(试卷)奥赛经典-奥林匹克数学中的几何问题---第六章西姆松定理及应用

合集下载

(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第3-5章)

(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第3-5章)

第三章 托勒密定理及应用习题A1.由CDE BAE △∽△和CBE DAE △∽△,有4BE AB CE =,4DEAD CE=,对四边形ABCD 应用托勒密定理,有()()416BE DEBD AE CE AB AD CE+⋅+=+=⋅.令CE x =,得方程26160x x +-=,求得2x =(舍去了负值).于是12BE DE CE AE ⋅=⋅=.又8BD BC DC <+=,求得3BE =,4DE =或4BE =,3DE =,总之7BD =为所求.2.连EF ,DF ,由FBC FBD FED FAC ∠=∠=∠=∠,ABF EBF EDF ACF ∠=∠=∠=∠,知EDF EDF △∽△,即EF DE DF AF AC CF==.设其比值为k (k 为参数),则EF kAF =,DE kAC DF kCF =⋅=,对四边形BEFD 应用托勒密定理.有()BE EF DF BF DE +=⋅,即()BE k AF k CF BF k AC ⋅+⋅=⋅⋅注意到BE AC =,消去k ,得BF AF CF =+.3.连AC ,在四边形APCD 中应用托勒密定理,有PA PC AC PB AB +=4.连11l l 11,,B D DC B C ,设CAD α∠=,BAD β∠=,O ⊙的半径为R .由AD 为BC 上中线,可令12ABC ACD ABC S S S k ===△△△.由正弦定理有112sin B D R β=⋅,112sin()C D R αβ=⋅+.对四边形111AB D C 应用托勒密定理,有1112sin 2sin 2sin()AB R αAC R βAD R αβ⋅⋅+⋅⋅=⋅⋅+,消去2R ,两边同乘以 12AB AC AD ⋅⋅得111122ACD ABD ABC AB AB S AC AC S AD AD S ⋅⋅+⋅⋅=⋅⋅△△△,亦即 1112AB AB AC AC AD AD ⋅+⋅=⋅,由此即证.5.连1535,A A A A ,则1514A A A A =,3513A A A A =.对四边形1345A A A A 应用托勒密定理,有 3413151435()A A A A A A A A A A ⋅+=⋅,即1213141413()A A A A A A A A A A +=⋅,由此整理即证.6.对四边形AB A B ''应用托勒密定理,有11a b cc AB A B '''=+⋅,即11111a b c cc c AB A B c '''=+⋅⋅,同理,对四边形B CA C ''',AB BC '',AA BC ''分别应用托勒密定理,有1AB A B c AB B C b AB A C a '''''''⋅⋅=⋅⋅+⋅⋅,1AB B C b abc bb b '''⋅⋅=+,1AB A C a a b c aa a '''''''⋅⋅=+.由此四式即证得结论.7.设圆心O 到AB ,BC ,CA 的距离分别为1x ,2x ,3x ,连接BO 并延长与O ⊙交于D ,连AD ,DC ,则12AD x =,22CD x =,对四边形ABCD 应用托勒密定理有12222x a x c Rb +=.同理,23222x b x a Rc +=,13222x b x c Ra +=.加之1232()2()2()2()x a b x b c x c a R a b c +=+++=++,但123()cx ax bx r a b c ++=++,以上两式相加得123x x x R r ++=+.但11x R h =-,22x R h =-, 33x R h =-,由此即证.8.作一直径(11)AB x x =≥的圆,在B 的两侧分别取C ,D 二点,使2BC =,11BD =,于是AC =AD ,对四边形ABCD 应用托勒密定理,有211CD x ⋅=+,将此式与原方程比较得CD =.在BCD △中,由余弦定理,有1cos 2CBD ∠=-,知120CBD ∠=︒,故14sin120CDx AB ===︒为所求.9.作直径1AC =的圆,并作弦AB b =,AD a =的圆内接四边形ABCD ,则DC =,BC =AD BC AB CD AC BD ⋅+⋅=⋅,即1a b BD =⋅,由此得1BD =,即BD 也是圆的直径,故221a b +=.10.当0x =时,1y =,当0x ≠时,作代换222x t x +=,1122x x t x x =+=+≥sin cos t θy t θ+=+,即1sin cos yt θy θ-=-⋅,以1AB =为直径作圆,作弦sin AC θ=,作弦AD =,则BD =cos BC θ=.由托勒密定理及1CD AB ≤=,有sin cos θy θ+,亦有sin cos sin cosyt tθyθθyθ-=-≤+,即11t y⋅--,故22y≤≤11.连AC,CE,AE,对四边形APCE应用托勒密定理,有AC PE AE PC CE PA⋅=⋅+⋅,而AC AE CE==,有PE PA PC=+.同理,PD PB PF=+,由此即证.12.不失一般性,令P点位于OBF△内部(其中O为CAB△中心),作1PP AD⊥于1P,2PP BE⊥于2P,3PP CF⋅于3P.由P,O,1P,2P四点共圆,有23180PP O PPO∠+=︒,知1P,3P,O,2P四点共圆,即P,3P,O,lP,2P共圆,推知l23PP P△是正三角形,在312PP PP中,有123213312PP P P PP PP PP PP⋅=⋅+⋅,即123PP PP PP=+,故PAD PCFS S+△△.13.作ABC△外接圆的直径CF,并设AF x=,BF y=,则60BFC A∠=∠=︒,直径2CF d y==.对四边形BCAF应用托勒密定理,有cd ax by=+.从而tan tan tan tan2221tan tan tan tan2a bA B BFC AFC ax by ax by by cd by by c by xa bA B BFC AFC ax by ax by cd c y cy x--∠-∠-+-=-======-= +∠+∠++⋅+.14.令AB AC a==,对四边形ABPC应用托勒密定理,有a PB a PC BC PA⋅+⋅=⋅,即有PA aPB PC BC=+.对四边形BCAQ应用托勒密定理,有QA BC a QB a QC⋅+⋅=⋅,即QA aQC QB BC=-.15.对四边形ABCD应用托勒密定理,BC AD BD AC AB CD⋅+⋅=⋅,即AD ACBC BD CDAB AB⋅+⋅=.又ABD MCP△∽△及ABC MDQ△∽△,有AD MPAB MC=,AC MQAB MD=,于是MP MQBC BD CDMC MD⋅+⋅=,注意到=22CD MC MD=即证.16.连EG,FG和EF,对四边形BFGE应用托勒密定理,有BE FG BF EG BG EF⋅+⋅=⋅,又FEG FBG ADB∠=∠=∠,EFG EBG∠=∠,则EFG ABD△∽△,有FG EG EFAB AD BD==,令其比值为t,则t BE AB t BF AD t BG BD⋅⋅+⋅⋅=⋅⋅,消去t,注意到AD BC=即证.17.作DG AF∥交1O⊙于G,则AG FD=,GF AD=.对四边形AGDF应用托勒密定理,AD FG AG FD AF GD⋅=⋅+⋅.由AD平分BAF∠,知FD BD=,即AG BD=,由此知GB DA∥,有GD AB=.故222AD FD AF GD FD AF AB=+⋅=+⋅.同理,有22AE FE AF AC=+⋅.此两式相减有2222DA EA DF EF-=-,故DE AF⊥.18.在直径2AB x=>的圆中,在两个半圆上分别取点C和D,使2AC=,1AD=,则BCBD=由托勒密定理,CD x=⋅,与原方程比较得CD.在ACD△中,由余弦定理,有1cos2CAD∠=-,则120CAD∠=︒,故sinCDxCAD=∠.19.由222+=,在直径AB=的圆中,在一半圆上取点C,使AC=,BC=;在另一半圆上取中点D,则AD BD==CD,知CD AB≤,由托勒密定理,2AB CD=⋅≤,即y=≤ABC△中,AC BC AB+≥(当C与A或B重合时,取等号),故y≤20.设222x y a+=,则01a≤≤.当0a=时,命题显然成立,当01a<≤时,在直径AB a=的一半圆上取点C,使AC x=,BC y=,因2222x y a +=+=,则可在另一半圆上取点D ,使BD =,AD =,由托勒密定理,有2x y AB CD a +=⋅≤,即2()()x x y y x y ++-≤≤但222()()()()x xy y x x y y x y x x y y x y +-=++-≤++-≤21.设点T 在劣弧»AB 上,连AT ,BT ,CT ,分别交小圆于点D ,E ,F .连DE ,EF ,FD ,过点T 作公切线RQ .由DFT RTD RTA ACT ∠=∠=∠=∠,有AC DF ∥,有AD ATCF CT=.又 2AM AD AT =⋅,2CP CF CT =⋅,有2222AM AD AT AT CP CF CT CT =⋅=,即AM AT CP CT =.同理,BN BT CP CT=.对圆内接四边形ATBC 应用托勒密定理,有AT BC BT AC TC AB ⋅+⋅=⋅,而AB BC CA ==,则 AT BT CT +=,故AM BN CP ++.22.令BC a =,AC b =,AB c =.由BE 平分ABC ∠,有AE AB EC BC =,亦有AE ABAC BC AB=+,即bc AE a c =+.同理,bcAF a b=+.由AE PQ ∥,有AEF Q ∠=∠,从而AEF PCB ∠=∠,注意到 FAE BPC ∠=∠,有AEF PCB △∽△,即PB AF a cPC AE a b+==+,即()PB b PC a c PB a ⋅=⋅+-⋅.在圆内接四边形PABC 中,应用托勒密定理,有PB b PC c PA a ⋅=⋅+⋅,故()PC a c PB a PC c PA a +-⋅=⋅+⋅,因此,PC PA PB ++.23.由()BE AC AF FC AC ⋅=+⋅,AC ,()()AF BC AB FC AF BD CD FC BE AE AF ⋅+⋅=⋅++-=⋅ ()()AC AF CD FC AC FC AE AF FC AC AF CD FC AE +⋅+⋅-⋅=+⋅+⋅-⋅,又AF CD FC AE ⋅=⋅, 则BF AC AF BC AB FC ⋅=⋅+⋅,由托勒密定理之逆,知ABCF 有外接圆.24.连EA ,ED ,由BAE ECD ∠=∠,且CDE EAD ABE ∠=∠=∠,有ABE CDE △∽△,亦有AE ABEC CD=, 即EC AB EA CD ⋅=⋅.在圆内接四边形AEBC 中,应用托勒密定理,有EA BC EB AC EC AB ⋅+⋅=⋅,于是222111EB AC EA BC EA BC BC BD BD BD EC AB EC AB EA CD CD CD BD CD DA ⋅⋅⋅=-=-=-===⋅⋅⋅⋅.又ABD CAD ∠=∠,ADB ADC ∠=∠,有ABD CAD △∽△,有AB BDAC AD=.于是22EB AC AB EC AB AC ⋅=⋅,故33EB AB EC AC =. 习题B1.在弧¼ADC 上取点H ,使AH CD c ==,连HC ,HB ,令AC m =,BD n =,BH p =,易证AHC CDA △∽△,即HC AD d ==.对四边形ABCD ,ABCH 分别应用托勒密定理,有ac bd mn +=,ad bc pm +=.又在弧¼BCH 上取点K ,使BK CH d ==,由CHB KBH △∽△,有HK BC b ==对四边形ABKH 应用托勒密定理,有ab cd AK p +=⋅.又由¼¼KHA BCD =,有AK BD n ==. 于是2()()ac bd ad bc m ab cd ++=+,2()()ac bd ab cd n ad bc++=+,由此即求得AC ,BD .2.作AGH △的外接圆1O ,分别截AC ,AD AB 于点H ,Q ,G .易证BCD APE △∽△,即DC BCPE AP=,BD BC AE AP =,即PE AK CD BC BC AP AP =⋅=⋅,AEBD BC AP=⋅.对四边形ABDC 应用托勒密定理,有AE AKAD BC BD AC DC AB BC BC AB AP AP⋅=⋅+⋅=⋅+⋅⋅,故AP AD AE AE AK AB ⋅=⋅+⋅.(*) 同理,由托勒密定理,有AP AQ AE AE AK AG ⋅=⋅+⋅.于是2()AP AQ AP AP PQ AP AP PQ AE AH AK AG ⋅=+=+⋅=⋅+⋅, 即22AP PG PH AP AP PQ AE AH AK AG +⋅++⋅=⋅+⋅从而2AP AE AH AK AG PG PH =⋅+⋅-⋅.由(*)式减去上式,有()()() AP AD AP AE AC AH AK AB AG PG PH -=-+-+⋅,即PA PD PK PI PE PF PG PH ⋅=⋅+⋅+⋅.又22221()24PK PI EF KI KI ++≤≤,214PE PF EF ⋅≤,214PG PH GH ⋅≤,故224EF KI GH PA PD ++≥⋅,其中等号当且仅当P 为ABCV △的中心时取得. 3.设四边形1234A A A A 内接于以O 为圆心,半径为R 的圆,设点O 在弦13A A ,12A A ,23A A ,34A A ,41A A ,上的射影分别为点0H ,1H ,2H ,3H ,4H .记(0,1,,4)i i h OH i ==…,1S ,2S 与1p ,2p 为123A A A △与34l A A A △的面积与半周长,1r ,2r 为它们的内切圆半径.考虑含点O 的三角形,不妨设O 在123A A A △内,分别对四边形302A H OH ,110A H OH ,221A H OH ,应用托勒密定理,并注意02H H ,01H H ,12H H 是123A A A △的中位线,有1102()R r p R H H +=⋅.01121023203011102121()()(R H H R H H S h H A h H A h H A h H A h H A h +⋅+⋅+=⋅+⋅+⋅+⋅+⋅+⋅2211222003112011)()()2H A h A A h A A h A A h h h p +⋅+⋅+⋅=++⋅,故1120R r h h h +=++.考虑O 在三角形外部的情形,考虑341A A A △,对四边形140A H H O ,330A H H O ,413A H OH 应用托勒密定理,有220404033434010413()()(R r p R H H R H H R H H R H H S h H A h H A h +=⋅+⋅+⋅+⋅+=⋅-⋅+⋅0303343434433444101334021)()()()2H A h H A h H A h H A h A A h A A h A A h h h p -⋅+⋅-⋅+⋅+⋅-⋅=+-⋅,故2340R r h h h +=+-.在上述情形下,1212342r r h h h h R +=+++-.对一般情形,所求内切圆半径之和等于1h ,2h ,3h ,4h ,2R 并赋以一定的符号之和,这些符号只与点O 相对四边形1234A A A A 的位置有关.因此,这个和与对角线的选取无关.4.设圆1C 的圆心为O ,半径为r ,连i OA ,(1,2,,)i OB i n =…,在四边形112OA B B 中应用托勒密不等式,有112211112OA B B CO A B OB A B ⋅+⋅≥⋅,即1211222()r B B λr A B λr A A A B →⋅+⋅≥+),故 12111222()B B λA B λA A A B +≥+.同理,迭用托勒密不等式,有23222333()B B λA B λA A A B '+≥+;34333444()B B λA B λA A A B +⋅≥+;…; 1111()n n n n n n n B λA B λA A A B ----+⋅≥+,1111()n n n n B B λA B λA A A B +≥+.将上述几个同向不等式相加,得1223111223-11()n n n n n B B B B B B B B λA A A A A An A A -+++≥+++……+, 故21p λp ≥.由托勒密不等式中等号成立的条件是当且仅当四边形112OA B B ,223OA B B ,…,1n n OA B B ,都是圆内接四边形,由圆内接四边形性质,知2323OA A OB B ∠=∠,2132OA A OB B ∠=∠,但 2332OB B OB O ∠=∠,则2123OA A OA A ∠=∠,从而1223OA A OA A △∽△,因此1223A A A A =.同理, 23341n A A A A A A ===…,即n 边形12n A A A …为正n 边形.反之,若12n A A A …为正n 边形,将其绕点O 逆时针方向旋转2πn,知12A A →,23A A →,…,1n A A →,从而12B B →,23B B →,…,1n B B →.于是知12n B B B …也是正n 边形,因此有122312n A A A A A A r ===⋅…πsin n,12231π2sin n B B B B B B λr n ====⋅….此时有21p λp =.5.作1O ⊙,O ⊙的公共直径GMK ,其中GM 是1O ⊙的直径,GK 是O ⊙的直径,连CG 交1O ⊙于点N .显然MN KC ∥,于是CN KM CG KG =,222CN KMf CN CG CG CG CG KG=⋅=⋅=⋅,即f CG =理,d AG =e BG =ABGC 中应用托勒密定理,有b BG c CG a AG ⋅+⋅=⋅.此时两bd ce af +=. 6.首先证EF GH =,MN PQ =.由切线长定理,有()()()()AC BC BD DA AF BF BE AE -+-=-+-= ()()2AF AE BE BF EF -+-=,()()()()()AC DA BD BC CH DH DG CG CH CG -+-=-+-=-+()2DG DH GH -=,而()()()()AC B BD DA AC DA BD BC -+-=-+-,故EF GH =.同理MN PQ =. 连1O A ,1O E ,3O C ,3O G ,由BAD ∠与BCD ∠互补,知1O AE ∠与3O CG ∠互余,有13390O AE O CG CO G ∠=︒-∠=∠,即13AE CO G △∽△.于是1313AE CG O E O G R R ⋅=⋅=⋅.同理,24BM DP R R ⋅=⋅.令AE AQ a ==,BM BF b ==,CG CN c == DP DH d == EF GH m ==,MN PQ n ==.于是,AB a b m =++,CD c d m =++,BC b c n =++,DA d a n =++,()()AC AF CM a m c n =+=+++,()()BD BE DQ b m d n =+=+++.对ABCD 应用托勒密定理,有AC BD AB CD BC DA ⋅=⋅+⋅,即()()()()()()a c m n b d m n a b m c d m b c n d a n +++⋅+++=+++++++++,亦即mn ac bd =+.即证. 7.设BAN NAC a ∠=∠=,对AB ,AN ,AC 应用三弦定理,则有2cos AN αAB AC ⋅=+,因1sin ()2ABC ABL ACL S S S AL αAB AC ++=⋅⋅+△△△,则cos sin ABC AN AL αα=⋅⋅⋅△S .又在Rt ALK △中,cos AL αAK ⋅=,则sin 2ANK S ABC AN AK αS =⋅⋅=△△.又易知AK AM =,即知ANK ANM △∽△,于是12ANK ANM AKNM S S S ==△△四边形,即证.8.必要性:连OB ,OC ,知EAB △,FAC △均为等腰三角形,且2()2BPC AEP CFD BAD CAD BAC BOC ∠=∠+∠=∠+∠=∠=∠,知B ,C ,P ,O 共圆,由托勒密定理,有PB OC PC OB OP BC ⋅=⋅+⋅,由PB PC PO =+得OC BC =,即OBC △为正三角形,推得1302BAC BOC ∠=∠=︒.充分性:由30BAC ∠=︒,知OBC △为正三角形,且由BPC BOC ∠=∠知B ,C ,P ,O 共圆,由托勒密定理,有PB OC PC OB PO BC ⋅=⋅+⋅,及OC OB BC ==,即得PB PC PO =+. 9.对四边形1ACA B 应用托勒密定理,有111AA BC AB AC AC A B ⋅=⋅+⋅,令11A B AC x ==,注意112x A B ACK BC =+>,有11222()ABx AC x AA AB AC AB AC BC BC +==+⋅>+,即11()2AA AB AC >+.同理,11()2BB BA BC >+,11()2CC CA CB >+,此三式相加即证.10.令AC a =,CE b =,AE c =.对四边形ACEF 应用托勒密不等式,有AC EF CE AF AE CF ⋅+⋅≥⋅,注意EF AF =,有FA c FC a b ≥+.同理。

