2019八年级数学下册 第十章 分式 10.5 分式方程(3)教案 (新版)苏科版

合集下载

初中数学之分式方程知识点汇总

初中数学之分式方程知识点汇总

初中数学之分式方程知识点汇总
分式方程的概念
分母中含有未知数的方程叫分式方程.
要点诠释:
(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.
(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 初中数学分式方程的解法
解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。

在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。

因为解分式方程时可能产生增根,所以解分式方程时必须验根。

解分式方程的一般步骤:
(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);
(2)解这个整式方程,求出整式方程的解;
(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.。

苏科版八年级数学下册10.5分式方程课件

苏科版八年级数学下册10.5分式方程课件
4
5
1
(3)
2 ; (4) 2
2
0.
x 1 x 1
x x x x
检测反馈
检测反馈
检测反馈
检测反馈
有增根?
x3
3 x
解:原方程可变形为
x2
m
2
x 3
x 3
方程两边同乘以(x 3),得 x 2 2( x 3) m
m=4-x

当 x 3 0 时,即 x 3时原分式方程会产生增根
把 x 3 代入①中,则 m 1
合作学习
随堂练习
3
6
x+m
当m=_____时,— + —— = ——有增根.
10.5 分式方程(2)
八年级下册
复习回顾
1.分式方程的概念: 分母中含有未知数的方程叫做分式方程
2.解分式方程的基本思想:
乘最简公分母
分式方程
转化
3.解分式方程的关键:找最简公分母.
4.解分式方程的步骤:一化二解三检验.
整式方程
学 习 目 标
1.了解分式方程产生增根的原因;
2.学会检验根的合理性;

1
随堂练习(2)
x 2 3x 6
解:两边同乘以3(x-2),得:
3(5x-4)=4x+10-3(x-2)
x=2
检验:把x=2代入3(x-2)=0
∴x=2不是原方程的根 ∴原方程无解
检测反馈
1、解下列方程:
1
2
x
2x
(1)
; (2)

1;
2x x 3
x 1 3x 3
2

10.1分式-苏科版八年级数学下册教案

10.1分式-苏科版八年级数学下册教案

10.1 分式-苏科版八年级数学下册教案
一、教学目标
1.能够复述分式的定义及其特点;
2.能够熟练使用分式加减法公式求解相关问题;
3.能够归纳、总结分式的基本运算规律。

二、教学重点
1.分式的概念及其特点;
2.分式的加减法公式。

三、教学难点
分式的乘法和除法。

四、教学过程
4.1 导入与引入(5分钟)
教师通过提问、讲故事等方式,让学生了解到分子、分母的含义,并通过实例引发学生对分式的认识。

4.2 介绍分式的定义及特点(10分钟)
教师介绍分式的定义及其特点,并通过数学公式、图表等方式,让学生深入理解。

4.3 分式的基本运算(40分钟)
4.3.1 分式的加减法(20分钟)
教师介绍分式的加减法公式,并通过示例让学生熟练掌握分式的加减法运算,最后让学生自己举出几个实例进行加减练习。

