平面直角坐标系培优习题
平面直角坐标系培优训练

平面直角坐标系一、选择题1、如图,若在象棋盘上成立直角坐标系,使“帅”位于点(-1, -2).“馬”位于点( 2,-2),则“兵”位于点()A 、( -1,1)B、(-2 ,-1)C、(-3,1)D、(1,-2)(第1题)(第3题)(第8题)2、在平面直角坐标系中,点P 的坐标为( -2,a2+1),则点 P 所在的象限是()A 、第一象限B、第二象限C、第三象限D、第四象限3、如图,在平面直角坐标系中,以O(0,0),A ( 1, 1),B( 3,0)为极点,结构平行四边形,以下各点中不可以作为平行四边形极点坐标的是()A 、( -3,1)B、(4,1)C、( -2,1)D、( 2, -1)4、若点 A (2, n)在 x 轴上,则点 B(n-2,n+1)在()A 、第一象限B、第二象限C、第三象限D、第四象限5、已知点 P(x,|x|),则点 P 必定()A 、在第一象限 B、在第一或第四象限 C、在 x 轴上方 D、不在 x 轴下方6、在直角坐标系中,点( x, y)知足 x+y<0,xy> 0,则点( x,y)在()A 、第一象限B、第二象限C、第三象限D、第四象限7、点 M 在 y 轴的左边,到 x 轴, y 轴的距离分别是 3 和 5,则点 M 的坐标是()A 、( -5,3) B、(-5, -3)C、(5,3)或( -5,3)D、(-5, 3)或( -5, -3)8、如图,一个质点在第一象限及x 轴、 y 轴上运动,一秒钟后,它从原点运动到(0,1),而后接着按图中箭头所示方向运动[ 即( 0, 0)→( 0,1)→( 1,1)→( 1, 0)→ ] ,且每秒运动一个单位长度,那么第2011 秒后质点所在地点的坐标是()A 、( 13,44)B、( 44,13)C、( 45,14)D、(13,45)二、填空题9、察看以下有序数对:(3,-1)(-5,3)(7,-5)(-9,7)依据你发现的规律,第2012 个有序数对是 ____________10、假如点 P( m+3,m+1)在直角坐标系的 x 轴上, P 点坐标为 ____________。
平面直角坐标系培优训练

平面直角坐标系培优训练【A 卷】基本能力过关1、点A(-3,2)关于原点的对称点为B ,点B 关于x 轴的对称点为C ,则点C 的坐标为 .2、已知点P (a ,b )在第二象限,那么点P 1(-b ,a-1)在第 象限;3、在平面直角坐标系内,点(2,21)P x x --在第二象限,则x 的取值范围是 .4、已知点)1,5(-m A ,点)1,4(+m B ,且直线y AB //轴,则m 的值为 .【B 卷】能力提升1、点M (a ,a-1)不可能在第 象限2、已知点(m-1,-3)与点(2,n+1)关于x 轴对称,则m= ,n=3、若a 为整数,且点M (3a-9,2a-10) 在第四象限,则a 2+1的值为 .4、如图,在直角坐标系中,已知A (-3,0),B (0,4),且AB=5.对⊿ABC 连续作旋转变换,依次得到三角形①、②、③、④、…,则第⑩个三角形的直角顶点的坐标是________ ;第(2014)个三角形的直角顶点的坐标是__________.5、如果平面直角坐标系的轴以1厘米作为长度单位,△PQR 的顶点坐标分别为P(0,3),Q(4,0),R(k,5) ,其中0<k<4. 若该三角形的面积为8平方厘米,求k 的取值。
6、方程组⎩⎨⎧=+=-3,2y mx y x 的解在平面直角坐标系中对应的点在第一象限内,则m 的取值范围是 .7、如图,在平面直角坐标系内放置一个直角梯形AOCD ,已知AD =3,AO =8,OC =5,若点P 在梯形内且,PAD POC PAO PCD S S S S == ,求P 的坐标。
8、如图,已知OABC 是一个长方形,其中顶点A , B 的坐标分别为(0,a)和(9,a),点E 在AB 上,且AE=13AB ,点F 在OC 上,且OF=13OC 。
点G 在OA 上,且使△GEC 的面积为20,△GFB 的面积为16,试求a 的值。
人教版七年级数学下册第7章平面直角坐标系培优卷

人教版七年级数学下册第7章平面直角坐标系培优卷一.选择题(共10小题)1.下列各点中,位于第四象限的点是()A.(3,-4) B.(3,4) C.(-3,4) D.(-3,-4)2.在平面直角坐标系中,点(P-所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案4.已知点P(-4,3),则点P到y轴的距离为()A.4 B.-4 C.3 D.-35.如图,已知在△AOB中A(0,4),B(-2,0),点M从点(4,1)出发向左平移,当点M平移到AB 边上时,平移距离为()A.4.5 B.5 C.5.5 D.5.756.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0) B.(1,2) C.(5,4) D.(5,0)7.已知点M向左平移3个单位长度后的坐标为(-1,2),则点M原来的坐标是()A.(-4,2) B.(2,2) C.(-1,3) D.(-1,-2)8.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)9.已知点A(-1,2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为()A.1 B.-4 C.-1 D.310.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点1(1,1),P紧接着第2次向左跳动2个单位至点2(1,1),P 第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至2017P的坐标是()A.(504,1007) B.(505,1009)C.(1008,1007) D.(1009,1009)二.填空题(共7小题)11.在平面直角坐标系中,把点A(-10,1)向上平移4个单位,得到点A′,则点A′的坐标为.12.如图是轰炸机机群的一个飞行队形,若最后两架轰炸机的平面坐标分别为A(-2,3)和B(-2,-1),则第一架轰炸机C的平面坐标是.13.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为.14.在平面直角坐标系中,将点A(-1,3)向左平移a个单位后,得到点A′(-3,3),则a的值是.15.点Q(x,y)在第四象限,且|x|=3,|y|=2,则点Q的坐标是.16.若点A(a,b)在第四象限,则点C(-a-1,b-2)在第象限.17.已知平面内有一点A的横坐标为-6,且到原点的距离等于10,则A点的坐标为.三.解答题(共7小题)18.已知平面直角坐标系中有一点M(m-1,2m+3),且点M到x轴的距离为1,求M的坐标.19.若点P(1-a,2a+7)到两坐标轴的距离相等,求a的值.20.如图,点A(1,0),点B点P(x,y),OC=AB,OD=OB.(1)则点C的坐标为;(2)求x-y+xy的值.21.请你在图中建立直角坐标系,使汽车站的坐标是(3,1),并用坐标说明儿童公园、医院、李明家、水果店、宠物店和学校的位置.22.在平面直角坐标系中,已知点P(2m+4,m-1),试分别根据下列条件,求出点P 的坐标. 求:(1)点P 在y 轴上;(2)点P 的纵坐标比横坐标大3;(3)点P 在过A(2,-5)点,且与x 轴平行的直线上.23.已知平面直角坐标系中有一点M(2m-3,m+1).(1)点M 到y 轴的距离为l 时,M 的坐标?(2)点N(5,-1)且MN ∥x 轴时,M 的坐标?24.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x 的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3【解决问题】(1)求点(2,4),A B --的勾股值[A],[B];(2)若点M 在x 轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M 的坐标.参考答案:1-5 ABAAC6-10 DBCDB11. (-10,5)12. (2,1)13. (2,5)14.215. (3,-2)16.三17. (-6,8)或(-6,-8)18. 解:由题意可得:|2m+3|=1,解得:m=-1或m=-2,当m=-1时,点M的坐标为(-2,1);当m=-2时,点M的坐标为(-3,-1);综上,M的坐标为(-2,1)或(-3,-1).19. 解:∵点P(1-a,2a+7)到两坐标轴的距离相等,∴|1-a|=|2a+7|,∴1-a=2a+7或1-a=-(2a+7),解得a=-2或a=-8.20. 解:(1)∵点A(1,0),点B(,0),∴OA=1、OB=,则AB=-1,∵OC=AB,OD=OB,∴OC=-1,OD=,则点C坐标为(-1,0),故答案为:(-1,0).(2)由(1)知点P坐标为(-1,),则x=-1、y=,∴原式=-1-+(-1)=-1+2-=1-.21. 解:如图所示:建立平面直角坐标系,儿童公园(-2,-1),医院(2,-1),李明家(-2,2),水果店(0,3),宠物店(0,-2),学校(2,5).22. 解:(1)令2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)令m-1-(2m+4)=3,解得m=-8,所以P点的坐标为(-12,-9);(3)令m-1=-5,解得m=-4.所以P点的坐标为(-4,-5).23. 解:(1)∵点M(2m-3,m+1),点M到y轴的距离为1,∴|2m-3|=1,解得m=1或m=2,当m=1时,点M的坐标为(-1,2),当m=2时,点M的坐标为(1,3);综上所述,点M的坐标为(-1,2)或(1,3);(2)∵点M(2m-3,m+1),点N(5,-1)且MN∥x轴,∴m+1=-1,解得m=-2,故点M的坐标为(-7,-1).24. 解:(1)∵点A(-2,4),B(+,-),∴[A]=|-2|+|4|=2+4=6,[B]=|+|+|−|=++−=2;(2)∵点M在x轴的上方,其横,纵坐标均为整数,且[M]=3,∴x=±1时,y=2或x=±2,y=1或x=0时,y=3,∴点M的坐标为(-1,2)、(1,2)、(-2,1)、(2,1)、(0,3).人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。