第6章 西姆松定理及应用(含答案)

第6章  西姆松定理及应用(含答案)

第六章西姆松定理及应用【基础知识】西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足点共线(此线常称为西姆松线).证明如图6-1,设P 为ABC △的外接圆上任一点,从P 向三边BC ,CA ,AB 所在直线作垂线,垂足分别为L ,M ,N .连PA ,PC ,由P ,N ,A ,M 四点共圆,有βαγβLMAPBNC图6-1PMN PAN PAB PCB PCL ∠=∠=∠=∠=∠.又P ,M ,C ,L 四点共圆,有PML PCL ∠=∠. 故PMN PML ∠=∠,即L ,N ,M 三点共线. 注 此定理有许多证法.例如,如下证法:如图6-1,连PB ,令PBC α∠=,PCB β∠=, PCM γ∠=,则PAM α∠=,PAN β∠=,PBN γ∠=,且cos BL PB α=⋅,cos LC PC β=⋅,cos CM PC γ=⋅, cos MA PA α=⋅,cos AN PA β=⋅,cos NB PB γ=⋅.对ABC △,有cos cos cos 1cos cos cos BL CM AN PB PC PA LC MA NB PC PA PB αγββαγ⋅⋅⋅⋅⋅=⋅⋅=⋅⋅⋅.故由梅涅劳斯定理之逆定理,知L ,N ,M 三点共线.西姆松定理还可运用托勒密定理、张角定理、斯特瓦尔特定理来证(略).西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上. 证明如图6-1,设点P 在ABC △的三边BC ,CA ,AB 所在直线上的射影分别为L ,M ,N ,且此三点共线.由PN AB ⊥于N ,PM AC ⊥于M ,PL BC ⊥于L ,知P ,B ,L ,N 及P ,N ,A ,M 分别四点共圆,而AB 与LM 相交于N ,则PBC PBL PNM PAM ∠=∠=∠=∠,从而P ,B ,C ,A 四点共圆,即点P 在ABC △的外接圆上. 【典型例题与基本方法】1.找到或作出三角形外接圆上一点在三边上的射影,是应用西姆松定理的关键例1如图6-2,过正ABC △外接圆的AC 上点P 作PD ⊥直线AB 于D ,作PE AC ⊥于E ,作PF BC ⊥于F .求证:111PF PD PE+=.PEFABCD图6-2证明由PD ⊥直线AB 于D ,PE AC ⊥于E ,PF BC ⊥于F ,知A ,E ,P ,D 及E ,F ,C ,P 分别四点共圆,则60DPE BAE ∠=∠=︒,60EPF ECF ∠=∠=︒. 由西姆松定理,知D ,E ,F 三点共线,从而以P 为视点,对PDF △应用张角定理,有sin sin sin DPF DPE EPF PE PF PD ∠∠∠=+,即sin120sin60sin60PE PF PD ︒︒︒=+,故111PF PD PE+=. 例2如图6-3,设AD ,BE ,CF 为ABC △的三条高线,自D 点作DP AB ⊥于P ,DQ BE ⊥于Q ,DR CF ⊥于R ,DS AC ⊥于S ,连PS .求证:Q ,R 在直线PS 上. QHES R ABDCPF 图6-3证明由于BFH △的外接圆为BDHF ,而D 为该圆上一点,且D 在BFH △三边所在直线上的射影分别为P ,Q ,R ,于是,由西姆松定理知P ,Q ,R 三点共线. 同理,可证Q ,R ,S 是HEC △的西姆线上三点.由于直线PQR 与直线QRS 有两个公共点Q ,R ,所以这两直线重合,故Q ,R 在直线PS 上. 例3如图64-,设P 为ABC △外接圆上一点,作PA BC '⊥交圆周于A ',作PB '⊥直线AC 交圆周于B ',作PC AB '⊥交圆周于C '.求证:AA BB CC '''∥∥.L MPNAB C C 'B'A'图6-4证明设PA BC '⊥于L ,PB '上直线AC 于N ,PC AB '⊥于M ,则由西姆松定理知L ,M ,N 三点共线.注意到L ,B ,P ,M 及A ',B ,P ,A 分别四点共圆,连BP ,则 AMN BML BPL BPA BAA ''∠=∠=∠=∠=∠,于是AA LN '∥.同样,注意到A ,B ,P ,B '及A ,M ,P ,N 分别四点共圆,连PA ,则ABB APB APN AMN ''∠=∠=∠=∠,于是BB LN '∥.由A ,P ,C ',C 四点共圆,知180ACC APC ''∠+∠=︒.注意到APC APM ANM CNM '∠=∠=∠=∠,则180ACC CNM '∠+∠=︒,于是CC LM '∥,故AA BB CC '''∥∥.例4如图6-5,设P 为ABC △外接圆上BC 内一点,过P 作PD ⊥BC 于D ,作PF ⊥直线AB 于F ,设H 为ABC △的垂心.延长PD 至P ',使PD P D '=.求证:HP DF '∥.(1979年山西省竞赛题改编) MA'H P'PABCD FE H '图6-5证明连AH 并延长交BC 于A ',交圆于H ',则由HCB BAH BCH ''∠=∠=∠,知HA A H '''=.又由已知PP BC '⊥,且P D DP '=,连PH ',则知PH '与P H '关于BC 对称,从而PH H P HH '''∠=∠. 由于从P 点已向ABC △的两边所在直线AB ,BC 引了垂线PF ,PD ,再过点P 向边AC 所在直线作垂线PE ,垂足为E ,则由西姆松定理,知F ,D ,E 三点共线,设西姆松线EF 与HA '交于M .此时,又由P ,C ,E ,D 四点共圆,有CPE CDE ∠=∠.在Rt PCE △中,CPE ∠与PCE ∠互余;在Rt MDA '△中,A DM CDE '∠=∠与DMA '∠互余.故DMA PCE PCA PH H P HH ''''∠=∠=∠=∠=∠,由此即知HP EF '∥,故HP DF '∥.例5如图66-,设P 为ABC △外接圆上一点,过点P 分别作PL BC ⊥于L ,作PN ⊥直线AB 于N ,直线LN 交BC 边上的高线于K ,设H 为ABC △的垂心.求证:PK LH ∥.FPM HS Q BD G L CA K 图6-6N证明由于从P 点引了ABC △的边BC ,BA 所在直线的垂线,再过P 点作PM AC ⊥于M ,则由西姆松定理,知L ,M ,N 三点共直线,即L ,M ,N ,K 四点共线.设BC 边上的高线为AD ,延长AD 交圆于F ,连PF 交BC 于G ,交西姆松线NL 于Q ,连PH 交西姆松线NL 于S .由P ,C ,L ,M 四点共圆及A ,F ,C ,P 共圆,连PC ,则MLP MCP AFP LPF ∠=∠=∠=∠,从而QP QL =,即Q 为Rt PLG △的斜边PG 的中点.连HG ,由DFC ABC DHC ∠=∠=∠,知HD DF =,有HGD DGF LGP QLG ∠=∠=∠=∠,从而HG ML ∥,即SQ 是PHG △的中位线,亦即HS SP =. 又PL KH ∥,有LPS KHS ∠=∠及PSL HSK ∠=∠,于是PSL HSK △△≌,即有PL KH ∥,亦即四边形PKHL 为平行四边形,故PK LH ∥.注由此例可得,三角形外接圆周上一点P 与垂心H 的连线段PH ,被关于P 点的西姆松线所平分,这是西姆松线的一条重要性质.2.注意发现四点共圆与三点共线的联系,灵活应用西姆松定理及其逆定理例6如图67-,延长凸四边形ABCD 的边AB ,DC 交于E ,延长AD ,BC 交于F .试证:BCE △,CDF △,ADE △,ABF △的四个外接圆共点.EMPRSDB CA 图6-7FQ证明设BCE △与CDF △的两个外接圆除交于点C 外,另一交点为M .设点M 在直线BE ,EC ,BC 上的射影分别为P ,Q ,R ,则由西姆松定理,知P ,Q ,R 三点共线.同样,M 点在直线DC ,CF ,DF 上的射影Q ,R ,S 也三点共线,故P ,Q ,R ,S 四点共线. 在ADE △中,P 在AE 上,Q 在DE 上,S 在边AD 所在直线上,且P ,Q ,S 三点共线,则由西姆松定理的逆定理,知M 点在ADE △的外接圆上.在ABF △中,P 在直线AB 上,R 在BF 上,S 在AF 上,且P ,R ,S 三点共线,由西姆松定理的逆定理,知M 点在ABF △的外接圆上.故BCE △,CDF △,ADE △,ABF △的四个外接圆共点.注此例题的结论实际为宪全四边形ABECFD 的四个三角形AED △、BEC △、CFD △、ABF △的外接圆共点,此点称为密克尔(Miquel )点,直线PQRS 称为完全四边形的西姆松线. 【解题思维策略分析】 1.证明点共线的又一工具例7如图68-,设P 为四边形1234A A A A 外接圆上任一点,点P 在直线12A A ,23A A ,34A A ,41A A ,上的射影分别为1B ,2B ,3B ,4B ,又点P 在直线12B B ,23B B ,34B B ,41B B 上的射影分别为1C ,2C ,3C ,4C .求证:1C ,2C ,3C ,4C 共线.Q PB 1B 4B 3B 2C 4C 3C 2C 1A 2A 3A 4A 1图6-8证明连13A A ,过P 作13A A 的垂线,垂足为Q .从而,点P 关于123A A A △的西姆松线为12B B Q 同样,点P 关于134A A A △的西姆松线为34B QB .由14111A B P AQP A B P ∠=∠=∠,知点P 在14QB B △的外接圆上,由西姆松定理,知点P 在14QB B △三边上的垂足1C ,3C ,4C 共线. 同理,1C ,2C ,4C 三点也共线.故1C ,2C ,3C ,4C 四点共线(此直线称为P 点圆内接四边形关于1234A A A A 的西姆松线). 2.注意西姆松线在转化问题中的媒介作用例8如图69-,设P 为ABC △外接圆周上任一点,P 点关于边BC ,AC 所在直线的对称点分别为1P ,2P .求证:直线12P P 经过ABC △的垂心H .P 2P 1BHLC P图6-9N证明由于1P ,2P 分别为P 点关于直线BC ,AC 的对称点,设1PP 交直线BC 于L ,2PP 变直线AC 于N ,则L ,M 分别为P 点在ABC △的边BC ,CA 所在直线上的射影,且L ,N 分别为线段1PP ,2PP 的中点.由西姆松定理,知LN 为西姆松线,此时2LN PP ∥.又由前面例5知,当H 为ABC △的垂心时,直线LN 平分线段PH .于是,可知H 点在直线12P P 上,即直线12P P 经过H 点.例9如图610-,一条直线L 与圆心为O 的圆不相交,E 是l 上一点,OE l ⊥,M 是l 上任意异于E 的点,从M 作O 的两条切线分别切圆于A 和B ,C 是MA 上的点,使得EC MA ⊥,D 是MB 上的点,使得ED MB ⊥,直线CD 交OE 于F .求证:点F 的位置不依赖于M 的位置.(IMO 35-预选题)图6-10M l E证明令OE a =,O 的半径为R ,连结EA ,EB ,OA ,OB ,OM ,AB ,设AB 交OM 于G ,交OE 于Q ,则,OA MA ⊥,OB MB ⊥,OM ⊥AB .由射影定理,得2OG OM OB ⋅=,又由M ,E ,Q ,G 四点共圆,有22OQ OE OG OM OB R ⋅=⋅==,从而知2R OQ a=,由2OB OQ OE =⋅,有OEB OBQ △∽△,既有BEO OBQ BAO ∠=∠=∠,即123∠=∠=∠.由此得(901)903180MEB MAB ∠+∠=︒+∠+︒-∠=︒(),故A ,B ,E ,M 四点共圆.作EN AB ⊥交AB 的延长线于N ,由西姆松定理,知C ,D ,F ,N 四点共线.注意到A ,N ,E ,C 与A ,O ,E ,M 均四点共圆,有ENF EAM EOM ∠=∠=∠又由EN OM ∥,有ENF NEF ∠=∠,故ENF NEF ∠=∠.在Rt NEQ △中,由上推知F 为EQ 的中点,因此,()2211===222a R EF EQ OE OQ a--.故F 的位置不依赖于M 的位置.例10已知锐角ABC △,CD 是过点C 的高线,M 是边AB 的中点,过M 的直线分别与CA 、CB 交于点K 、L ,且CK CL =.若CKL △的外心为S ,证明:SD SM =.(2003年波兰奥林匹克题)证明如图6-11,作ABC △的外接圆,延长CS 交ABC 于点T ,联结TM ,作TK AC '⊥于点K ',TL BC '⊥于点L '.图6-11L'LSDB MAK 'K C注意到S 为KLC △的外心,且KC LC =,所以CS 为KCL ∠的平分线.于是T 为弧AB 的中点. 又M 为AB 的中点,则TM AB ⊥.由西姆松定理,知K '、M 、L '三点共线.又CT 是K CL ''∠的角平分线,且K '、L '、M 三点共线,则CK CL ''=.即直线K ML ''是过M 与CT 垂直的直线,又直线KML 也是过M 与CS 垂直的直线,从而K '与K 重合,L '与L 重合.即90CKT CLT ∠=∠=︒,亦即知C 、K 、T 、L 四点共圆.故S 为四边形CKTL 的外接圆圆心,即有SC ST =,于是S 为TC 的中点.又CD AB ⊥,则CD MT ∥.故SM SD =. 3.注意西姆松线性质的应用三角形外接圆上一点的西姆松线平分该点与三角形垂心的连线. 