初中奥林匹克数学竞赛题
初中数学奥林匹克竞赛题4套带详解

初中数学奥林匹克竞赛题4套带详解初中数学奥林匹克竞赛是挑战数学天赋和才能的绝佳场所。
这种竞赛是为那些对数字和逻辑有天赋和兴趣的人所设计的。
无论是追求数学事业,还是成为一名数学家,初中数学奥林匹克竞赛都是一个巨大的机会,可以开阔思维和向高级数学的道路迈进。
本文所述的四套初中数学奥林匹克竞赛题带有详细解析,可供所有有兴趣的人参考学习。
第一套试题:平方和试题:假设我们有两个正整数 a 和 b。
如果我们写一个等式 a²+ b² = 130, 请问这个方程有多少对正整数解?解析:通过对题目的分析,我们发现 a 和 b 都是小于等于 11 的正整数,因为如果是大于 11,它们的平方数之和会大于 130。
我们可以用双重循环解决这个问题:```ans = 0for a in range(1, 12):for b in range(1, 12):if a * a + b * b == 130:ans += 1print(ans)```第二套试题:比率试题:如果 3 个大苹果的重量等于 4 个小苹果的重量,又知道3 个小苹果重量等于 2 个中等苹果的重量,那么问:如果要将 20 个中等苹果与其中 $x$ 个大苹果混合,让它们的重量相等,求出$x$ 的值。
解析:我们可以用比率法解决这个题目。
首先,根据第一个给出的条件,我们有:```3a = 4b```其中,$a$ 是大苹果的重量,$b$ 是小苹果的重量。
然后,根据第二个条件,我们可以得到:```3b = 2c```其中,$c$ 是中等苹果的重量。
现在我们只需要将 $a$ 和$c$ 的比率相等,即:```a / c = 20x / (20 - x)```通过简单的代数运算,我们可以得到:```60x = 80(20 - x)x = 16```因此,我们需要加入 $16$ 个大苹果。
第三套试题:平均值试题:32 个正整数的平均值为20,当其中一个数字被改变后,平均数变为 19.875。
初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)

初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)一、填空题1. 如果函数 f(x)=x^2-2x+1的根为 a,b,那么a + b 等于_____.答案:-12. 已知正整数 m、n 满足 mx+ny=1(m、n 都不为 0),若 m + n 等于 8,则 m - n 等于_____.答案:73. 若等差数列{an}的前 n 项和为 Sn,且 a1=3,Sn=15,则 n 的值是_____.答案:64. 在△ABC 中,已知 a=4,b=4,c=8,若 AB+AC=9,则∠B =_____.答案:45°二、选择题5. 已知 A、B 两点的坐标分别为(3,1)、(5,-1),则 AB 是_______.A. 水平的直线B. 斜率为 1 的直线C. 斜率为 -1/3 的直线D. 竖直的直线答案:B6. 若正方形的边长为 x,周长为 5x,则 x 的值等于_______.A. 4B. 5C. 8D. 10答案:A7. 已知tanα=2,cotβ=-3,则 tan(α-β)等于_______.A. 5B. -5C. -1/5D. 1/5答案:B8. 把一个正整数分成 K 份,第一份的数量是剩下的 K-1 份的总和的()A. 1/2B. 3/2C. 2/3D. 3/4答案:B三、解答题9. 已知函数 f(x)=2x+1,若直线 4x+3y=37 与曲线 f(x) 相切,求该曲线上点 P 的坐标答:设点 P 的坐标为 (x,y),因为直线 4x+3y=37 与曲线 f(x) 相切,所以曲线上点 P 的 y 值可由 4x+3y=37 中求得,即 y=12-4/3x,由函数 f(x)可得 12-4/3x=2x+1,故 x=7,代入 y=12-4/3x 可得 y=12-4/3(7)=8。
点 P的坐标即为 (7, 8)。
10. 已知△ABC 中,a=3,b=3,∠A=120°,求 B 的坐标答:由△ABC 中 A 的坐标为(0,0),a=3,b=3 可知 C 的坐标为(3,0),∠A=120°,∠C=60°,因为∠B=60,则以 C 为外接圆圆心,半径为3 的圆○上可得点B,即B(√3,1),综上所述,点B 的坐标为(√3,1)。
2023年全国中学生奥林匹克数学竞赛浙江赛区初赛试题