江苏盐城中学七年级数学下册第七章【平面直角坐标系】经典习题(培优专题)

一、选择题1.如果点A (a ,b )在第二象限,那么a 、b 的符号是( )A .0>a ,0>bB .0<a ,0>bC .0>a ,0<bD .0<a ,0<b 2.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)3.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( ) A .(-3,6) B .(-6,3) C .(3,-6) D .(8,-3) 4.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交5.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,6.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A.(5,4) B.(4,5) C.(3,4) D.(4,3)8.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB 平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5) D.(1,3)或(5,1)9.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2), ,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部四号暗堡的坐标为(2,4)的位置大约是()A.A处B.B处C.C处D.D处10.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为()A .44B .45C .46D .4711.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.14.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.15.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.17.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 18.已知点A(3a ﹣6,a+4),B(﹣3,2),AB ∥y 轴,点P 为直线AB 上一点,且PA =2PB ,则点P 的坐标为_____.19.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向下平移,再向右平移得到四边形A 1B 1C 1D 1,已知A (﹣3,5),B (﹣4,3),A 1(3,3),则B 1的坐标为_____.20.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__. 21.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________三、解答题22.已知:△A 1B 1C 1三个顶点的坐标分别为A 1(﹣3,4),B 1(﹣1,3),C 1(1,6),把△A 1B 1C 1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC ,且点A 1的对应点为A ,点B 1的对应点为B ,点C 1的对应点为C .(1)在坐标系中画出△ABC ;(2)求△ABC 的面积;(3)设点P 在y 轴上,且△APB 与△ABC 的面积相等,求点P 的坐标.23.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC 的顶点在格点上,且A(2,−4),B(5,−4),C(4,−1)(1)画出ABC ;(2)求出ABC 的面积;(3)若把ABC 向上平移2个单位长度,再向左平移4个单位长度得到A B C ''',在图中画出A B C ''',并写出B '的坐标24.已知点P(m +2,3),Q(−5,n−1),根据以下条件确定m 、n 的值(1)P 、Q 两点在第一、三象限的角平分线上;(2)PQ ∥x 轴,且P 点与Q 点的距离为3.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 2.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)3.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)4.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,56.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上8.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上 9.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303)D .(30303)10.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.13.已知点P 的坐标()41,52a a --,且点P 到两坐标轴的距离相等,则点P 的坐标是______.14.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 15.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____. 16.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.17.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__18.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.19.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限20.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____21.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______.三、解答题22.在平面直角坐标系中,三角形ABC 的三个顶点的位置如图所示,点'A 的坐标是()2,2-,现将三角形ABC 平移,使点A 变换为点'A ,点'B 、'C 分别是B 、C 的对应点.(1)请画出平移后的三角形'''A B C (不写画法),并写出点'B 、'C 的坐标; (2)求三角形ABC 的面积.23.请在图中建立平面直角坐标系,使学校的坐标是()2,5,并写出儿童公园,医院,水果店,宠物店,汽车站的坐标.24.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)25.如图,已知火车站的坐标为()2,1,文化宫的坐标为()1,2-.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、宾馆的坐标;(3)请将原点O ,宾馆C 和文化宫B ,看作三点用线段连起来,将得OBC ,然后将此三角形向下平移3个单位长度,画出平移后的111O B C ,并求出其面积.一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)3.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 4.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置5.