此性质已在例5给出一种证法,现另证如下: 如图6-12,设H 为ABC △的垂心,P 为其外接圆上一点,作HBC △的外接圆HBC ,则该圆与ABC 关于BC 对称(参见垂心性质7).P'LHQM PABCN图6-12设点P 的垂足线(即西姆松线)为LMN ,由P 、B 、L 、M 四点共圆,有PLM PBM ∠=∠ 设HBC 与直线PL 交于点P '、Q ,则L 为PP '的中点,连HP ',由LP H QH '∠=的度数PA =的度数PBA PBM PLM =∠=∠=∠,知P H LMN '∥.由此即知PH 被直线LMN 平分. 例11如图613-,由ABC △的顶点A 引另两顶点B 、C 的内、外角平分线的垂线,垂足分别为F 、G 、E 、D ,则F 、G 、E 、D 四点共线,且此线与ABC △的中位线重合.IFGE DBCKLA图6-13证明延长BE 、CD 相交于点K ,设CG 与BE 相交于点I ,则I 为ABC △的内心.由1=2CAI A ∠∠,1119090222CKI CIK B C A ⎛⎫∠=︒-∠=︒-∠+∠=∠ ⎪⎝⎭,知A 、I 、C 、K 四点共圆.对ICK △及点A 应用西姆松定理,知G 、E .D 三点共线.图6-13同理,对BCL △及点A 应用西姆松定理,知F 、G 、E 三点共线. 故F 、G 、E 、D 四点共线.由于C 为ICK △的垂心,则由西姆松线的性质知直线GED 平分AC .同理,直线FGE 平分AB ,故直线FD 与ABC △的中位线重合.注由例11再回过来看例2,在例2中,是由点D 引DEF △另两个顶点E .F 的内、外角平分线的垂线,垂足分别为P 、Q 、R 、S .4.注意西姆松定理与托勒密定理的等价性 可用西姆松定理证明托勒密定理:如图614-,ABCD 为任意圆O 内接凸四边形,连AC ,过D 向ABC △各边作垂线,AB ,AC ,BC 所在直线上的垂足分别为1C ,1B ,1A ,连11C B ,11B A ,由西姆松定理,知111111C B B A C A +=.①图6-14由A ,1C ,1B ,D 四点共圆,且AD 为该圆直径及正弦定理,有111111sin sin C B AD C DB AD C AB =⋅∠=⋅∠,设R 为O 半径,则11sin sin 2BC C AB BAC R ∠=∠=,故 112AD BCC B R⋅=. 同理,112CD AB B A R ⋅=,112AC BDC A R⋅= 于是,由①式有AD BC CD AB AC BD ⋅+⋅=⋅.此即为托勒密定理. 也可用托勒密定理证明西姆松定理:设ABCD 是O 的内接四边形,则由托勒密定理,有 AD BC AB CD AC BD ⋅+⋅=⋅.②作1DC ⊥直线AB 于1C ,作1DB ⊥直线AC 于1B ,则由1A ,1C ,1B ,D 四点共圆,且AD 为该圆直径及正弦定理,有11111111sin sin C B C B AD C DB C AB ==∠∠,即1111sin 2BCC B AD C AB AD R=⋅∠=⋅.(R 为O 半径),亦即112AD BC R C B ⋅=⋅.同理,112AB CD R A B ⋅=⋅,112AC BD R AC ⋅=⋅. 把上述三式代入②式,有111111C B A B AC +=,故1A ,1B ,1C 三点在一条直线上,此即为西姆松定理,因此,在应用中,我们应当注意灵活处置,若应用哪个定理方便,就应用哪个定理.【模拟实战】习题A1.设P 为ABC △外接圆周劣孤BC 上一点,P 在边BC ,CA ,AB 上的射影分别为L ,M ,N , 令PL l =,PM m =,PN n =,BC a =,CA b =,AB c =.求证:mna lnb lmc =+.2.设PA ,PB ,PC 为O 的三条弦,分别以它们为直径作圆两两相交于D ,E .F .求证:D , E ,F 三点共线.3.自ABC △的顶点A 作B ∠的内、外角平分线BE ,BF 的垂线,垂足为E ,F ,再作C ∠的内、外角平分线CG ,CD 的垂线,垂足为G ,D .求证:F ,G ,E ,D 四点共线. 4.求证:正三角形外接圆周上任一点到三边距离的平方和为定值.5.若三圆均经过其三圆心所成的外接圆上任何一点,则此三圆两两相交于三个共线点.习题B1.点P ,Q 是ABC △的外接圆上的两点(异于A ,B ,C ),点P 关于直线BC ,CA ,AB 的对称 点分别是U ,V ,W ,连线QU ,QV ,QW 分别与直线BC ,CA ,AB 交于点D ,E ,F .求证: (Ⅰ)U ,V ,W 三点共线;(Ⅱ)D ,E ,F 三点共线.2.设ABCD 是一个圆内接四边形,点P ,Q 和R 分别是D 到直线BC ,CA 和AB 的射影. 证明:PQ QR =的充要条件是ABC ADC ∠=∠的角平分线的交点在AC 上.(IMO -44试题)3.(卡诺定理)过ABC △外接圆上一点P ,向三边所在直线引斜线分别交BC ,CA ,AB 于点D ,E ,F ,且PDB PEC PFB ∠=∠=∠.求证:D ,E ,F 共线.4.过ABC △的三顶点引互相平行的三直线,它们和ABC △的外接圆的交点分别为A ',B ',C '.在ABC △的外接圆上任取一点P ,设PA ',PB ',PC '与BC ,CA ,AB 或其延长线分别交于D ,E ,F .求证:D ,E ,F 共线. 5.(清宫定理)设P ,Q 为ABC △外接圆上异于A ,B ,C 的任意两点,P 点关于BC ,CA ,AB 的对称点分别为U ,V ,W ,而QU ,QV ,QW 和BC ,CA ,AB 分别交于D ,E ,F .求证:D ,E ,F 共线.6.设P ,Q ,为ABC △外接圆半径OK 或延长线上两点,2OP OQ R ⋅=,其中R 为外接圆半径,P 点关于BC 、CA 、AB 的对称点分别为U ,V ,W ,而QU ,QV ,QW 分别交BC ,CA ,AB 于点D ,E ,F .求证:D ,E ,F 共线.第六章西姆松定理及应用答案习题A1.由西姆松定理,知L ,M ,N 三点共线,注意到P ,L ,N ,B 及P ,M ,C ,L 分别四点共圆,知LPN B ∠=∠,LPM C ∠=∠.又由张角定理,有()sin sin sin B C B CPL PM PN∠+∠∠∠=+,即 sin sin sin mn A ln B lm C ⋅∠=⋅∠+⋅∠再应用正弦定理,得mn a ln b lm c ⋅=⋅+⋅. 2.根据直径所对的圆周角是直角,知90BDP ADP ∠=∠=︒,90BFP CFP ∠=∠=︒,90CEP AEP ∠=∠=︒,即知D ,A ,B ;B ,F ,C ;C ,E ,A 分别三点共线.又PD AB ⊥于D ,PE AC ⊥于E ,PF BC ⊥于F ,P 是ABC △外接圆周上一点,由西姆松定理,知D ,E ,F 三点共线.3.延长BE ,CD 相交于点K ,延长CG ,BF 相交于点L .设CG 与BE 相交于点I ,则I 为ABC △的内心.由12CAI BAC ∠=∠,而()11909022CKI CIK B C BAC ∠=︒-∠=︒-∠+∠=∠,从而A ,I ,C ,K四点共圆.又AD CK ⊥于D ,AE KB ⊥于E ,AG CI ⊥于G ,A 是ICK △外接圆上任一点,由西姆松定理,知D ,E ,G 三点共线.同理,B ,I ,A ,L 四点共圆,AE BI ⊥于E ,AG IL ⊥于G ,AF BL ⊥于F ,由西姆松定理,知E ,G ,F 三点共线.故F ,G ,E ,D 四点共线.4.设正ABC △外接圆弧AB 上任一点P 到边BC ,CA ,AB 的距离分别为a h ,b h ,c h ,其垂足分别为D ,E ,F ,正三角形边长为a .由面积等式可得a b c h h h +-=.此式两边平方,得()2222324a b c a b b c a c h h h h h h h h h a +++--=.由sin sin b a h hPAC PBD PA PB =∠=∠=,有a b h PA h PB ⋅=⋅. 同理,a c h PA h PC ⋅=⋅,故a b h PA h PB k PC ⋅=⋅=⋅.又P ,F ,E ,A 及P ,D ,B ,F 分别四点共圆,有PFD PBD PAC ∠=∠=∠,PDF PBF PCA ∠=∠=∠, 得PFD PAC △△≌,故c h PA a DF =⋅,同理,a h PB a DE =⋅,b hPC a EF=⋅,即 a c b a c bh h h h h h k EF DE EF⋅⋅⋅===由西姆松定理,知D ,E ,F 共线,即DF FE DE +=.于是 £()0a b a c b c hb h h h h h h DE DF EF k ®---=--=⋅,故222234a b c h h h a ++=.5.设以ABC △的三个顶点为圆心的三圆,皆经过同一点M ,而M 在ABC △的外接圆上,A 与B 另交于D ,A 与C 另交于E ,B 与C 另交于F . 注意到A 与B 中,公共弦MD ⊥连心线AB ;A 与C 中,公共弦ME ⊥连心线AC ;B 与C 中,公共弦MF ⊥连心线BC .对ABC △及其外接圆周上一点M ,应用西姆松定理,知D ,E ,F 三点共线.习题B1.(Ⅰ)设从点P 向BC ,CA ,AB 作垂线,垂足分别为X ,Y ,Z .由对称性,知XY 为PUV △的中位线,故UV XY ∥同理,VW YZ ∥,WU XZ ∥.由西姆松定理,知X ,Y ,Z 三点共线,故U ,V ,W 三点共线.(Ⅱ)由P ,C ,A ,B 四点共圆,有PCE ABP ∠=∠.亦有22PCV PCE ABP PBW ∠=∠=∠=∠. 又PCQ PBQ ∠=∠,则PCV PCQ PBW PBQ ∠+∠=∠+∠. 即QCV QBW ∠=∠,从而QCV QBWS CV CQS BQ BW⋅=⋅△△.同理,QAW QCUS AW AQS CQ CU ⋅=⋅△△,1QBU QCV QAW QBU QAV QBW QCU QAVS S S S BQ BU S AQ AV S S S ⋅=∴⋅⋅=⋅△△△△△△△△. 于是,1QBU QCV QAWQCV QAV QBWS S S BD CE AF DC EA FB S S S ⋅⋅=⋅⋅=△△△△△△ 由梅勒劳斯定理的逆定理,知D ,E ,F 三点共线.2.由西姆松定理知P ,Q ,R 三点共线.而90DPC DQC ∠=∠=︒,则D ,P ,C ,Q 四点共圆.于是,DCA DPQ DPR ∠=∠=∠.同理,由D ,Q ,R ,A 共圆,有DAC DRP ∠=∠.故DCA DPR △∽△. 类似地,DAB DQP △∽△,DBC DRQ △∽△,从而//DA DR DB QR BC QP BA DC DP DB PQ BA PQ BC ⋅⋅===⋅⋅,故DA BAPQ QR DC BC=⇔=,而ABC ∠和ADC ∠的角平分线分AC 的比分别为BA BC 和DADC.即可证. 3.设P 在BC ,由PDB PFB PEC PEA ∠=∠=∠=∠,知B ,P ,D ,F 四点共圆,P ,F ,A ,E 四点共圆,从而PFD PBD PBC PAE PFE ∠=∠=∠=∠=∠,故F ,D ,E 共线(当90PBD PEC PFB ∠=∠=∠=︒时,即为西姆松定理). 4.由PCE A '∠=∠及AA BB ''∥,有A BGD '=∠ (G 为PA '与BB '的交点),即PCE BGD ∠=∠.又 CBB CPB ''∠=∠,从而在BGD △和PCE △中,有BDP CEP ∠=∠,即知D ,P ,E ,C 四点共圆,有PDE PCE A '∠=∠=∠,故AA DE '∥.同理,AA DF '∥,所以D ,E ,F 共线(当PA BC '⊥时,即为西姆松定理). 另证设P B '与AB 交于点X .注意到BB CC ''∥,则知B BC C ''为等腰梯形,有B C BC ''=,即有B PC BAC ''∠=∠.从而AXP XAC AXP XPC ∠+∠=∠+∠.于是E F ∠=∠.同理E D ∠=∠,F D ∠=∠.故E D F ∠=∠=∠.由卡诺定理(即上一题)知D 、E 、F 三点共线.5.设Q ,P 顺次在BC 上,由PCE PBA ∠=∠.有PCV PBW ∠=∠.又PCQ PBQ ∠=∠,有 QCV QBW ∠=∠.故QCNQBW S VC QC PC QC S WB QB PB QB⋅⋅==⋅⋅△△. 同理,QAWQCU S PA QA S PC QC ⋅=⋅△△,QBV QAV S PB QB S PA QA⋅=⋅△△. 于是,1QBU QCU QAW QCU QAV QBW S S S BD CE AF PB QB PC QC PA QA DC EA FB S S S PC QC PA QA PB QB⋅⋅⋅⋅⋅=⋅⋅=⋅⋅=⋅⋅⋅△△△△△△ 由梅勒劳斯定理的逆定理,知D ,E ,F 共线(当P ,Q 重合时,即为西姆松定理).6.设K 点在BC 上,连OC ,则2OP OQ OC ⋅=,又POC COQ ∠=∠,则OPC COQ △∽△,有 OCP OQC ∠=∠.又OKC OQC KCQ ∠=∠+∠,OCK OCP KCP ∠=∠+∠,而OKC OCK ∠=∠,O CP OQC ∠=∠,知PCK KCQ ∠=∠,即2QCV KCE ∠=∠. 同理,2QBW KBA ∠=∠.又KCE KBA ∠=∠,则QCV QBW ∠=∠,有 QCVQBW S CV CQ PC QC S QB WB PB QB ⋅⋅==⋅⋅△△.同理QAW QCU S PA QA S PC QC ⋅=⋅△△,QBU QAV S PB QB S PA QA ⋅=⋅△△.故1QBU QCV QAW QCU QAV QBWS S S BD DE AF DZ EA FB S S S ⋅⋅=⋅⋅=△△△△△△,故D ,E ,F 共线[当P (或Q )在圆周上时,即为西姆松定理]。