2023年全国中学生奥林匹克数学竞赛浙江赛区初赛试题本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分。
一、填空题(每小题8分,共计96分) 1. 已知集合2{20}S x x x a =∈++=,若1S −∈,则实数a =_______________。
2. 函数(sin 1)(cos 1)())sin cos 2x x f x x x π++=在(0,上的最小值为___________________。
3.已知四面体S ABC −,点1A 为三角形SBC 的重心,G 在线段1AA 上,13AGGA =,连接SG 交三角形ABC 所在的平面于M ,则1A MAS=____________。
4.已知关于x的方程222x x x a +++−=存在四个不同的实根,则实数a 的取值范围为______________。
5.设函数()(f z z 为复数)满足2(())()f f z zz z z =−−。
若(1)0,f =则()1f i −=____。
6. 已知,,m n k 为正整数,若存在正整数对(,)a b 满足222(1)4()44(1)3a n m a n m a b k +−++++−<,则m n k ++可能值的个数为______________。
7. 已知,,a b c ∈,且2223333,6,a b c a b c a b c ++=++=++= 则202320232023(1)(1)(1)a b c −+−+−=__________________________。
8.已知数列{}n a 满足111,,1,2,32(21)(25)nn na a a n n n a +===−+−,则20231i i a ==∑____________。
9.设,a b 为两个垂直的平面向量,且210a b == 。
当01t ≤≤时,记向量(1)ta t b+−与向量1()(1)5t a t b −+−最大夹角为θ,则cos θ=________________。
初中数学奥林匹克考试试题

初中数学奥林匹克考试试题本文将提供一些经典的初中数学奥林匹克考试试题,旨在帮助学生提升数学解题能力和思维能力。
以下是一些题目供大家练习:1. 在平面直角坐标系中,点A(-2, 4)和B(3, 1)在坐标轴上的垂直平分线所交的点为C,求AC的长度。
2. 若x能被3整除,且由x的各位数字组成的3位数能被27整除,求满足条件的最小正整数x。
3. 甲、乙两车,相向而行,甲车的速度是乙车速度的4倍,甲车行驶8小时后,与乙车相距960公里,求甲车和乙车的速度分别是多少。
4. 求4/7与21/50的和的最简分数形式。
5. 若a、b、c均为正整数,且满足方程式:1/a + 1/b + 1/c = 1/2求满足条件的最小正整数解。
6. 在等腰三角形ABC中,AC=BC,角ACB的角度为120°,D是AB的中点,连接AD和BD,求角ACD的度数。
7. 若x和y是正整数,满足x^3 + x^2y + xy^2 + y^3 = (x + y)^3,求x与y的和。
8. 若正整数m、n均满足m/n = 12.3456789...,求m与n的最大公约数。
9. 设a、b、c为正整数,满足a+b+c=99,且a^2 + b^2 + c^2 =3(abc),求a、b、c的值。
10. 在等腰梯形ABCD中,AB//CD,AB+CD=15,AC=10,BD=12,求AB的长度。
以上是一些初中数学奥林匹克考试的典型题目,希望能对大家的数学学习有所帮助。
通过练习,可以提高解题能力和思维能力,培养逻辑思维和分析问题的能力。
希望大家能够积极参与数学竞赛,挑战自我,不断进步!。
初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。
A. - 2B. 2C. 6D. - 6答案:B。
解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。
2. 把多项式x² - 4x+4分解因式,结果正确的是()。
A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。
解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。
3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。
A. - 4B. - 2C. 0D. 2答案:C。
解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。
在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。
(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。
4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。
解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。
中学奥林匹克数学竞赛试题

中学奥林匹克数学竞赛试题一、单选题1.2023年杭州亚运会期间,甲、乙、丙3名运动员与4名志愿者站成一排拍照留念,若甲与乙相邻、丙不排在两端,则不同的排法种数有( )A.720B.960C.1120D.14402.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .9103.已知sin 2sin 36ππαα⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,则sin 23πα⎛⎫+= ⎪⎝⎭( ) A.34- B. 34 C.45- D.454.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( )A.1B.2C.3D.125.若()2,01,0x m x f x nx x +<⎧=⎨+>⎩是奇函数,则( ) A.1m =-,2n = B. 1m =,2n =-C. 1m =,2n =D. 1m =-,2n =-6.列函数中,既是偶函数又在区间(0),-∞上单调递增的是( )A .2(1)f x x =B .()21f x x =+C .()2f x x =D .()2x f x -=7.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .568.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分也非必要条件9.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤10.已知函数()11f x x x =-,在下列区间中,包含()f x 零点的区间是( )A .14 ,12⎛⎫ ⎪⎝⎭B .12 ,1⎛⎫ ⎪⎝⎭C .(1,2)D .(2,3)11.已知集合{}3,1,0,2,3,4A =--,{|0R B x x =≤或3}x >,则A B =( )A.∅B.{}3,1,0,4--C.{}2,3D.{}0,2,3 12.已知m 3=n 4,那么下列式子中一定成立的是( )A .4m =3nB .3m =4nC .m =4nD .mn =1213.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2acosA ,则cosA =( )A .13 B .24 C .3 D .614.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .100 15.tan 3π=( )A .33B .32 C .1 D 316.已知由小到大排列的4个数据1、3、5、G,若这4个数据的极差是它们中位数的2倍,则这4个数据的第75百分位数是( )A.9B.7C.5D.3二、填空题17.某班统计考试成绩,数学得90分以上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人.则两科都在90分以上的人数为( ).18.定义25(0),()8(0).x x f x x x ⎧+≤⎪=⎨>⎪⎩在(1,1)-上的函数()f x 满足()()()1f x g x g x =--+,对任意的1212,(1,1),x x x x ∈-≠,恒有()()()12120f x f x x x -->⎡⎤⎣⎦,则关于x 的不等式(21)()2f x f x ++>的解集为( )。
wmo世界奥林匹克数学竞赛试题八年级