4.3.2 分式的乘法和除法(20分钟)
教师介绍分式的乘法和除法规律,并通过实例让学生掌握分式的乘法和除法运算。

4.4 讲解分式的简化(10分钟)
教师通过实例讲解分式的简化规律,并让学生自己练习简化分式。

4.5 小结(5分钟)
教师对本课时内容进行小结,并布置课后作业。

五、课后作业
1.完成课堂练习;
2.预习下一节内容:分式的应用。

六、教学反思
本节课的教学重点是基本运算,难点是乘法和除法。

让学生理解分式的概念及其特点,并规范运算,把知识点串起来,便于学生理解。

课后需要多进行练习,多理解思考。

[K12学习]八年级数学下册 10.5 分式方程 列分式方程解应用题的关键是什么素材 (新版)苏科版

[K12学习]八年级数学下册 10.5 分式方程 列分式方程解应用题的关键是什么素材 (新版)苏科版

K12学习教育资源
K12学习教育资源列分式方程解应用题的关键是什么?
难易度:★★★★★
关键词:分式应用题
答案:
解分式方程应用题,要读懂题意,通过题目找出等量关系之后,列出方程进行求解就可以了.
【举一反三】
典例:某班组织学生参观科技馆,科技馆为支持学校开展的科普活动,决定按最低标准对学生进行一次性收费,全班共计200元,开展活动时有10名学生因故未能参加,结果平均每人比原计划多支出1元钱,问该班原计划有多少学生参加?
思路导引:一般来讲,解决本题要设原计划有x名学生参加活动,则=1,
解得x1=50,x2=-40.经检验,x=50是原方程的根,x=-40不合题意,舍去.答:原计划有50人参加活动.
标准答案:50.。

10.5《分式方程(3)》参考教案

10.5《分式方程(3)》参考教案
(1) = (2) + =2
三、例题探索:
例1、为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。这样,这两个小组的每个同学就要比原计划多做4面。如果这3个小组的人数相等,那么每个小组有多少名学生?
解:设每个小组有学生x名.
根据题意,得x=10是所列方程的解.
答:每个小组有学生10名.
例2、甲、乙两公司各为“见义勇为基金会”捐款30000元,已知乙公司比甲公司人均多捐款20元,且甲公司的人数比乙公司的人数多20%。问甲、乙两公司各有多少人?
解:设乙公司有x人,则甲公司有(1+20%)x人.
根据题意,得
解这个方程,得
x=1.6
经检验,x=10是所列方程的解.
但按此价格,他们都买了7.5本笔记本,不符合实际意义.
答:小明和小丽不可能买到相同数量的笔记本.
总结:用分式方程解实际问题的一般步骤:
(1)审题
(2)设未知数
(3)根据题意列方程
(4)解方程
(5)检验
(6)答
四、课堂练习:
课本P118页练习1、2
教学难点
如何结合实际分析问题,列出分式方程。分析过程,得到等量关系
教具准备
小黑板、课件等
教师教学过程
教师复备内容
一、课前预习与导学:
1、列方程(组)解应用题的一般步骤是什么?
(1)根据题意设末知数;
(2)分析题意寻找等量关系,列方程;
(3)解所列方程;
(4)检验所列方程的解是否符合题意;
(5)写出完整的答案。
课题
10.5分式方程(3)
复备人
复备时间

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。

但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。

下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。

一定要让学生充分活动起来。

在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。

可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。

今后要防止类似事情的发生。

2、问题(1) 分式的运算错的较多。

分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。

所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。

其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。

(2)分式方程也是错误重灾区。

一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。

八下数学课件: 分式方程( 利用解分式方程解决实际问题)



3
=2
解得: = 100
经检验: = 100是原方程的解,
∴高铁的平均速度是每小时3×100=300千米.
答:高铁的平均速度是每小时300千米.
情景引入(销售问题)
某商场经市场调查,预计一款夏季童装能获得市场青睐,便花费15000元购
进了一批此款童装,上市后很快售罄.该店决定继续进货,由于第二批进货数量是
解得a=


检验,由S、v都是正数,当a=
所以,原分式方程的解为a=


≠0

。答:略

练一练(距离问题)
小刚家(点A)、王老师家(点B)、学校(点C)在同一条路上,小刚家到王老师家的
路程为3千米,王老师家到学校的路程为1千米。为了使小刚能按时到校,王老师每天
骑自行车接小刚上学。已知王老师骑自行车的速度是步行的3倍,每天比平时步行上
1)本题等量关系为_______________________________________;
2)设提速前平均速度为a km/h。


S
3)提速前行驶距离___________,提速前时间表示为____________;
+
S+50
4)提速后行驶距离___________,提速后时间表示为____________;
解:设第一次该干果的进货价是每千克x元,
则第二次购进干果的进货价是每千克(x+5)元,
9000
5000
1.5
根据题意得: × = +5