2020年国际数学奥林匹克(IMO)全部试题解答

2020年国际数学奥林匹克(IMO)全部试题解答

2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。

(试卷)奥赛经典-奥林匹克数学中的几何问题---第二十一章平行六面体的性质及应用

(试卷)奥赛经典-奥林匹克数学中的几何问题---第二十一章平行六面体的性质及应用

第二十一章平行六面体的性质及应用【基础知识】平行六面体是平行四边形的一个三维类比模型,平行四边形的一系列有趣性质可推证到平行六面体中去.平行四边形与三角形有着极为密切的关系,因而平行六面体与四面体也有着极为密切的关系,这些构成了平行六面体一系列既有趣又有重要应用的性质.性质1平行六面体的四条对角线相交于一点,且在这一点互相平分,并称该点为中心.推论称侧面对角线的交点为侧面中心,则相对侧面中心的连线也交于平行六面体的中心,且在这一点互相平分.(见例5)性质2平行六面体所有对角线的平方和等于所有棱的平方和.推论1平行六面体所有侧面对角线的平方和等于其所有(体)对角线平方和的两倍.推论2平行六面体每一侧棱的平方等于与这侧棱共面的两侧面四条面对角线的平方和减去与这侧棱不共面而共端点的两条侧面对角线平方和所得差的四分之一.推论3平行六面体的每一对角线长的平方等于过这条对角线一端点的三条侧面对角线的平方和减去过另一端点的三条棱的平方和.性质3平行六面体的每一对角线长的平方等于共一端点的三条棱长的平方和减去这三条棱中每两条棱长及其所夹角余弦之积的两倍.性质4平行六面体的每一对角线通过与该对角线共端点的三条棱的另一端点构成的三角形截面的重心,且被这三角形截面分成三等分.性质5平行六面体的每个由三条侧面对角线构成的三角形截面面积平方的4倍,等于这截面所截三个侧面面积的平方和减去这三个侧面中每两个侧面面积及其所夹二面角余弦之积的两倍.推论平行六面体的八个由三条侧面对角线构成的三角形截面面积的平方和等于六个侧面面积的平方和. 性质6设平行六面体的全面积为S ,四条对角线长为1AC l 、1A C l 、1BD l 、1BD l 、1B D l ,则111122222AC A C BD B DS l l l l +++≤. 性质7通过平行六面体中心的任何平面,将平行六面体分成体积相等的两部分.推论1以平行六面体任一顶点及这顶点出发的三条棱的端点构成的四面体体积是平行六面体体积的六分之一.推论2以平行六面体任一顶点及这顶点出发的三条侧面对角线端点构成的四面体体积是平行六面体体积的三分之一.性质8平行六面体的体积等于底面积与高的乘积,或任一侧面面积与相对面距离之积. 推论设共一顶点的三条棱长为a 、b 、c ,每两条棱的夹角为α、β、γ,则体积V 为V abc ==若记()12θαβγ=++,则2V =. 性质9()11113/22222124AC A C BD B D V l l l l +++≤;3/26S V ⎛⎫ ⎪⎝⎭≤.推论l 表面积一定的平行六面体中,以正方体之体积为最大.推论2在各个侧面面积为定值的平行六面体中,以长方体之体积为最大.性质11由平行六面体的各顶点,至不截此体的一平面所引诸垂线段之和,等于由其对角线之交点至同平面所引垂线段之和的8倍.性质10在平行六面体1111ABCD A B C D -中,截面分别与AB 、AD 、1AA 、1AC 交于0B 、0C 、0A 、0D 各点,则110000AC AA AB AD AC AB AD AA =++u u u u r u u u r u u u r u u u r u u u ur u u u u r u u u u r u u u u r . 下面介绍平行六面体与四面体的密切关系. 1.对应关系作四面体的外接平行六面体,且使四面体的六条棱均成为平行六面体的侧面对角线.此时,四面体与其外接平行六面体是一一对应的.特别地,一个正四面体对应着一个正方体,一个等腰四面体(三对对棱分别相等的四面体)对应着一个长方体,一个两对对棱分别相等的四面体对应着一个直平行六面体,一个对棱均互相垂直的四面体(直角四面体或正三棱锥四面体)对应着一个菱形六面体等等.当四面体的共一顶点的三棱成为平行六面体的共顶点的三棱时,一个四面体对应着四个外接平行六面体,特别地,一个正四面体对应着一个一顶点面角均为60︒的菱形六面体,一个等腰四面体对应着两个一顶点面角之和为180︒的平行六面体等等. 2.隐显关系从本世纪初开始,人们试图将三角形的许多性质引申到四面体——最简单的多面体,事实证明发展四面体的几何学比三角形几何学困难得多,有些提法并不复杂的问题解答起来非常费劲,甚至未能解决.下面的例题将启示我们:四面体某些数量关系的发现及几何特征的显露,借助于其外接平行六面体的性质的运用是一种方便的重要途径.因此,可以说四面体的一些性质可以利其外接平行六面体来显现,平行六面体隐含了四面体的一些重要性质. 【典型例题与基本方法】例1在四面体ABCD 中,AB m =,CD n =,AD p =,BC q =,AC u =,BD u =.若AB 与CD 所成的角为θ,则()()2222cos 2pq u v mn+--=.证明如图211-,作四面体ABCD 的外接平行六面体A DB C AD BC ''''-,使四面体的棱都成为平行六面体的侧面对角线.显然,AB 与CD 所成的角θ就是A B ''与CD 所成的角,于是 ()()2222221/21/24cos 112222m n B D m n B D mn m n θ'+-⎡⎤⎡⎤'+-⎣⎦⎣⎦==⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭ 222222242222A D B D B D A D B D mn mn'''''+--==A'B'C 'D '图21-1DBA C()()22222222222222p q u v A D D D D D B D mn mn+--''''---==. 例2若四面体的六条棱长分别为a 、b 、c 、d 、e 、f ,体积为V ,则有333333a b c d e f +++++≥(Weisenbock 不等式的一种三维推广).证明如图211-,将四面体ABCD 补成平行六面体,则3ABCD V V =平行六面体.设平行六面体共顶点A 的三条棱长为l 、m 、n ,由前面的性质2的推论1,即有()2222222224a b c d e f l m n +++++=++.又由V l m n ⋅⋅平行六面体≤及幂平均值不等式,有113333332222223266a b c d e f a b c d e f ⎛⎫⎛⎫++++++++++ ⎪ ⎪⎝⎭⎝⎭≥.于是()322224212ABCD l m nV ⎡⎤++⎢⎥⎢⎥⎣⎦①()32222222112a b c d e f ⎡⎤=+++++⎢⎥⎣⎦()312233333331612a b c d e f ⎧⎫⎪⎪⎡⎤+++++⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭≤②)333333a b c d e f =+++++.故333333a b c d e f +++++≥.其中等号当且仅当①、②中满足l 、m 、n 互相垂直且l m n ==,即平行六面体为正方体,亦即a b c d e f =====时成立.类似上例,并运用前面的性质5的推论,可证明Weisenbock 不等式的另一种三维推广:若四面体各顶点A 、B 、C 、D 所对的面的面积分别为A S 、B S 、C S 、D S ,体积为V ,则33332A B C D S S S S +++ 例3空间四平面互相平行,相邻两面间距离都是h .今有一正四面体,它的四个顶点分别在这四个面上.求正四面体的棱长.解设正四面体ABCD 的外接正方体为'AC BD A CB D '''-.又设过棱D D '及B C '中点F 的截面为3α,过棱C C '及A D '中点E 的截面为2α,过棱A A ',过棱B B '且与3α、2α平行的平面分别为1α、4α,这样这四个平面即为两相邻距离都相等的互相平行的四平面.又设过A B ''的中点O '与CE 垂直的直线为l ,l 与4α、3α、2α、1α的交点分别为B ''、D ''、C ''、A '',如图21-2(b),则4α、3α、2α、1α两相邻平面间距离为B D ''''、D C ''''、C A ''''.当A C h ''''=时,可求得A E '=,从而A B ''=.这就是我们所要求的正四面体的棱长. 例4四面体ABCD 中,若AB CD ⊥,AC BD ⊥,则AD BC ⊥.(1957年天津市、1979年上海市中学竞赛题)证明如图211-,作四面体ABCD 的外接平行六面体A DB C AD BC ''''-.由平行六面体每一侧面两对角线所夹的角(锐角)的余弦值等于这侧面两相邻棱的平方差的绝对值除以这两条侧面对角线长的乘积,即¼()22cos A D DB A BCD A B CD''-'=''⋅.由AB CD ⊥,则¼()cos cos()0ABCD A B CD ''==撩妹妹?,从而A D DB ''=,即侧面A DB C ''为菱形,同理,由AC BD ⊥.有侧面A CC A ''为菱形,从而侧面A DD A ''也为菱形,故AD BC ⊥. 例5求证四面体的三双对棱中点连线必交于一点,且互相平分.证明如图213-,设E 、F 、G 、H 、M 、N 分别是四面体ABCD 的六条棱的中点.作四面体的外接平行六面体1A C ,则E 、F 、G 、H 、M 、N 分别是其六侧面对角线的交点.在11AAC C Y 中,连EF ,则11EF AA CC ∥∥,且过六面体对角线1A C 的中点O ,同时被O 平分.因六面体的四条对角线共点O ,于是同理可证GH 、MN 过O ,且被O 平分.例6立方体八个顶点中有四个恰是正四面体的顶点.求出立方体的表面积与四面体的表面积之比.(1980年美国中学生竞赛AHSME 第16题) 解设立方体表面积为S ,四面体表面积为0S ,由平行六面体所有三角形截面(三角形的边由六面体侧DEGO 'B"A"C "D "A'B'C 'D (b)(a)D图21-2CF 图21-3G N EH OCDBAC 1A 1D 1B 1MF面对角线组成)面积的平方和等于所有侧面面积的平方和,有2206/4264S S ⎛⎫⎛⎫⋅⋅= ⎪ ⎪⎝⎭⎝⎭,故0/S S =【解题思维策略分析】1.善于将四面体问题转化为平行六面体问题例7若A 、B 、C 、D 表示空间四点,AB 表示A 、B 两点间的距离,AC 表示A 、C 两点间的距离,⋯.