;B.当△APC 是等 腰三角形时,点 P 是弧 AC 的中点或与点 B 重合,由垂径定理, 都可以得到 PO⊥AC,选项 B 正确;C.当 PO⊥AC 时,由点 P 是弧 AC 的中点或与点 B 重合,易得∠ACP=30°或∠ACP= 60°.选项 C 错误;D.当∠ACP=30°时,分两种情况,点 P 是弧 AC 或弧 AB 的中点,都可以得到△BPC 是直角三角形, 选项 D 正确.故选 C.
(2)若购买的两种球拍数一样,求 x 的值.
解 (1)4000+25x(元);
(2)根据题意,得20x00=20x0+0+2025x,
解得 x=±40, 经检验 x=±40 都是原方程的解,但 x=-40 不合题意, 应舍去,只取 x=40.∴x=40.
【点拨交流】 (1)怎样用含 x 的代数式表示建立什么样的方程? (3)怎样解这个分式方程?怎样验根?
专题一 选择、填空题难题分析 专题二 数学建模 专题三 解直角三角形的应用 专题四 规律性探索题 专题五 动态性问题 专题六 阅读理解题 专题七 探究性问题
专题一 选择、填空题难题分析
安徽中考题中的选择题和填空题属于基础题,重在考查 学生的基础知识和基本技能.选择题的最后一题可能是图形 变化结合函数题,也可能是多知识综合的试题,有时还要用 到分类讨论、数形结合等数学思想;填空题的最后一道题多 为多选题,一般难度较大.
于 q=30+12x,当 q=35 时,x=10,在 1≤x≤20 范围内;对于 q
=20+5x25,当 q=35 时,x=35,在 21≤x≤40 范围内. (2)根据利润公式:总利润=每件商品的利润×销售的数量,
每件商品的利润=销售价格-成本价,由于销售单价与 x 之间是 分段函数关系,所以利润 y 也是关于 x 的分段函数.y=
【点拨交流】
(1)在一般三角形中,如何求边长? (2)在 Rt△ACD 中,如何求 AD? (3)在 Rt△BCD 中,如何求 BD? (4)如何求 AB 的长?
解
(1)一般是作三角形的高(本题中过点 C 作 CD⊥AB 于 D), 构造直角三角形,利用直角三角形的边角关系解题.注意尽量 不要分割已知的特殊角.
一、 方程(组)及其应用
例 1 [2013·安徽] 某校为了进一步开展“阳光体育”活 动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一 副乒乓球拍贵 20 元,购买羽毛球拍的费用比购买乒乓球拍的 2000 元要多,多出的部分能购买 25 副乒乓球拍.
(1)若每副乒乓球拍的价格为 x 元,请你用含 x 的代数式 表示该校购买这批乒乓球拍和羽毛球拍的总费用;
(3)①当 1≤x≤20 时, y=-21x2+15x+500=-21(x-15)2+612.5,
∵-12<0, ∴当 x=15 时,y 最大值=612.5(元); ②当 21≤x≤40 时,y=262x50-525,
∵262x50随 x 的增大而减小,
∴当 x=21 时,y 最大值=2622150-525=725(元). 综上所述,这 40 天中该网店第 21 天获得的利润最大,最大 利润是 725 元.
专题三 解直角三角形的应用
解直角三角形的实际应用是将实际生活中的问题转化 为数学模型,通过构建直角三角形,利用勾股定理、锐角三 角函数、直角三角形的边角关系来解决问题.安徽中考题常 与航海、坡面、楼高的测量等问题相结合,体现了数学的应 用价值.预计 2014 年仍会出现解直角三角形的问题.
一、 直接考查解直角三角形知识 例 1 如图 X3-1,在△ABC 中,∠A=30°,∠B=45°,
(4)一般的函数通常没有最值,但如果自变量的取值范围有 特别规定,可结合函数的增减性确定最值.当 21≤x≤40 时,
y=262x50-525,∵262x50随 x 的增大而减小,∴当 x=21 时,
y 最大值=2622150-525=725(元). (5)综合考虑(3)、(4)两种情况下,比较得出结论.这 40 天中该 网店第 21 天获得的利润最大,最大利润是 725 元.
【方法总结】
专题二 数学建模
解决生活中的实际问题,往往离不开数学建模,方程与函数 是常用的数学建模.列方程(组)解应用题和由实际问题建立函数 关系式,利用函数的性质解决问题是安徽中考试题考查的热点题 型之一,主要涉及一次方程(组)的应用、一元二次方程的应用、 分式方程的应用、函数的图象与性质及函数的实际应用等.
(3)把①中的折痕 EF 向右平移,此时 EF= 2,折痕 EF 不 一定经过点 B,此时四边形 A′CDF 是正方形或直角梯形.
(4)EF= 5时,折痕 EF 就是矩形 ABCD 的对角线 BD,此 时四边形 BA′CD 是等腰梯形.
(5)运用逆向思维,当四边形 BA′CD 为等腰梯形时,折痕 EF 是矩形 ABCD 的对角线 BD,用勾股定理可求 EF= 12+22= 5.
(2)根据直角三角形的边角关系:cos30°=AADC,求得 AD = 23×2 3=3;
(3)先根据勾股定理或直角三角形的边角关系,求得 CD= 3,再根据 tan45°=CBDD,BD=CD= 3;
解 (1)①当 1≤x≤20 时,由 q=35 得:30+12x=35,解得 x=10; ②当 21≤x≤40 时,由 q=35 得:20+5x25=35,解得 x=35. 综上所述,当第 10 天或第 35 天该商品的销售单价为 35 元/件; (2)①当 1≤x≤20 时,y=30+12x-20(50-x)=-12x2+15x+500; ②当 21≤x≤40 时,y=20+5x25-20(50-x)=262x50-525. 综上:y=- 26x2125x02+-1552x5+(52010≤(x1≤≤4x0≤)2. 0),
②当 EF= 2时,四边形 A′CDF 为正方形;
③当 EF= 5时,四边形 BA′CD 为等腰梯形;
④当四边形 BA′CD 为等腰梯形时,EF= 5. 其中正确的是____①__③__④______(把所有正确结论的序号都 填在横线上).
解 析 当四边形 A′CDF 为正方形时,折痕 EF 过点 B 且平分∠ABC,此时 EF= 2,故①正确;当折痕 EF 保持
-12x2+15x+500(1≤x≤20), 262x50-525(21≤x≤40).
(3)对于二次函数,一般用配方的方法配成顶点形式,结合 抛物线的开口方向和自变量的取值范围确定最值.当 1≤x≤20
时,y=-21x2+15x+500=-21(x-15)2+612.5,∵-12<0, ∴当 x=15 时,y 最大值=612.5(元);
解
(1)需满足 AP=CP 或∠PAC=∠PCA.由弦 PB 最长即为 ⊙O 直径,证得弧 AP=弧 CP,进而得到 AP=CP.
(2)根据垂径定理,只需满足点 P 是劣弧 AC 或优弧 ABC 的中点.由 PA=PC,根据圆心角、弧、弦之间的关系,可得 到弧 AP=弧 CP,即点 P 是劣弧 AC 或优弧 ABC 的中点.
【点拨交流】 (1)对于分段函数,如何求函数值对应的自变量取值? (2)如何确定该网店第 x 天获得的利润 y 关于 x 的函数关系 式? (3)对于二次函数如何确定它的最值? (4)对于一般的函数,如何确定它的最值? (5)最终如何确定最大利润?