wmo世界奥林匹克数学竞赛试题八年级WMO世界奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发学生对数学的兴趣,培养他们的数学思维和解决问题的能力。
以下是一套模拟的WMO世界奥林匹克数学竞赛试题,适用于八年级学生:一、选择题(每题3分,共15分)1. 若\( a \)和\( b \)互为相反数,\( c \)和\( d \)互为倒数,且\( a \)和\( b \)的绝对值相等,求下列表达式的值:\[ \frac{1}{2}ab + cd \]A. 0B. 1C. -1D. 无法确定2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 83. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 正负16D. 正负44. 一个圆的直径是14厘米,求这个圆的面积。
A. 38.5平方厘米B. 153.94平方厘米C. 69.08平方厘米D. 98.16平方厘米5. 一个数列的前三项分别是1,2,3,如果每一项都是前一项的两倍,那么第10项是多少?A. 1024B. 2048C. 4096D. 8192二、填空题(每题2分,共10分)6. 一个数的立方根是2,这个数是________。
7. 如果一个数的绝对值是5,那么这个数可能是________或________。
8. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,它的体积是________立方厘米。
9. 一个分数的分子是7,分母是12,化简后的分数是________。
10. 一个正整数,如果它是3的倍数,同时也是5的倍数,那么这个数至少是________。
三、解答题(每题5分,共20分)11. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 =\frac{n^2(n+1)^2}{4} \)。
12. 一个长方体的长、宽、高分别是\( l \)、\( w \)和\( h \),如果长方体的表面积是\( S \),求长方体的体积。
奥林匹克数学竞赛试卷初三

一、选择题(每题5分,共25分)1. 下列哪个数是质数?A. 12B. 13C. 14D. 152. 一个正方形的边长为5cm,它的面积是多少平方厘米?A. 25B. 50C. 75D. 1003. 已知x^2 + 4x + 4 = 0,则x的值为:A. -2B. 2C. 4D. 64. 一个数列的前三项分别是1,3,7,那么这个数列的第四项是:A. 9B. 11C. 13D. 155. 下列哪个图形是轴对称图形?A. 矩形B. 正方形C. 圆D. 三角形二、填空题(每题5分,共25分)6. 5的平方根是_________。
7. 3^3的值是_________。
8. (-2)×(-3)×(-4)的值是_________。
9. 一个等边三角形的边长为6cm,它的周长是_________cm。
10. 已知a + b = 7,a - b = 3,则a的值是_________。
三、解答题(每题10分,共30分)11. (1)求下列各数的平方根:- 16- 25- 49(2)求下列各数的立方根:- 27- 64- 12512. (1)已知一个数列的前三项分别是2,4,8,求这个数列的第四项。
(2)已知一个数列的公差是3,第一项是5,求这个数列的第六项。
13. (1)已知一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。
(2)已知一个等边三角形的边长为6cm,求这个三角形的面积。
四、附加题(10分)14. (1)已知一个数列的前三项分别是3,6,9,求这个数列的第四项。
(2)已知一个数列的公差是2,第一项是1,求这个数列的第十项。
答案:一、选择题:1. B2. A3. A4. B5. C二、填空题:6. ±27. 278. -249. 1810. 5三、解答题:11. (1)-4,±5,±7(2)3,4,512. (1)12(2)2313. (1)40cm^2(2)18cm^2四、附加题:14. (1)15(2)21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中奥数系列综合模拟试卷答案:
赛前模拟:初中奥数系列综合模拟试卷及答案
初中奥数系列综合模拟答案:
赛前模拟:初中奥数系列综合模拟试卷及答案3
14.预计用1500元购买甲商品个,乙商品个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定数减少10个,总金额仍多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么甲、乙两商品支付的总金额
是1563.5元.
(1)求、的关系式;
(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求、的值.
初中奥数系列综合模拟试卷答案:
赛前模拟:初中奥数系列综合模拟试卷1改
日期:2008-08-11 来源:互联网作者:佚名[打印] [评论]初中奥数系列综合模拟试卷
初中奥数系列综合模拟试卷答案:。