证明:222222AC BD AD BC AB CD ++++≥.(第4届美国中学生竞赛题) 证明以空间四边形的边为侧面对角线构造平行六面体,由平行六面体所有侧面对角线的平方和等于所有棱的平方和的两倍及图213-,有222222222111444AC BD AD BC AB CD AD AA A B +++++=++()22242AD AB CD =++故222222AC BD AD BC AB CD ++++≥.当A 、B 、C 、D 共面时,10AD =,上式取等号.此时,可看作是压扁了的四面体.例8在四面体ABCD 中,BDC ∠是直角,由D 到ABC △所在的平面的垂线的垂足H 是ABC △的垂心,证明:()()22226AB BC CA AD BD CD ++++≤.(IMO 12-试题)证明如图214-,平行六面体1111AC BD B D AC -为四面体ABCD 的外接平行六面体.由题设,D 到ABC △所在的平面的垂线的垂足是ABC △的垂心,知这个四面体的对棱互相垂直,又BDC ∠是直角,即知四面体ABCD 的三面角D ABC -是直三面角,故此平行六面体为长方体.由()2222AD BD CD ++()()()222222AD BD BD CD CD AD =+++++222AB BC AC =++.故()()22222263AD BD CD AB BC AC ++=++222222AB BC CA AB BC BC CA AB CA +++⋅+⋅+⋅≥ ()2AB BC CA =++.例9若a 、b 、c 是四面体共顶点的三条棱的长,α、β、γ,是这三条棱组成的面角,ω是这三个面角和的一半,则四面体的体积为:13V abc =四面体证明如图21-4,设DA a =,DB b =,DC c =,BDC α∠=,ADC β∠=, ADB γ∠=.由平行六面体CDBC 1A 1D 1B 1图21-4H的体积公式()V abc S A =⋅平行六面体,其中()S A= 有16V V =四面体平行六面体1=3abc 2.善于构造平行六面体解答有关问题例10已知a 、b 、c +∈R ,且2221a b c ++=3a b c +++>.证明由2221a b c ++=3a b c +++>.参见图212- (a),构作长方体AB '.设对角线1AB '=,AD a '=,AC b '=,AA c '=,则A B ''=B C '',B D ''=.在A AB ''△中,A A A B B A ''''+>,即1c >.同理,1b >1a +>. 以上三式相加,即证.例11锐角α.β、γ满足222sin sin sin 1αβγ++=,求证:π3π24αβγ<++<. 证明构造长方体D AC B DA CB ''''-,参见图212- (a),使其长、宽、高分别为sin D A α'=,sin AC β'=,sin C C γ'=,则1AB D C ''==,D B A α''∠=,C B A β''∠=,C D C γ''∠=,且AB BA '>.sin sin sin D A D AD B A D BA B A BA α'''''∴=∠=<=∠', sin sin sin AC AC C B A C BA B A BAβ'''''=∠=<=∠'.从而D BA α'<∠,C BA β'<∠. 1π2D BA C BA αβ''∴+<∠+∠=.同理,π2βγ+<,π2αγ+<,即3π4αβγ++<. 设B A '与D C '相交于O ,则知2D OA α'∠=,2AOC β'∠=,2C OC γ'∠=.由于三面角的任意两个面角的和大于第三个面角,则 22D OA AOC D OC αβ'''+=∠+∠>∠.()2πD OC C OC αβγ''∴++=∠+∠=. 故π3π24αβγ<++<. 3.注意特殊平面体的性质的运用例12正方体1111ABCD A B C D -的棱长为1,求正方体底面ABCD 内切圆周上的点与过顶点1A 、C 和1B 的圆周上的点之间的最小距离.(第19届全苏奥林匹克题)解如图215-,考察两个圆周分别在以正方体的对称中心为球心的两个同心球面上,即与正方体各棱都)上,这两个球面上的点之间的最小距离是它们的半径之差12d =.如果两圆周上各有一点恰好在球心O 发出的同一射线上,那么d 即为最小值.考察在以O为位似比的变换下,小球面变为大球面,而小球面上的圆周的象集为大球面上的圆周.注意到ABCD 的内切圆1O e 与线段BD 的交点E 和F 在该位似变换下的象在平面1AB C 的两侧(因11145O OF BB O ∠=︒>∠,故射线OF 不与平面1AB C 相交),因此,1O e 的象集(圆周)将与过顶点A ,C 和1B 的圆周相交.设一交点为N ,而N 的原象为M ,那么M ,N 之间的距离就是考察的两圆周上的点之间的距离的最小值,其值为12d =.【模拟实战】习题A1.在正方体1111ABCD A B C D -中,O 是面ABCD 的中心,1O 是面11ADD A 的中心.求异面直线1D O 与1BO 所成角的余弦值.2.已知空间一个平面与一个正方体的12条棱的夹角都等于口α,求α的值.3.能否用一个平面去截一个正方体,使得截面为五边形?进一步,截面是否为正五边形?4.设一个平面截棱长为1的正方体1111ABCD A B C D -,过顶点1C ,交1A D 1中点于E ,1A A 距A 较近的一个三等分点于F ,AB 于G ,BC 于H .求截面1C EFGH 的周长.5.已知一个平面截棱长为1的正方体所得截面是—个六边形.证明:此六边形周长≥. 6.正三棱锥S ABC -的侧棱与底面边长相等,如果E ,F 分别为SC ,AB 的中点,那么异面直线EF 与SA 所成的角等于多少?图21-5C1A B7.已知111ABC A B C -是直三棱柱,90BAC ∠=︒,点1D ,1F 分别是11A B ,11B C 的中点.若1AB CA AA ==,求1BD 与1CF 所夹角的余弦值.8.已知ABCD 是边长为4的正方形,E ,F 分别是AB ,AD 的中点,GC ⊥面ABCD ,且2GC =.求点B 到面EFG 的距离.9.在四面体SABC 中,已知SA BC a ==,SC AB b ==,SB AC c ==,求此四面体的体积. 10.在四面体1234A A A A 中,相应对棱中点的三条连线分别为1m ,2m ,3m ,顶点i A 所对侧面的重心为i G ,其四面体体积记为V ,则(Ⅰ)1233m m m V ⋅⋅≥;(Ⅱ)421412716i j i i i j i A A AG =-∑∑≤≤≤≥(Ⅲ)421i i i AG =∑ 11.已知α,β,γ是锐角,且222cos cos cos 1αβγ++=.求证:(Ⅰ)tan tan tan αβγ⋅⋅≥ (Ⅱ)3ππ4αβγ<++<. 12.已知0a >,0b >,0c >,且1a b c ++=.习题B1.有一立方体,中心和边长为a b c <<的长方体的对称中心重合,诸界面与长方体各界面平行,求立方体的棱长,使得它与长方体的并的体积减去它与长方体的交的体积的差最小.(1979年捷克竞赛题) 2.证明:在棱长为a 的立方体内部可以作两个棱长为a 的正四面体,使得它们没有公共点.(1983年民主德国竞赛题)。

(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第1-2章)

(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第1-2章)

参考答案第一章 梅涅劳斯定理及应有习题A1.延长CB ,FE 交于H ,ADB △与截线GEH ,有13122AG DH BE DH GD HB EA HB ⋅⋅=⋅⋅=,有43DH HB =,即74CH HD =.对ACD △及截线FGH ,72141AF CH DG AF FC HD GA FC ⋅⋅=⋅⋅=,求得27AF FC =. 2.设CB ,DE 的延长线交于P ,又BP BC =,32FP PB =,对AFB △与截线HEP ,CGE ,有31121AH FP BE AH GF PB EA HF ⋅⋅=⋅⋅=,即23AH HF =;11121AG FC BE AG GF CB EA GF ⋅⋅=⋅⋅=,即21AG GF =.由此求得645AH HG GF =∶∶∶∶.3.对BDP △于截线CEA ,有1231612BC DA PE BC CD AP EA CD ⋅⋅=⋅⋅=,知BD DC =.对CDP △与截线BFA ,有22111CB DA PF PF BD AP FC FC ⋅⋅=⋅⋅=,知14PF FC =.而20CF =,故15CP =. 在PBC △中,由中线长公式2PD =,得BC =,即BD =.又22222269BP PD BD +=+==,即90BPD ∠=︒,27PBD S =△,4108ABC PBD S S ==△△.4.直线OCB 分别与DMF △和AEM △的三边延长线都相交,有1DB MO FC MB FO DC ⋅⋅=,1AB EO MCEB MO AC⋅⋅=,即OF OE DB FC EB AC OM OM MB DC AB MC ⋅⋅⋅=⋅⋅⋅.由EF AD ∥,有DB AB MB EB =,FC MC DC AC =,从而21OF OE OM ⋅=,即22OF OE OM OP ⋅==,有OFP OPE △∽△,故OPF OEP ∠=∠.5.直线截ABC △,有22133CF AD BE BE FA DB EC EC ⋅⋅=⋅⋅=,即94BE EC =,故54BC CE =.直线截DBE △,有25154EF AD BC EF FD AB CE ED ⋅⋅=⋅⋅=,所以21EF FD =∶∶. 6.设AC BC x ==,则AB =,。

2020年国际数学奥林匹克(IMO)全部试题解答

2020年国际数学奥林匹克(IMO)全部试题解答

2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。

高中数学竞赛考试大纲及必备辅导书汇总,尖子生请收好

高中数学竞赛考试大纲及必备辅导书汇总,尖子生请收好

高中数学竞赛考试大纲及必备辅导书汇总,尖子生请收好!首先,强调一点:不是所有学生都可以学数学竞赛,要想学习数学竞赛必须同时具备以下条件:•高考数学可以轻松应对;•对数学竞赛有兴趣,自发选择学习数学竞赛;•具备自主学习能力;•高考涉及的其他学科不存在太大问题,或个人的竞赛前景远优于高考前景。