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)- 6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗7.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( )A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)8.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上9.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 10.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π 11.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交 B .平行、平行 C .垂直相交、平行 D .平行、垂直相交二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.平面直角坐标系中,已知点P到x轴的距离为2,到y轴的距离为3,且点P在第二象限,则点P的坐标是__________.14.在x轴上方的点P到x轴的距离为3,到y轴距离为2,则点P的坐标为________.15.如图所示的坐标系中,单位长度为1 ,点B的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上,点P 也在格点上,ADP△的面积与四边形ABCD 的面积相等,写出所有点P 的坐标_____________.(不超出格子的范围)16.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.17.如图,在平面直角坐标系中,三角形ABC经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A 400的坐标为_______.19.点3(2,)A -到x 轴的距离是__________.20.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 21.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题22.如图,已知△ABC 的顶点分别为A (﹣2,2)、B (﹣4,5)、C (﹣5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形△A 1B 1C 1,并写出点B 1的坐标;(2)作出△ABC 关于y 轴对称的图形△A 2B 2C 2,并写出点B 2的坐标;(3)若点P (a ,b )是△ABC 内部一点,则点P 关于直线m 对称的点的坐标是 . 23.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3)求A B C ''的面积是多少?24.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.25.已知点P (2x ﹣6,3x +1),求下列情形下点P 的坐标.(1)点P 在y 轴上;(2)点P 到x 轴、y 轴的距离相等,且点P 在第二象限;(3)点P 在过点A (2,﹣4)且与y 轴平行的直线上.。
七年级下册数学培优训练 平面直角坐标系综合问题(压轴题)

培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5).(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,0.5),试用a的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在这样的点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.【例2】在平面直角坐标系中,已知A(-3,0),B(-2,-2),将线段AB平移至线段CD.图2(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB移动到CD,C、D两点恰好都在坐标轴上,求C、D的坐标;(3)若点C在y轴的正半轴上,点D在第一象限内,且S△ACD=5,求C、D的坐标;(4)在y轴上是否存在一点P,使线段AB平移至线段PQ时,由A、B、P、Q构成的四边形是平行四边形面积为10,若存在,求出P、Q的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0).(1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACPABCS S=;(4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQABCS S=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)0a ++=,过C 作CB ⊥x 轴于B .(1)求三角形ABC 的面积;(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由.【例6】如图,A 点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;(2) 在(1)的条件下, 求证: ∠COG =∠EDF ; (3)求运动过程中线段AB 扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC=24.(1)线段BC 的长为 ,点A 的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF ⊥AE 点F ,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON于N ,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由.A(-2,0)B(0,-3)y x【例8】在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形.(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D 连结AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连结P A ,PB ,使S △P AB =S △试说明理由;(3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 上移动,运动到B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5(1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADE BCE S S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)【例1】如图,已知A(0,a),B (0,b ),C (m ,b )且(a -4)+|b +3|=0,S △ABC =14. (1)求C 点坐标(2)作DE ⊥DC ,交y 轴于E 点,EF 为∠AED 的平分线,且∠DFE =900.求证:FD 平分∠ADO ;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM ,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA 的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
人教版七年级数学下册 第七章 平面直角坐标系 培优专题测试训练(含答案)