解得:x=25,
经检验,x=25是所列方程的解.
答:该种干果的第一次进价是每千克25元.
课后回顾

分式方程的应用PPT课件


解: 设乙公司有x人,则甲公司有(1+20%)x人.
根据题意,得
30000 30000 20. x (1 20%)x
解这个方程,得
x=250.
经检验,x=250是所列方程的解.
答:甲公司有300人,乙公司有250人.
新知导入 课程讲授 随堂练习 课堂小结
分式方程的应用
例3 小明用12元买软面笔记本,小丽用21元买硬面笔记本,已知
D.
s s 60 xv x
新知导入 课程讲授 随堂练习 课堂小结
CONTENTS
3
新知导入 课程讲授 随堂练习 课堂小结
1.甲、乙两船从相距300 km的A,B两地同时出发相向而行,甲船从A地
顺流航行180 km时与从B地逆流航行的乙船相遇,水流的速度为6
km/h,若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中
4.陶瓷的发展史是中华文明史的一个重要组成部分,中国作为四 大文明古国之一,为人类社会的进步和发展做出了卓越的贡献 ,其中陶瓷的发明和发展更具有独特的意义.景德镇某陶瓷厂接 到制作480件陶瓷的订单,为了尽快完成任务,该厂实际每天制 作的件数比原来每天多60%,结果提前10天完成任务,原来每 天制作_1_8____件.
划提高了25%,结果提前30天完成了这一任务.设实际工作时每天
绿化的面积为x万平方米,则下面所列方程中正确的是( B )
A.
60 x
1
60
25%x
30
B. 1 25%x 60 30
60
x
C.
1
60
25%x
60 x
30
D. 60 60 1 25% 30
x
x
新知导入 课程讲授 随堂练习 课堂小结

《分式的基本性质》教学设计五篇范文

《分式的基本性质》教学设计五篇范文第一篇:《分式的基本性质》教学设计《分式的基本性质》教学设计黄大恩教材与目标1、教材的地位及作用分式的基本性质是分式本章的重点内容之一,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。

2、学情分析本节课是在学生学习了分数的基本性质的基础上进行的,学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定归纳总结的能力。

3、教学目标(1)了解分式的基本性质。

灵活运用“性质”进行分式的变形。

(2)通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。

(3)通过探索分式的基本性质,积累数学活动经验。

(4)通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。

4、教学重难点分析重点:理解并掌握分式的基本性质。

难点:灵活运用分式的基本性质,进行分式化简、变形。

二、教法与学法1、教学方法基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。

学法指导本节课采用学生自主探索,讨论交流,观察发现,师生互动的学习方式。

学生通过自主探究-自主总结-自主提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。

同时强化了学生以旧知识类比得出新知识的能力。

三.教学过程(一)情景引入观察、对比各图形(课件展示)中的阴影部分面积,你能发现什么结论?(直观得出结论)问题:(1)若图中大正方形的面积为1,则上面三幅图的面积分别表示为?(师生共同完成)(设计意图:通过复习分数的的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。

初中数学分式下册教案

初中数学分式下册教案教学目标:1. 理解分式的概念,掌握分式的基本性质。

2. 学会分式的化简、运算和应用。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 分式的概念和基本性质2. 分式的化简和运算3. 分式的应用教学过程:一、导入(5分钟)1. 复习分数的概念和性质。