数学竞赛需要的时间和精力都是很大的,并且如果因为学习竞赛受挫而导致对数学产生负情绪是得不偿失的,因此,我从不提倡“全民竞赛”。

当然,如果你恰好符合以上的四个条件,那么你一定要学习竞赛。

为什么?因为学习数学竞赛的好处很多。

与其他学科竞赛一样,学习数学竞赛除了能在升入高校方面获得保送或降分的优惠外,还能培养学生的自主学习能力,这对学生的整个大学学习乃至今后的学术研究或是社会工作是尤为重要的。

当然,对于大部分学生来说,高校的吸引力是最大的。

而2016年新发布的高校自主招生政策中,其中的变化值得深思:•取消“校荐”,考生需自己报名;•“年级排名”不再是报名条件;•门槛抬高,审核更为严格;•报考专业一定要与特长匹配;•试点高校自主招生考核统一安排在高考结束之后、高考成绩公布前进行。

我们最需要关注的点有三个:① 由于校荐被取消,年级排名也被废除,原本校内成绩突出的学生很难走自招,而自招的报名人数会上升,竞争更加激烈;② 据了解,985高校自招的初审底线是竞赛拿到省二以上,而北清更是要求拿到省一,门槛的提高导致了28万申请自招的学生只有4万余人通过初审,8千余人获得资格,初审和复审的通过率均低于20%;③ 现在的自招考试要求不超过两科,考试的科目和专业是相匹配的,而绝大多数专业的考试科目都有数学,因此数学竞赛的比重是很高的。

总的来说,新的政策直接导致的是各高中年级排名较高的学生更难上清北(难以进入博雅领军,难以获得自招资格,裸考进清北的人更少),而间接导致的是更多的学生走上了竞赛这条道路。