人教版七年级数学下册第七章平面直角坐标系培优专题测试训练一、选择题1. 点(-2,1)在平面直角坐标系中所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是 ( )A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)3.图是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y轴正方向建立平面直角坐标系,则熊猫馆所在的象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,将点P(x,y)先向左平移4个单位长度,再向上平移3个单位长度后得到点P'(1,2),则点P的坐标为( )A.(2,6)B.(-3,5)C.(-3,1)D.(5,-1)5.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1 mm,则图中转折点P的坐标表示正确的是( )A.(5,30)B.(8,10)C.(9,10)D.(10,10)6. 平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( )A. (-2,-3)B. (2,-3)C. (-3,2)D. (3,-2)7.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第21秒时,点P的坐标为( )A.(21,-1)B.(21,0)C.(21,1)D.(22,0)8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点O运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是( )A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)二、填空题9. 点P(-6,-7)到x轴的距离为 ,到y轴的距离为 .10. 已知点P(3-m,m)在第二象限,则m的取值范围是________.11.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为 .12.五子棋是一种两人对弈的棋类游戏,起源于中国古代的传统黑白棋种,规则是在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个同学的对弈图.若白子A的坐标为(0,-2),白子B的坐标为(-2,0),为了不让白方马上获胜,此时黑方应该下在坐标为 的位置.(写出一处即可)13.如图,在三角形ABC中,已知点A(0,4),C(3,0),且三角形ABC的面积为10,则点B的坐标为 .14. 将自然数按以下规律排列:第一列第二列第三列第四列第五列…第一行1451617第二行23615…第三行98714…第四行10111213…第五行………………表中数2在第二行、第一列,与有序数对(2,1)对应,数5与有序数对(1,3)对应,数14与有序数对(3,4)对应.根据这一规律,数2021对应的有序数对为 .15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是 .16.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是__________.三、解答题17. 在如图所示的平面直角坐标系中,描出下列各点:(0,4),(-1,1),(-4,1),(-2,-1),(-3,-4),(0,-2),(3,-4),(2,-1),(4,1),(1,1),(0,4).依次连接各点,观察得到的图形,你觉得它像什么?18.常用的确定物体位置的方法有两种.如图,在4×4的边长为1的小正方形组成的网格中,标有A ,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.19. 如图所示,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC先向上平移3格,再向右平移2格所得的三角形A'B'C'(点A,B,C的对应点分别为点A',B',C');(2)请以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系(在图中画出),然后写出点B,B'的坐标.20. 如图,在平面直角坐标系中,A(3,4),B(4,1),求三角形AOB的面积.21.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即沿着长方形的边移动一周).(1)点B的坐标为 ;(2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的位置;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.22.如图,在平面直角坐标系中,已知A(2,3),B(0,2),C(3,0).将三角形ABC的一个顶点平移到坐标原点O处,写出平移方法和另两个对应顶点的坐标.23. 如图,若三角形A 1B 1C 1是由三角形ABC 平移后得到的,且三角形ABC 中任意一点P (x ,y )经过平移后的对应点为P 1(x-5,y+2).(1)求点A 1,B 1,C 1的坐标;(2)求三角形A 1B 1C 1的面积.24. 【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭.【运用】(1)如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.答案一、选择题1.B 2.D 3.B 4.D5.C [解析] 如图,过点C作CD⊥y轴于点D,∴CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10).故选C.6.A 【解析】本题考查了直角坐标平面内的点关于x轴的对称点,点如果关于x轴对称,则它的横坐标不变,纵坐标互为相反数,于是点(-2,3)关于x轴对称的点的坐标为(-2,-3),故选A .7.C [解析] 半径为1的半圆的弧长是×2π×1=π,由此可列下表:故选C.8.A [解析]点P坐标的变化规律可以看作每运动四次一个循环,且横坐标与运动次数相同,纵坐标规律是:第1次纵坐标为1,第3次纵坐标为2,第2次和第4次纵坐标都是0.∵2021=505×4+1,∴经过第2021次运动后,动点P 的坐标是(2021,1).故选A .二、填空题9.7 6 10.m >3 【解析】∵点P 在第二象限,∴其横坐标是负数,纵坐标是正数,则根据题意得出不等式组,解得m >3. {3-m <0m >0)11.(a-2,b+3) [解析]由图可知线段AB 向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).12.(2,0)或(-2,4)13.(-2,0) [解析] S 三角形ABC =BC ·4=10,解得BC=5,∴OB=5-3=2,∴点B 的坐标为(-2,0).14.(45,5) [解析] 观察表格发现:偶数列的第一行数是“列数”的平方数,奇数行的第一列数是“行数”的平方数.下面从奇数行着手:(1,1)表示1,即12;(3,1)表示9,即32;(5,1)表示25,即52;依此类推可知(45,1)表示452,即2025,于是(45,2)表示2024,(45,3)表示2023,…,(45,5)表示2021.故填(45,5).15.(20,0) [解析] 因为P 3(1,0),P 6(2,0),P 9(3,0),…,所以P 3n (n ,0).当n=20时,P 60(20,0).16.(16,1+) 3解析:可以求得点A (-2,-1-),则第一次变换后点A 的坐标为A 1(0,1+),第二次变换33后点A 的坐标为A 2(2,-1-),可以看出每经过两次变换后点A 的y 坐标就还原,每经过一次3变换x 坐标增加2.因而第九次变换后得到点A 9的坐标为(16,1+).3三、解答题17.解:描点连线如图所示,它像五角星.18.解:方法一:用有序数对(a ,b )表示.比如:以点A为原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则点B相对于点A的位置是(3,3).方法二:用方向和距离表示.比如:点B位于点A的东北方向(或北偏东45°方向),距离点A m处.19.解:(1)如图.(2)如图,以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则B(1,2),B'(3,5).20.[解析]三角形AOB的三边均不与坐标轴平行,不能直接利用三角形的面积公式求面积,需通过作辅助线,用“添补”法间接计算.解:如图,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,延长EA,FB交于点C,则四边形OECF为长方形.由点A,B的坐标可知AE=3,OE=4,OF=4,BF=1,CE=4,CF=4,所以AC=1,BC=3,所以S三角形AOB=S长方形OECF-S三角形OAE-S三角形ABC-S三角形BOF=4×4-×4×3-×3×1-×4×1=6.5.21.解:(1)(4,6)(2)因为点P的移动速度为每秒2个单位长度,所以当点P移动了4秒时,它移动了8个单位长度,此时点P的坐标为(4,4),图略.(3)当点P到x轴的距离为5个单位长度时,有两种情况:①若点P在AB上,则点P移动了4+5=9(个)单位长度,此时点P移动了9÷2=4.5(秒);②若点P在OC上,则点P移动了4+6+4+1=15(个)单位长度,此时点P移动了15÷2=7.5(秒).综上所述,当点P到x轴的距离为5个单位长度时,点P移动了4.5秒或7.5秒.22.解:(1)若将点A平移到原点O处,则平移方法(不唯一)是向左平移2个单位长度,再向下平移3个单位长度.另两个顶点B,C的对应点的坐标分别是(-2,-1),(1,-3).(2)若将点B平移到原点O处,则平移方法是向下平移2个单位长度.另两个顶点A,C的对应点的坐标分别是(2,1),(3,-2).(3)若将点C平移到原点O处,则平移方法是向左平移3个单位长度.另两个顶点A,B的对应点的坐标分别是(-1,3),(-3,2).23.解:(1)∵三角形ABC中任意一点P(x,y)经过平移后的对应点为P1(x-5,y+2),∴三角形ABC 向左平移5个单位长度,再向上平移2个单位长度(平移方法不唯一)得到三角形A 1B 1C 1.∵A (4,3),B (3,1),C (1,2),∴点A 1的坐标为(-1,5),点B 1的坐标为(-2,3),点C 1的坐标为(-4,4).(2)三角形A 1B 1C 1的面积=三角形ABC 的面积=3×2-×1×3-×1×2-×1×2=.24.解:(1)∵四边形ONEF 是矩形,∴点M 是OE 的中点.∵O (0,0),E (4,3),∴点M 的坐标为.(2,32)(2)设点D 的坐标为(x ,y ).若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合∴Error!,解得,Error!.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合∴Error!,解得,Error!.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合∴Error!,解得,Error!.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).。