2. 引入分式的概念,解释分式与分数的区别。

二、分式的基本性质(15分钟)1. 展示分式的基本性质,如分式的分子、分母和值的变化规律。

2. 让学生通过例题来理解和掌握分式的基本性质。

三、分式的化简(20分钟)1. 介绍分式的化简方法,如分子分母的公因式提取、分式的乘除法等。

2. 分组讨论和练习化简分式的题目,教师进行指导和解答。

四、分式的运算(15分钟)1. 介绍分式的运算规则,如加减法、乘除法等。

2. 让学生通过例题来理解和掌握分式的运算规则。

3. 进行一些分式运算的练习题,教师进行指导和解答。

五、分式的应用(15分钟)1. 介绍分式在实际问题中的应用,如比例、折扣、浓度等问题。

2. 让学生通过例题来理解和掌握分式的应用方法。

3. 进行一些分式应用的练习题,教师进行指导和解答。

六、总结与布置作业(5分钟)1. 对本节课的内容进行总结,强调分式的概念、基本性质和运算规则。

2. 布置一些分式的化简、运算和应用的练习题,让学生进行巩固练习。

教学评价:1. 通过课堂讲解、练习和应用题的解答,评价学生对分式的概念、基本性质和运算规则的理解和掌握程度。

2. 观察学生在分组讨论和练习中的表现,评价学生的合作和沟通能力。

3. 对学生的作业进行批改和评价,了解学生对分式应用的掌握情况。

以上是一篇初中数学分式下册的教案,根据学生的实际情况和教学环境,可以进行适当的调整和修改。

希望对您的教学有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、小结反思
1.分式方程解应用题的一般步骤有哪些?
2.在学习过程中你还存在哪些问题?
(1)根 据题意设末知数;
( 2)分析题意寻找等量关系,列方程;
(3)解所列方程;
(4)检验所列方程的解是否符合题意;
(5)写出完整的答案.
自学教材内容
完成检测题
交流问难
分组展示板演并讲解学生讲解
试试看,学生思考如何列式,谈谈可以有几种方法。
教法教具
自主先学当堂检测交流展示检测反馈小结反思
教具:多媒体等












教学内容
个案调整
教师主导活动
学生主体活动
一、情境引入
列方程(组)解应用题的一般步骤是什么?
关键是什么?
1.京沪 铁路是我国东部沿海地区纵贯南北的大动脉,全长1462 km,是我国最繁忙的干线之一.如果货运列车的速度为akm/h,快速列车的速度是货运列车的2倍,那么:
3、自学检测:
(1).解方程:
① =
② - =4
(2).某中学组织学生到离学校15km的东山游玩,先 遣队与大队同时出发,先遣队的速度是大 队速度的1.2倍,结果先遣队比大队 早到0.5h.先遣队和大队的速度各是多少?
(3)质疑问难,提出学习中存在的问题。
三、交流展示
(一)展示一
分组展示自主先学中的问题,归纳所学知识。
2、甲、乙两公司各为“见义勇为基金会”捐款30000元,已知乙公司比甲公司人均多捐款20元,且甲公司的人数比 乙公司的人数多20%。问甲、乙两公司各有多少人?
3、小明买软面笔记本共用去12元,小丽买硬面笔记本共用去21元,已知每本硬面笔记本比软面笔记本贵1、2元,小明和小丽能买到相同本数的笔记本吗?
讲清:
1、找准等量关系。
2、用分式方程解决实际问题的一般步骤
3、根据实际问题的意义检验所得的结果是否合理。
(二)展示二(例题)
1、为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组 制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。这样,这两个小组的每个同学就要比原计划多做4面。如果这3个小组的人数相等,那么每个小组有多少名学生?
(1)货运列车从北京到上海需要______小时;
(2)快速列车从北京到上海需要_____小时;
(3)已知从北京到上海快速列车比货运列车少用12h,你能列出一个方程吗?
二、自主先学
1、自学内容:P116--11 8
2、自学指导:
(1)用分式方程解决实际问题的一般步骤
(2)能根据实际问题的意义检验所得的结果是否合理。
学生认真完成练习后,小组内讨论交流。
学生说说
用分式方程解实际问题的一般步骤

书四、检测反馈
1、小丽 与小明同时为艺术节制作小红花,小明每小时比小丽多做2朵,那么小明做100朵小红花与小丽做90朵小红花所用时间相等吗?
2、改善生态环境,防止水土流失,某村计划在荒坡上种960棵树,由于青年志愿者的支援,每日比原计划 多种1/3,结果提前4天完成任务,原计划每天种多少棵数?
3市为了构建城 市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需将原定的工作效率提高25%。原计划完成这项工程需要多少个月?
10.5分式方程
教学
目标
1、能将实际问题中的等量关系用分式方程表示,列出分式方程解决简单的实际问题,并能根据实际问题的意义检验所得的结果是否合理.
2、发展学生分析问题、解决问题的能力,渗 透数学的转化思想,培养学生的应用意识.
重点
如何结合实际分 析问题,列出分式方程.
难点
如何结合实际分析问题,列出分式方程.
相关文档
最新文档