因此,若你有足够的实力,精力和时间,那么竞赛将是你们的不二之选。

中学数学竞赛常见定理

中学数学竞赛常见定理

中学数学竞赛常见定理西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。

西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。

塞瓦定理: 在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1海伦公式: 设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)] ,p为半周长:p=(a+b+c)/2托勒密定理: 圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).正余弦定理:正弦a/sinA=b/sinB=c/sinC=2R,其中R为三角形的外接圆半径.三角形面积S=(bcsinA)/2=(acsinB)/2=(absinC)/2余弦: 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足:a^2=b^2+c^2-2*b*c*Cos Ab^2=a^2+c^2-2*a*c*Cos Bc^2=a^2+b^2-2*a*b*Cos CCos C=(a^2+b^2-c^2)/2abCos B=(a^2+c^2-b^2)/2acCos A=(c^2+b^2-a^2)/2bc斯特瓦尔特定理:△ABC的BC边上有一点D则:AB^2*DC+AC^2*BD-AD^2*BC=BC*DC*BD广勾股定理:在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.阿基米德折弦定理笛沙格定理:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章西姆松定理及应用【基础知识】西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足点共线(此线常称为西姆松线).证明如图6-1,设P 为ABC △的外接圆上任一点,从P 向三边BC ,CA ,AB 所在直线作垂线,垂足分别为L ,M ,N .连PA ,PC ,由P ,N ,A ,M 四点共圆,有PMN PAN PAB PCB PCL ∠=∠=∠=∠=∠.又P ,M ,C ,L 四点共圆,有PML PCL ∠=∠. 故PMN PML ∠=∠,即L ,N ,M 三点共线. 注 此定理有许多证法.例如,如下证法:如图6-1,连PB ,令PBC α∠=,PCB β∠=, PCM γ∠=,则PAM α∠=,PAN β∠=,PBN γ∠=,且cos BL PB α=⋅,cos LC PC β=⋅,cos CM PC γ=⋅, cos MA PA α=⋅,cos AN PA β=⋅,cos NB PB γ=⋅.对ABC △,有cos cos cos 1cos cos cos BL CM AN PB PC PA LC MA NB PC PA PB αγββαγ⋅⋅⋅⋅⋅=⋅⋅=⋅⋅⋅.故由梅涅劳斯定理之逆定理,知L ,N ,M 三点共线.西姆松定理还可运用托勒密定理、张角定理、斯特瓦尔特定理来证(略).西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上. 证明如图6-1,设点P 在ABC △的三边BC ,CA ,AB 所在直线上的射影分别为L ,M ,N ,且此三点共线.由PN AB ⊥于N ,PM AC ⊥于M ,PL BC ⊥于L ,知P ,B ,L ,N 及P ,N ,A ,M 分别四点共圆,而AB 与LM 相交于N ,则PBC PBL PNM PAM ∠=∠=∠=∠,从而P ,B ,C ,A 四点共圆,即点P 在ABC △的外接圆上. 【典型例题与基本方法】1.找到或作出三角形外接圆上一点在三边上的射影,是应用西姆松定理的关键例1如图6-2,过正ABC △外接圆的»AC 上点P 作PD ⊥直线AB 于D ,作PE AC ⊥于E ,作PF BC ⊥于F .求证:111PF PD PE+=. βαγβLMAPBNC图6-1证明由PD ⊥直线AB 于D ,PE AC ⊥于E ,PF BC ⊥于F ,知A ,E ,P ,D 及E ,F ,C ,P 分别四点共圆,则60DPE BAE ∠=∠=︒,60EPF ECF ∠=∠=︒. 由西姆松定理,知D ,E ,F 三点共线,从而以P 为视点,对PDF △应用张角定理,有sin sin sin DPF DPE EPF PE PF PD ∠∠∠=+,即sin120sin 60sin 60PE PF PD ︒︒︒=+,故111PF PD PE+=. 例2如图6-3,设AD ,BE ,CF 为ABC △的三条高线,自D 点作DP AB ⊥于P ,DQ BE ⊥于Q ,DR CF ⊥于R ,DS AC ⊥于S ,连PS .求证:Q ,R 在直线PS 上.证明由于BFH △的外接圆为BDHF e ,而D 为该圆上一点,且D 在BFH △三边所在直线上的射影分别为P ,Q ,R ,于是,由西姆松定理知P ,Q ,R 三点共线. 同理,可证Q ,R ,S 是HEC △的西姆线上三点.由于直线PQR 与直线QRS 有两个公共点Q ,R ,所以这两直线重合,故Q ,R 在直线PS 上. 例3如图64-,设P 为ABC △外接圆上一点,作PA BC '⊥交圆周于A ',作PB '⊥直线AC 交圆周于B ',作PC AB '⊥交圆周于C '.求证:AA BB CC '''∥∥.证明设PA BC '⊥于L ,PB '上直线AC 于N ,PC AB '⊥于M ,则由西姆松定理知L ,M ,N 三点共线.注意到L ,B ,P ,M 及A ',B ,P ,A 分别四点共圆,连BP ,则 AMN BML BPL BPA BAA ''∠=∠=∠=∠=∠,于是AA LN '∥.同样,注意到A ,B ,P ,B '及A ,M ,P ,N 分别四点共圆,连PA ,则PEFABCD图6-2QHES R ABDCPF 图6-3L MPNAB C C 'B'A'图6-4ABB APB APN AMN ''∠=∠=∠=∠,于是BB LN '∥.由A ,P ,C ',C 四点共圆,知180ACC APC ''∠+∠=︒.注意到APC APM ANM CNM '∠=∠=∠=∠,则180ACC CNM '∠+∠=︒,于是CC LM '∥,故AA BB CC '''∥∥.例4如图6-5,设P 为ABC △外接圆上»BC内一点,过P 作PD ⊥BC 于D ,作PF ⊥直线AB 于F ,设H 为ABC △的垂心.延长PD 至P ',使PD P D '=.求证:HP DF '∥.(1979年山西省竞赛题改编)证明连AH 并延长交BC 于A ',交圆于H ',则由HCB BAH BCH ''∠=∠=∠,知HA A H '''=.又由已知PP BC '⊥,且P D DP '=,连PH ',则知PH '与P H '关于BC 对称,从而PH H P HH '''∠=∠. 由于从P 点已向ABC △的两边所在直线AB ,BC 引了垂线PF ,PD ,再过点P 向边AC 所在直线作垂线PE ,垂足为E ,则由西姆松定理,知F ,D ,E 三点共线,设西姆松线EF 与HA '交于M .此时,又由P ,C ,E ,D 四点共圆,有CPE CDE ∠=∠.在Rt PCE △中,CPE ∠与PCE ∠互余;在Rt MDA '△中,A DM CDE '∠=∠与DMA '∠互余.故DMA PCE PCA PH H P HH ''''∠=∠=∠=∠=∠,由此即知HP EF '∥,故HP DF '∥.例5如图66-,设P 为ABC △外接圆上一点,过点P 分别作PL BC ⊥于L ,作PN ⊥直线AB 于N ,直线LN 交BC 边上的高线于K ,设H 为ABC △的垂心.求证:PK LH ∥.证明由于从P 点引了ABC △的边BC ,BA 所在直线的垂线,再过P 点作PM AC ⊥于M ,则由西姆松定理,知L ,M ,N 三点共直线,即L ,M ,N ,K 四点共线.设BC 边上的高线为AD ,延长AD 交圆于F ,连PF 交BC 于G ,交西姆松线NL 于Q ,连PH 交西姆松线NL 于S .由P ,C ,L ,M 四点共圆及A ,F ,C ,P 共圆,连PC ,则MLP MCP AFP LPF ∠=∠=∠=∠,从而QP QL =,即Q 为Rt PLG △的斜边PG 的中点.连HG ,由DFC ABC DHC ∠=∠=∠,知HD DF =,有HGD DGF LGP QLG ∠=∠=∠=∠,从而HG ML ∥,即SQ 是PHG △的中位线,亦即HS SP =. 又PL KH ∥,有LPS KHS ∠=∠及PSL HSK ∠=∠,于是PSL HSK △△≌,即有PL KH ∥,亦即四边形MA'H P'PABCD FE H '图6-5FPM HS Q BD G L CA K 图6-6NPKHL 为平行四边形,故PK LH ∥.注由此例可得,三角形外接圆周上一点P 与垂心H 的连线段PH ,被关于P 点的西姆松线所平分,这是西姆松线的一条重要性质.2.注意发现四点共圆与三点共线的联系,灵活应用西姆松定理及其逆定理例6如图67-,延长凸四边形ABCD 的边AB ,DC 交于E ,延长AD ,BC 交于F .试证:BCE △,CDF △,ADE △,ABF △的四个外接圆共点.证明设BCE △与CDF △的两个外接圆除交于点C 外,另一交点为M .设点M 在直线BE ,EC ,BC 上的射影分别为P ,Q ,R ,则由西姆松定理,知P ,Q ,R 三点共线.同样,M 点在直线DC ,CF ,DF 上的射影Q ,R ,S 也三点共线,故P ,Q ,R ,S 四点共线. 在ADE △中,P 在AE 上,Q 在DE 上,S 在边AD 所在直线上,且P ,Q ,S 三点共线,则由西姆松定理的逆定理,知M 点在ADE △的外接圆上.在ABF △中,P 在直线AB 上,R 在BF 上,S 在AF 上,且P ,R ,S 三点共线,由西姆松定理的逆定理,知M 点在ABF △的外接圆上.故BCE △,CDF △,ADE △,ABF △的四个外接圆共点.注此例题的结论实际为宪全四边形ABECFD 的四个三角形AED △、BEC △、CFD △、ABF △的外接圆共点,此点称为密克尔(Miquel )点,直线PQRS 称为完全四边形的西姆松线. 【解题思维策略分析】 1.