七年级数学竞赛培优平面直角坐标系含解析
平面直角坐标系【思维入门】1.如图3- 11 —1是我市几个旅游景点的大致位置示意图,如果用(0, 0)表示新宁崀山的位置,用(1, 5)表示隆回花瑶的位置,那么城步南山的位置可以表示为()A. (2, 1)B. (0, 1)C. (—2,—1) D . (—2, 1)2 •在平面直角坐标系中,点A(2,—3)在第几象限()A .一B.二C.三 D .四3. 如图3—11 —2,在平面直角坐标系中,点A(—3,0),B(5, 0),C(3, 4),D(—2, 3).求四边形ABCD的面积.图3—11—24. 如图3—11 —3,点A, B, C 的坐标分别是(2, 2), (2,—1), (0,—2).(1) 求线段AB的长及△ ABC的面积;(2) 若在直线AB上有一点M,且线段AM = a(a>0),求△ BMC的面积.5. 在平面直角坐标系中有两点A( —2, 2), B(3, 2), C是坐标轴上的一点,若△ ABC是直角三角形,则满足条件的点有()A . 1个B . 2个C. 4个 D . 6个6 •在平面直角坐标系中,0为坐标原点,点A的坐标为(1,.3),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A . 4B . 5 C. 6 D . 87.如图3—11 —4,在直角坐标系中,0是原点,已知A(4,3),P是坐标轴上的一点,若以0, A,P三点组成的三角形为等腰三角形,则满足条件的点P共有____ 个,写出其中一个点P的坐标是_____ .8.如图3—11 —5,已知坐标平面内的三个点A(1, 3), B(3, 1), 0(0, 0),求厶ABO的面积.【思维升华】9•如图3- 11 —6,弹性小球从点P(0, 3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,贝U点P3的坐标是____ ;点P2 014的坐标是_____ .10.如图3—11 —7,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2, 0),…,那么点A4n+1(n是自然数)的坐标为 .图3—11—711.如图3—11 —8,在平面直角坐标系中,点A, B, C的坐标分别为(1, 0), (0, 1),(—1, 0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1,使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称,….照此规律重复下去,则点P2 013的坐标为________________ .—----- 4---------- ——1 -- 1——>C °A耳图3- 11—812•在平面直角坐标系xOy中,对于点P(x, y),我们把点P'—y+ 1, x+ 1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A的伴随点为A4,这样依次得到A1, A2, ______ A3,…,A n,…,若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为____ ;若点A1的坐标为(a, b),对于任意的正整数n,点A n均在x轴上方,则a, b应满足的条件为 _____ .平面直角坐标系【思维入门】1.如图3- 11 —1是我市几个旅游景点的大致位置示意图,如果用(0, 0)表示新宁崀山的位置,用(1, 5)表示隆回花瑶的位置,那么城步南山的位置可以表示为A. (2, 1)B. (0, 1)C. (—2,—1) D . (—2, 1)2 •在平面直角坐标系中,点A(2,—3)在第几象限(D )A .一B.二C.三 D .四3.如图3—11 —2,在平面直角坐标系中,点A(—3,0),B(5, 0),C(3, 4),D(—2, 3).求四边形ABCD的面积.-r - - T -- nt- - - -ir ■-! 1 1 V 1 1 1 I i i i fl&-i - = - -i- - - ii1 l< 1 4 1 Vi ii i ii i i1 1 i i i I1 1 i I 1 11 H 1 1 1 1I b 丨厂i i * 1i 1 h i IP * 1 \ «■1_ _ J_ - JL____________ Y J _ I I1 1 1 * p ■1[I 1 1 f1 ■」K H 1 \ H 1 * i B i \i i iJ 1 \ I _ n1'! 1 P / 1 1i 1 1 i f1 11 1 1 1 f1 1r I \ i ii h 1 i \ 1 11 N 1 «\ ■1r■ r7" -n J i r -i i ■i ■;11 !r 1 1= = i (- A r--1»i> i i \i »、i i i j r i:4-5 :\A\:0 :;;: #5 ;戈图3—11—2解:作DE丄x轴于E, CF丄x轴于F,如答图,1 1 1四边形ABCD 的面积=ADE + S四边形CDEF+BCF = ?X 1 X 3+(3 + 4) X (3 + 2) + 2 X 4 = 23.4•如图3- 11 —3,点A, B, C 的坐标分别是(2, 2), (2,—1), (0,—2).⑴求线段AB的长及△ ABC的面积;(2)若在直线AB上有一点M,且线段AM = a(a>0),求△ BMC的面积.解:(1) •••点A, B的坐标分别是(2, 2), (2,—1),••• AB丄x轴,二AB= 2—(—1)= 3,1S A ABC = 2 X 3X 2 = 3.⑵当M点在BA的延长线上时,MB = a+ 3,1△ BMC 的面积=2X2X (a+ 3)= a+ 3;当M点在线段AB上时,0<a<3, MB = 3 —a,1△ BMC 的面积=2X 2X (3 —a) = 3 —a;当M点在AB的延长线上时,a>3, MB = a —3,1△ BMC 的面积=^X 2X (a—3)= a — 3.【思维拓展】5.在平面直角坐标系中有两点A( —2, 2), B(3, 2), C是坐标轴上的一点,若△ ABC是直角三角形,则满足条件的点有(D )A . 1个B . 2个C. 4个 D . 6个【解析】因为A, B的纵坐标相等,所以AB// x轴•因为C是坐标轴上的一点,所以过点A向x轴引垂线,过点B向x轴引垂线,分别可得一点,以AB为直径作圆,可与坐标轴交于4点,所以满足条件的点共有6个.6 •在平面直角坐标系中,0为坐标原点,点A的坐标为(1,3),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为(C )A . 4B . 5 C. 6 D . 8【解析】如答图,满足条件的点M的个数为6,分别为(—2, 0),(2, 0),(0,2 3),(0,2), (0, —2), 0,斗3.故选 C.r r 4 :'甌! 1* 1 3-----T -------------- -- 1 ----- i1 n ■* 1 t ! U…上II 1 J( 11 11 11 |L _ _ L1 1 H ■1 七\ \帆1 1; --- 「[-■「1/M L42 0 11II 1;1 2M2_________ J__________ ::;-1i 1Il i1;::■;:::* 1 p 1 ____ L - 1- ■------------------- ----------- ---------------- ----------第6题答图7•如图3—11 —4,在直角坐标系中,O是原点,已知A(4, 3), P是坐标轴上的一点,若以O, A, P三点组成的三角形为等腰三角形,则满足条件的点P共有一8—个,写出其中一个点P的坐标是(0, 6),答案不唯一.8.如图3- 11 —5,已知坐标平面内的三个点A(1, 3), B(3, 1), 0(0, 0),求厶ABO的面积.3= 4+ 3- 3= 4.