证明点共线的又一工具例7如图68-,设P 为四边形1234A A A A 外接圆上任一点,点P 在直线12A A ,23A A ,34A A ,41A A ,上的射影分别为1B ,2B ,3B ,4B ,又点P 在直线12B B ,23B B ,34B B ,41B B 上的射影分别为1C ,2C ,3C ,4C .求证:1C ,2C ,3C ,4C 共线.EMPRSDB CA 图6-7FQQ PB 1B 4B 3B 2C 4C 3C 2C 1A 2A 3A 4A 1图6-8证明连13A A ,过P 作13A A 的垂线,垂足为Q .从而,点P 关于123A A A △的西姆松线为12B B Q 同样,点P 关于134A A A △的西姆松线为34B QB .由14111A B P AQP A B P ∠=∠=∠,知点P 在14QB B △的外接圆上,由西姆松定理,知点P 在14QB B △三边上的垂足1C ,3C ,4C 共线. 同理,1C ,2C ,4C 三点也共线.故1C ,2C ,3C ,4C 四点共线(此直线称为P 点圆内接四边形关于1234A A A A 的西姆松线). 2.注意西姆松线在转化问题中的媒介作用例8如图69-,设P 为ABC △外接圆周上任一点,P 点关于边BC ,AC 所在直线的对称点分别为1P ,2P .求证:直线12P P 经过ABC △的垂心H .证明由于1P ,2P 分别为P 点关于直线BC ,AC 的对称点,设1PP 交直线BC 于L ,2PP 变直线AC 于N ,则L ,M 分别为P 点在ABC △的边BC ,CA 所在直线上的射影,且L ,N 分别为线段1PP ,2PP 的中点.由西姆松定理,知LN 为西姆松线,此时2LN PP ∥.又由前面例5知,当H 为ABC △的垂心时,直线LN 平分线段PH .于是,可知H 点在直线12P P 上,即直线12P P 经过H 点.例9如图610-,一条直线L 与圆心为O 的圆不相交,E 是l 上一点,OE l ⊥,M 是l 上任意异于E 的点,从M 作O e 的两条切线分别切圆于A 和B ,C 是MA 上的点,使得EC MA ⊥,D 是MB 上的点,使得ED MB ⊥,直线CD 交OE 于F .求证:点F 的位置不依赖于M 的位置.(IMO 35-预选题)P 2P 1BHLC P图6-9N证明令OE a =,O e 的半径为R ,连结EA ,EB ,OA ,OB ,OM ,AB ,设AB 交OM 于G ,交OE 于Q ,则,OA MA ⊥,OB MB ⊥,OM ⊥AB .由射影定理,得2OG OM OB ⋅=,又由M ,E ,Q ,G 四点共圆,有22OQ OE OG OM OB R ⋅=⋅==,从而知2R OQ a=,由2OB OQ OE =⋅,有OEB OBQ △∽△,既有BEO OBQ BAO ∠=∠=∠,即123∠=∠=∠.由此得(901)903180MEB MAB ∠+∠=︒+∠+︒-∠=︒(),故A ,B ,E ,M 四点共圆.作EN AB ⊥交AB 的延长线于N ,由西姆松定理,知C ,D ,F ,N 四点共线.注意到A ,N ,E ,C 与A ,O ,E ,M 均四点共圆,有ENF EAM EOM ∠=∠=∠又由EN OM ∥,有ENF NEF ∠=∠,故ENF NEF ∠=∠.在Rt NEQ △中,由上推知F 为EQ 的中点,因此,()2211===222a R EF EQ OE OQ a--.故F 的位置不依赖于M 的位置.例10已知锐角ABC △,CD 是过点C 的高线,M 是边AB 的中点,过M 的直线分别与CA 、CB 交于点K 、L ,且CK CL =.若CKL △的外心为S ,证明:SD SM =.(2003年波兰奥林匹克题)证明如图6-11,作ABC △的外接圆,延长CS 交ABC e 于点T ,联结TM ,作TK AC '⊥于点K ',TL BC '⊥于点L '.注意到S 为KLC △的外心,且KC LC =,所以CS 为KCL ∠的平分线.于是T 为弧»AB 的中点. 又M 为AB 的中点,则TM AB ⊥.由西姆松定理,知K '、M 、L '三点共线.又CT 是K CL ''∠的角平分线,且K '、L '、M 三点共线,则CK CL ''=.即直线K ML ''是过M 与CT 垂直的直线,又直线KML 也是过M 与CS 垂直的直线,从而K '与K 重合,L '与L 重合.即图6-10M l E图6-11L'LSDB MAK 'K C90CKT CLT ∠=∠=︒,亦即知C 、K 、T 、L 四点共圆.故S 为四边形CKTL 的外接圆圆心,即有SC ST =,于是S 为TC 的中点.又CD AB ⊥,则CD MT ∥.故SM SD =. 3.注意西姆松线性质的应用三角形外接圆上一点的西姆松线平分该点与三角形垂心的连线. 此性质已在例5给出一种证法,现另证如下: 如图6-12,设H 为ABC △的垂心,P 为其外接圆上一点,作HBC △的外接圆HBC e ,则该圆与ABC e 关于BC 对称(参见垂心性质7).设点P 的垂足线(即西姆松线)为LMN ,由P 、B 、L 、M 四点共圆,有PLM PBM ∠=∠ 设HBC e 与直线PL 交于点P '、Q ,则L 为PP '的中点,连HP ',由¼LP H QH'∠=的度数»PA =的度数PBA PBM PLM =∠=∠=∠,知P H LMN '∥.由此即知PH 被直线LMN 平分.例11如图613-,由ABC △的顶点A 引另两顶点B 、C 的内、外角平分线的垂线,垂足分别为F 、G 、E 、D ,则F 、G 、E 、D 四点共线,且此线与ABC △的中位线重合.证明延长BE 、CD 相交于点K ,设CG 与BE 相交于点I ,则I 为ABC △的内心.由1=2CAI A ∠∠,1119090222CKI CIK B C A ⎛⎫∠=︒-∠=︒-∠+∠=∠ ⎪⎝⎭,知A 、I 、C 、K 四点共圆.对ICK △及点A 应用西姆松定理,知G 、E .D 三点共线.图6-13同理,对BCL △及点A 应用西姆松定理,知F 、G 、E 三点共线. 故F 、G 、E 、D 四点共线.由于C 为ICK △的垂心,则由西姆松线的性质知直线GED 平分AC .同理,直线FGE 平分AB ,故直线FD 与ABC △的中位线重合.P'LHQM PABCN图6-12IFGE DBKLA图6-13注由例11再回过来看例2,在例2中,是由点D 引DEF △另两个顶点E .F 的内、外角平分线的垂线,垂足分别为P 、Q 、R 、S .4.注意西姆松定理与托勒密定理的等价性 可用西姆松定理证明托勒密定理:如图614-,ABCD 为任意圆O 内接凸四边形,连AC ,过D 向ABC △各边作垂线,AB ,AC ,BC 所在直线上的垂足分别为1C ,1B ,1A ,连11C B ,11B A ,由西姆松定理,知111111C B B A C A +=.①由A ,1C ,1B ,D 四点共圆,且AD 为该圆直径及正弦定理,有111111sin sin C B AD C DB AD C AB =⋅∠=⋅∠,设R 为O e 半径,则11sin sin 2BC C AB BAC R ∠=∠=,故 112AD BCC B R⋅=. 同理,112CD AB B A R ⋅=,112AC BDC A R⋅= 于是,由①式有AD BC CD AB AC BD ⋅+⋅=⋅.此即为托勒密定理. 也可用托勒密定理证明西姆松定理:设ABCD 是O e 的内接四边形,则由托勒密定理,有 AD BC AB CD AC BD ⋅+⋅=⋅.②作1DC ⊥直线AB 于1C ,作1DB ⊥直线AC 于1B ,则由1A ,1C ,1B ,D 四点共圆,且AD 为该圆直径及正弦定理,有11111111sin sin C B C B AD C DB C AB ==∠∠,即1111sin 2BCC B AD C AB AD R=⋅∠=⋅.(R 为O e 半径),亦即112AD BC R C B ⋅=⋅.同理,112AB CD R A B ⋅=⋅,112AC BD R AC ⋅=⋅. 把上述三式代入②式,有111111C B A B AC +=,故1A ,1B ,1C 三点在一条直线上,此即为西姆松定理,因此,在应用中,我们应当注意灵活处置,若应用哪个定理方便,就应用哪个定理.【模拟实战】习题A1.设P 为ABC △外接圆周劣孤»BC上一点,P 在边BC ,CA ,AB 上的射影分别为L ,M ,N , 令PL l =,PM m =,PN n =,BC a =,CA b =,AB c =.求证:mna lnb lmc =+.2.设PA ,PB ,PC 为O e 的三条弦,分别以它们为直径作圆两两相交于D ,E .F .求证:D , E ,F 三点共线.图6-143.自ABC △的顶点A 作B ∠的内、外角平分线BE ,BF 的垂线,垂足为E ,F ,再作C ∠的内、外角平分线CG ,CD 的垂线,垂足为G ,D .求证:F ,G ,E ,D 四点共线. 4.求证:正三角形外接圆周上任一点到三边距离的平方和为定值.5.若三圆均经过其三圆心所成的外接圆上任何一点,则此三圆两两相交于三个共线点.习题B1.点P ,Q 是ABC △的外接圆上的两点(异于A ,B ,C ),点P 关于直线BC ,CA ,AB 的对称 点分别是U ,V ,W ,连线QU ,QV ,QW 分别与直线BC ,CA ,AB 交于点D ,E ,F .求证: (Ⅰ)U ,V ,W 三点共线;(Ⅱ)D ,E ,F 三点共线.2.设ABCD 是一个圆内接四边形,点P ,Q 和R 分别是D 到直线BC ,CA 和AB 的射影. 证明:PQ QR =的充要条件是ABC ADC ∠=∠的角平分线的交点在AC 上.(IMO -44试题)3.(卡诺定理)过ABC △外接圆上一点P ,向三边所在直线引斜线分别交BC ,CA ,AB 于点D ,E ,F ,且PDB PEC PFB ∠=∠=∠.求证:D ,E ,F 共线.4.过ABC △的三顶点引互相平行的三直线,它们和ABC △的外接圆的交点分别为A ',B ',C '.在ABC △的外接圆上任取一点P ,设PA ',PB ',PC '与BC ,CA ,AB 或其延长线分别交于D ,E ,F .求证:D ,E ,F 共线. 5.(清宫定理)设P ,Q 为ABC △外接圆上异于A ,B ,C 的任意两点,P 点关于BC ,CA ,AB 的对称点分别为U ,V ,W ,而QU ,QV ,QW 和BC ,CA ,AB 分别交于D ,E ,F .求证:D ,E ,F 共线.6.设P ,Q ,为ABC △外接圆半径OK 或延长线上两点,2OP OQ R ⋅=,其中R 为外接圆半径,P 点关于BC 、CA 、AB 的对称点分别为U ,V ,W ,而QU ,QV ,QW 分别交BC ,CA ,AB 于点D ,E ,F .求证:D ,E ,F 共线.。

相关文档
最新文档