-gxix解:如答图,S A ABO=第8题答图【思维升华】9•如图3- 11 — 6,弹性小球从点P(0, 3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角,当小球第 1次碰到矩形的边时的点为 P 1,第2次碰到矩形的边时的点为 P 2,…,第n 次碰到矩形的边时的点为 P n ,贝U 点 P 3的坐标是 —(8, 3)__;点P2 014的坐标是__(5,0)__,当点P 第3次碰到矩形的边时,点P 3的坐标为(8, 3);••• 2 014 £= 335……4 ,•••当点P 第2 014次碰到矩形的边时为第336个循环组的第4次反弹,点P 2 014的坐 标为(5, 0).10. 如图3— 11 — 7,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、 向右的方向依次不断地移动,每次移动一个单位,得到点 A 1(0, 1), A 2(1, 1), A 3(1, 0), A 4(2, 0),…,那么点A 4n +1(n 是自然数)的坐标为__(2n , 1)__.J h y A 2 A .沖 4 凡 ^10 /h1 j t 1 鼻 1 J (. 1 * 1 t 一 t A 0 〒 k 尸 k Aj J 44 A lx A ]2 【解图 3- 11— 7【解析】 由图可知,n = 1时,4X 1+ 1 = 5•点A 5(2, 1),n = 2 时,4X 2+ 1 = 9,点 A 9(4, 1),n = 3 时,4X 3+ 1 = 13,点 A 13(6, 1),所以,点 A 4n + 1(2n , 1).11. 如图3— 11 — 8,在平面直角坐标系中,点A , B , C 的坐标分别为(1, 0), (0, 1),(— 1, 0). —个电动玩具从坐标原点 O 出发,第一次跳跃到点 P 1,使得点P 1与点O 关 于点A 成中心对称;第二次跳跃到点P 2,使得点P 2与点P 1关于点B 成中心对称;第 三次跳跃到点P 3,使得点P 3与点P 2关于点C 成中心对称;第四次跳跃到点 P 4,使 得点P 4与点P 3关于点A 成中心对称;第五次跳跃到点 P 5,使得点P 5与点P 4关于点 B 成中心对称,….照此规律重复下去,则点P2 013的坐标为_(0,— 2)_ .7 +-4 ------------- b ——' -- 1——>C 0 A 兀图 3— 11— 8【解析】 点 P 1(2, 0), P 2( — 2, 2), P 3(0,— 2), P 4(2, 2), P 5( — 2, 0), P 6(0, 0),P 7(2, 0),从而可得出6次一个循环,•••点P 2 013的坐标为(0,— 2). 12. 在平面直角坐标系xOy 中,对于点P(x , y),我们把点P '—y + 1, x + 1)叫做点P 的 伴随点,已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,这样 依次得到A 1, A 2, A 3,…,A n ,…,若点A 1的坐标为(3, 1),则点A 3的坐标为 (— 3, 1)__,点A2 014的坐标为_(0, 4)_;若点A 1的坐标为(a , b),对于任意的正整 数n ,点A n 均在x 轴上方,则a , b 应满足的条件为1v a v 1且0v b v 2 .【解析】:A 1的坐标为(3, 1),•-A 2(0, 4), A 3( — 3, 1), A 4(0,— 2), A 5(3, 1),…, 2 013= 6 =335 3,以此类推,每4个点为一个循环组依次循环,2 014-4 = 503……2,•••点A 014的坐标与A2的坐标相同,为(0, 4);•••点A i的坐标为(a,b),• - A2(—b + 1,a+ 1),A3(—a,—b+ 2),A4(b—1,—a + 1),A5(a,b),…,以此类推,每4个点为一个循环组依次循环,•••对于任意的正整数n,点A n均在X轴上方,a+ 1>0,•丿…a+ 1>0,b+ 2>0,4>0,解得—1<a<1,0<b<2.。
第七章平面直角坐标系培优提高卷含答案
第七章平面直角坐标系培优提高卷一、选择题。
(本题有 10个小题,每小题 3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相 应的格子内•注意可以用多种不同的方法来选取正确答案.1.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 1(X k ,Y k )处,其中 X 1=1 , Y 1=1,当 k >2时,X k =X k -+ 1- 5 (: ---------5k 2],:a ]表示非负实数a 的整数部分,例如[2.55按此方案,第2013棵树种植点的坐标是一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A - B - C - D - A …的规律绕在四边形 ABCD 的边上,则细线另一端所在位置的点的坐 标是()A . (- 1, 0)B . ( 1 , - 2)C . ( 1 , 1)D . (- 1 , - 1)K 棵树种植在P k]),Y k =Y k -6] = 2, :0. 2] = 0,A .( 3, 402)B . (3, 403)C .( 4, 403)D . (5, 403)2.如图,在平面直角坐标系中,已知点 A (-1, 1), B (- 1 , - 2),将线段 AB 向下平移2个单位,再向右平移3个单位得到线段 A /B /,设点P(x, y)为线段A®上任意一点,则x, y 满足的条件为( )A . x 3, 4 y 1C .4 x 1, y 3B . x 2 , 4 y 1I, 1)0~(第2题)* B 卜y A*CD3.如图,在平面直角坐标系中, A (1, 1), B (- 1,1), C (- 1,- 2), D ( 1,- 2).把(第 3 题)4.如图,A, B的坐标为(2, 0),( 0, 1),若将线段AB平移至A1B1,贝U a+b的值为( )C. 45•在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A . (66, 34) B. ( 67, 33) C.( 100, 33) D. (99, 34)6.在平面直角坐标系中,对于平面内任一点(m, n),规定以下两种变换:①f m, n m, n ,如f2, 12,1:②gm, n m, n,如g 2, 12, 1 . 按照以上变换有f g3, 4f3,43, 4,那么g f3, 2 ]等于( )A . (3, 2)B. (3, 2,) C.(3 , 2) D.( 3 , 2,)7.如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3, 2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将厶BDE翻折,点B落在点B处,则点B的坐标为的位似图形△ AB'C', △ ABC与厶A'B'C的位似比为1 : 2.若设点C的纵坐标是m,则其对应点C的纵坐标是( )A . -( 2m- 3)B . -( 2m- 2) C. -( 2m - 1) D. - 2m9.已知点A (0, 0), B (0, 4), C ( 3, t+4), D (3, t).记N (t)为? ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t)所有可能的值为( )A . 6、7 B.7、8 C.6、7、8 D.6、8、910•以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走 500米,再向东直走100米可到图书馆. 乙:从学校向西直走 300米,再向北直走 200米可到邮局. 丙:邮局在火车站西 200米处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站( )A.向南直走300米,再向西直走 200米B.向南直走300米,再向西直走 100米C.向南直走700米,再向西直走 200米D.向南直走700米,再向西直走 600米二、填空题。
七下培优训练三平面直角坐标系综合问题压轴题
培优训练三:平面直角坐标系(压轴题)一、坐标及面积:【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△ABC 的面积;(2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积及△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD .(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标;(3)若点C 在y 轴的正半轴上,点D 在第一象限内,且S △ACD =5,求C 、D 的坐标; (4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P 、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q 的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C ''';(3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACPABCSS=; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQABCSS=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B . (1)求三角形ABC 的面积;(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50,若能,求出P 点坐标,若不能,说明理由. 【例6】如图,A 点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;(2) 在(1)的条件下, 求证: ∠COG =∠EDF ;(3)求运动过程中线段AB 扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC =24.(1)线段BC 的长为 ,点A 的坐标为 ;A(-2,0)B(0,-3)yx(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF⊥AE 点F ,试给出∠ECF 及∠DAH之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 及直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON 于N ,请依题意画出图形,给出BPO ∠及BNO ∠之间满足的数量关系式,并说明理由.【例8】在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形. (1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 及△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2B 的对应点C ,D 连结AC ,BD .(1)求点C ,D 的坐标及四边形ABDC (2)在y 轴上是否存在一点P ,连结PA ,点,求出点P (3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 上移动,运动到B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△ABC 的顶点A (—2,0(1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,若存在,请求出点D (3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标及几何:【例1】如图,已知A(0,a),B (0,b ),C (m ,S △ABC =14.(1)求C 点坐标(2)作DE⊥DC,交y 轴于E 点,EF 为∠AED FD 平分∠ADO;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC,且PM⊥EM,PN⊥x 轴于N 点,PQ 平分∠APN,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
第七章-平面直角坐标系培优提高卷(含答案)
… 第七章 平面直角坐标系培优提高卷一、选择题。
(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第K 棵树种植在P k(X k ,Y k )处,其中X 1=1,Y 1=1,当k ≥2时,X k =X k –1+1-5([51-k ]-[52-k ]),Y k =Y k –1+[51-k ]-[52-k ],[a ]表示非负实数a 的整数部分,例如[2.6]= 2,[0.2]= 0,按此方案,第2013棵树种植点的坐标是( )A .(3,402)B .(3,403)C .(4,403)D .(5,403)2.如图,在平面直角坐标系中,已知点A (-1,1),B (-1,-2),将线段AB 向下平移2个单位,再向右平移3个单位得到线段A /B /,设点),(y x P 为线段A /B /上任意一点,则y x ,满足的条件为( )A .3=x ,14-≤≤-yB .2=x ,14-≤≤-y!C .14-≤≤-x ,3=yD .14-≤≤-x ,2=y(第2题) (第3题) (第4题)3.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(1,﹣2)C .(1,1)D .(﹣1,﹣1)4.如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .55.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ):A .(66,34)B .(67,33)C .(100,33)D .(99,34)6.在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换:①()()f m n m n =-,,,如()()f 2121=- ,,;②()()g m n m n =--,,,如()()g 2121=-- ,,.按照以上变换有:()()()f g 34f 3434⎡⎤=--=-⎣⎦ ,,,,那么()g f 32⎡-⎤⎣⎦ ,]等于( )A .(3,2)B .(3,2-,)C .(3-,2)D .(3-,2-,)7.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD =BE =1.沿直线DE 将△BDE 翻折,点B 落在点B ′处,则点B ′的坐标为 ( )A .(1,2)B .(2,1)C .(2,2)D .(3,1)8.如图,△ABC 的两个顶点BC 均在第一象限,以点(0,1)为位似中心,在y 轴左方作△ABC 的位似图形△AB ′C ′,△ABC 与△A ′B ′C 的位似比为1:2.若设点C 的纵坐标是m ,则其对应点C ′的纵坐标是( )A . ﹣(2m ﹣3)B . ﹣(2m ﹣2)C . ﹣(2m ﹣1)D . ﹣2m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系练习题(巩固提高篇)一、选择题:1、下列各点中,在第二象限的点是()A.(2,3) B.(2,-3) C.(-2,3) D.(-2, -3)2、已知点M(-2,b)在第三象限,那么点N(b, 2 )在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、若点P(a,b)在第四象限,则点M(b-a,a-b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4、已知点P(a,b),且ab>0,a+b<0,则点P在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5、如果点P(a,b)在第二象限内,那么点P(ab,a-b)在()A、第一象限B、第二象限C、第三象限D、第四象限6、若点P(x ,y)的坐标满足xy=0(x≠y),则点P在()A.原点上 B.x轴上 C.y轴上 D.x轴上或y轴上7、平面直角坐标中,和有序实数对一一对应的是()A.x轴上的所有点 B.y轴上的所有点C.平面直角坐标系内的所有点 D.x轴和y轴上的所有点8、将点A(-4,2)向上平移3个单位长度得到的点B的坐标是()A. (-1,2)B. (-1,5)C. (-4,-1)D. (-4,5)9、线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(-4,–1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(– 9,– 4)10、点P(m+3,m+1)在x轴上,则P点坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)11、点P的横坐标是-3,且到x轴的距离为5,则P点的坐标是()A. (5,-3)或(-5,-3)B. (-3,5)或(-3,-5)C. (-3,5)D. (-3,-5)12、已知点P(x,y)在第四象限,且│x│=3,│y│=5,则点P的坐标是()A.(-3,5)B.(5,-3)C.(3,-5)D.(-5,3)13、点P(x,y)位于x轴下方,y轴左侧,且x=2 ,y=4,点P的坐标是()A.(4,2) B.(-2,-4) C.(-4,-2) D.(2,4)14、点P(0,-3),以P为圆心,5为半径画圆交y轴负半轴的坐标是()A.(8,0) B.( 0,-8) C.(0,8) D.(-8,0)15、点E(a,b)到x轴的距离是4,到y轴距离是3,则有()A.a=3, b=4 B.a=±3,b=±4 C.a=4, b=3 D.a=±4,b=±316、将某图形的横坐标都减去2,纵坐标保持不变,则该图形 ( )A .向右平移2个单位B .向左平移2 个单位C .向上平移2 个单位D .向下平移2 个单位 17、如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是( )A .相等B .互为相反数C .互为倒数D .相等或互为相反数18、已知正方形ABCD 的三个顶点坐标为A (2,1),B (5,1),D(2,4),现将该正方形向下平移3个单位长度,再向左平移4个单位长度,得到正方形A'B'C'D',则C'点的坐标为( ) A. (5,4) B. (5,1) C. (1,1) D. (-1,-1)19、若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(2,-2)或(-2,2) 20、已知P(0,a)在y 轴的负半轴上,则Q(21,1a a ---+)在( )A 、y 轴的左边,x 轴的上方B 、y 轴的右边,x 轴的上方C 、y 轴的左边,x 轴的下方D 、y 轴的右边,x 轴的下方21、三角形ABC 三个顶点的坐标分别是A (-4,-1),B (1,1),C (-1,4),将三角形ABC 向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( ) A .(2,2),(3,4),(1,7) B .(-2,2),(4,3),(1,7) C .(-2,2),(3,4),(1,7) D .(2,-2),(3,3),(1,7)22、已知△ABC 的面积为3,边BC 长为2,以B 原点,BC 所在的直线为x 轴,则点A 的纵坐标为( )A 、3B 、-3C 、6D 、±323、点M (a ,a-1)不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 二、填空题:1、在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示____________。
2、点A (-3,5)在第_____象限,到x 轴的距离为______,到y 轴的距离为_______;关于原点的对称点坐标为_________,关于x 轴的对称点坐标为_________,关于y 轴的对称点坐标为_________。
3、已知x 轴上点P 到y 轴的距离是3,则点P 坐标是_____________。
4、一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_________。
5、点P (m +3, m +1)在x 轴上,则m = ,点P 坐标为 。
6、已知点P(m ,2m -1)在y 轴上,则P 点的坐标是 。
7、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为8、已知点A (2,-3),线段AB 与坐标轴没有交点,点B 的坐标可以是 (写出一个即可) 9、点E 与点F 的纵坐标相同,横坐标不同,则直线EF 与y 轴的关系是 10、直线a 平行于x 轴,且过点(-2,3)和(5,y ),则y=11、若P (x ,y )是第四象限内的点,且2,3x y ==,则点P 的坐标是12、已知点P 在第二象限,它的横坐标与纵坐标的和为1,点P 的坐标是______(写出一个点即可). 13、已知:A(3,1),B(5,0),E(3,4),则△ABE 的面积为________. 14、点A (1-a ,5),B (3,b )关于y 轴对称,则a+b=_______.15、已知点P(m ,n)到x 轴的距离为3,到y 轴的距离等于5,则点P 的坐标是 。
16、已知点P 的坐标(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是 . 17、已知点A(3a+5,a-3)在二、四象限的角平分线上,则a=_____.18、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a = ,点的坐标为 。
19、已知点P(0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.20、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________。
三、解答题:1、如图所示的直角坐标系中,三角形ABC 的顶点坐标分别是A (0,0)、B (6,0)、C (5,5)。
求: (1)求三角形ABC 的面积;(2)如果将三角形ABC 向上平移3个单位长度,得三角形A 1B 1C 1,再向右平移2个单位长度,得到三角形A 2B 2C 2。
分别画出三角形A 1B 1C 1和三角形A 2B 2C 2。
并试求出A 2、B 2、C 2的坐标?2、已知点P (a+1,2a-1)关于x 轴的对称点在第一象限,求a 的取值范围.3、在如图所示的平面直角坐标系中表示下面各点: A (0,3);B (1,-3);C (3,-5);D (-3,-5); E (3,5);F (5,7);G (5,0)(1)A 点到原点O 的距离是 。
(2)将点C 向x 轴的负方向平移6个单位,它与点 重合。
(3)连接CE ,则直线CE 与y 轴是什么关系? (4)点F 分别到x 、y 轴的距离是多少?4、在直角坐标系中,已知点A (-5,0),点B (3,0),CACAxyBA点在y 轴上,且△ABC 的面积为12, 试确定点C 的坐标。
5、写出如图中△ABC 各顶点的坐标且求出此三角形的面积。
6、如图,△AOB 中,A 、B 两点的坐标分别为(-4,-6),(-6,-3),求△AOB 的面积。
7、如图,在直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变成三角形OA 2B 2,第三次将三角形OA 2B 2变成三角形OA 3B 3,已知123(1,3),(2,3),(4,3),(8,3)A A A A ,123(2,0),(4,0),(8,0),(16,0)B B B B 。
(1)、观察每次变换前后的三角形有何变化,找出规律,按此规律再将三角形OA 3B 3变换成三角形44OA B ,则3B 的坐标是 ,4B 的坐标是 。
(2)若按第(1)题找到的规律将三角形OAB进行了n 次变换,得到三角形OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测n A 的坐标是 ,n B 的坐标是 。
OAB C1xyDC3-1BA OxyDC3-1BA OxyP D CBA Oxy8、如图,在△ABC 中,三个顶点的坐标分别为A(-5,0),B(4,0),C(2,5),将△ABC 沿x 轴正方向平移2个单位长度,再沿y 轴沿负方向平移1个单位长度得到△EFG 。
(1)求△EFG 的三个顶点坐标。
(2)求△EFG 的面积。
9、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0), (3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移 1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)、求点C ,D 的坐标及平行四边形ABDC 的面积ABDC S 四边形(2)、在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=2ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)、点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO∠+∠∠的值不变,②DCP CPOBOP ∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.10、如图:三角形ABC 三个顶点A 、B 、C 的坐标分别为A (1,2)、B (4,3)、C (3,1).CB A5 1oxy(1)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标;(2)求出三角形A1B1C1的面积11、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm,整点P从原点O出发,速度为1cm/s,且整点P作向上或向右运动(如图1所示).运动时间(s)与整点个数的关系如下表:整点P从原点出发的时间(s) 可以得到整点P的坐标可以得到整点P的个数1 (0,1)(1,0) 22 (0,2)(1,1),(2,0) 33 (0,3)(1,2)(2,1)(3,0) 4………根据上表中的规律,回答下列问题:(1)、当整点P从点O出发4s时,可以得到的整点的个数为________个.(2)、当整点P从点O出发8s时,在直角坐标系(图2)中描出可以得到的所有整点,并顺次连结这些整点.(3)、当整点P从点O出发________s时,可以得到整点(16,4)的位置.图1(试验图)图2。