2020高考物理总复习专题天体运动的三大难点破解3剖析宇宙中的双星三星模型同步练习202020022
2020年高考物理一轮复习热点题型专题08天体运动

2020年高考物理一轮复习热点题型专题08—天体运动题型一 开普勒三定律的理解和应用 题型三 天体质量和密度的估算 题型四 卫星运行参量的分析题型五 近地卫星、同步卫星和赤道上物体的运行问题 题型六 卫星变轨问题 题型七 双星模型题型八 天体的追及相遇问题题型一 开普勒三定律的理解和应用1.行星绕太阳的运动通常按圆轨道处理.2.开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.3.开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同.但该定律只能用在同一中心天体的两星体之间.【例题1】(2019·江苏卷)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该 卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v 1、 v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G 。
则A .121,GMv v v r >= B .121,GMv v v r >> C .121,GMv v v r<= D .121,GMv v v r<>【答案】B【解析】“东方红一号”从近地点到远地点万有引力做负功,动能减小,所以12v v >,过近地点圆周运动的速度为GMv r=,由于“东方红一号”在椭圆上运动,所以1GMv r>,故B 正确。
【例题2】(多选)(2017·全国卷Ⅱ·19)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0,若只考虑海王星和太阳之间的相互作用,则海王星在从P 经过M 、Q 到N 的运动过程中( )A .从P 到M 所用的时间等于T 04B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功 【答案】 CD【解析】 由行星运动的对称性可知,从P 经M 到Q 点的时间为12T 0,根据开普勒第二定律可知,从P 到M 运动的速率大于从M 到Q 运动的速率,可知从P 到M 所用的时间小于14T 0,选项A 错误;海王星在运动过程中只受太阳的引力作用,故机械能守恒,选项B 错误;根据开普勒第二定律可知,从P 到Q 阶段,速率逐渐变小,选项C 正确;海王星受到的万有引力指向太阳,从M 到N 阶段,万有引力对它先做负功后做正功,选项D 正确. 【例题3】如图所示,一颗卫星绕地球沿椭圆轨道运动,A 、B 是卫星运动的远地点和近地点.下列说法中正确的是( )A .卫星在A 点的角速度大于B 点的角速度 B .卫星在A 点的加速度小于B 点的加速度C .卫星由A 运动到B 过程中动能减小,势能增加D .卫星由A 运动到B 过程中引力做正功,机械能增大 【答案】 B【解析】 由开普勒第二定律知,卫星与地球的连线在相等的时间内扫过的面积相等,故卫星在远地点转过的角度较小,由ω=θt 知,卫星在A 点的角速度小于B 点的角速度,选项A错误;设卫星的质量为m ,地球的质量为M ,卫星的轨道半径为r ,由万有引力定律得G mMr2=ma ,解得a =GMr 2,由此可知,r 越大,加速度越小,故卫星在A 点的加速度小于B 点的加速度,选项B 正确;卫星由A 运动到B 的过程中,引力做正功,动能增加,势能减小,选项C 错误;卫星由A 运动到B 的过程中,只有引力做功,机械能守恒,选项D 错误.题型二 万有引力定律的理解1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向.(1)在赤道上:G MmR 2=mg 1+mω2R .(2)在两极上:G MmR2=mg 0.(3)在一般位置:万有引力G MmR2等于重力mg 与向心力F 向的矢量和.越靠近南、北两极,g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR 2=mg .2.星球上空的重力加速度g ′星球上空距离星体中心r =R +h 处的重力加速度为g ′,mg ′=GmM (R +h )2,得g ′=GM (R +h )2.所以gg ′=(R +h )2R 2.3.万有引力的“两点理解”和“两个推论” (1)两点理解①两物体相互作用的万有引力是一对作用力和反作用力. ②地球上的物体(两极除外)受到的重力只是万有引力的一个分力. (2)两个推论①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0.②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对其的万有引力,即F =G M ′m r2.【例题1】(2019·新课标全国Ⅱ卷)2019年1月,我国嫦娥四号探测器成功在月球背面软着 陆,在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球 引力,能够描述F 随h 变化关系的图像是【答案】D【解析】根据万有引力定律可得:2()GMmF R h =+,h 越大,F 越大,故选项D 符合题意。
2020高考物理总复习 专题 天体运动的三大难点破解1 深度剖析卫星的变轨讲义

深度剖析卫星的变轨二、重难点提示:重点:1. 卫星变轨原理;2. 不同轨道上速度和加速度的大小关系。
难点:理解变轨前后的能量变化。
一、变轨原理卫星在运动过程中,受到的合外力为万有引力,F 引=2RMmG 。
卫星在运动过程中所需要的向心力为:F 向=Rmv 2。
当:(1)F 引= F 向时,卫星做圆周运动; (2)F 引> F 向时,卫星做近心运动; (3)F 引<F 向时,卫星做离心运动。
二、变轨过程 1. 反射变轨在1轨道上A 点向前喷气(瞬间),速度增大,所需向心力增大,万有引力不足,离心运动进入轨道2沿椭圆轨道运动,此过程为离心运动;到达B点,万有引力过剩,供大于求做近心运动,故在轨道2上供需不平衡,轨迹为椭圆,若在B点向后喷气,增大速度可使飞船沿轨道3运动,此轨道供需平衡。
2. 回收变轨在B点向前喷气减速,供大于需,近心运动由3轨道进入椭圆轨道,在A点再次向前喷气减速,进入圆轨道1,实现变轨,在1轨道再次减速返回地球。
三、卫星变轨中的能量问题1. 由低轨道到高轨道向后喷气,卫星加速,但在上升过程中,动能减小,势能增加,增加的势能大于减小的动能,故机械能增加。
2. 由高轨道到低轨道向前喷气,卫星减速,但在下降过程中,动能增加,势能减小,增加的动能小于减小的势能,故机械能减小。
注意:变轨时喷气只是一瞬间,目的是破坏供需关系,使卫星变轨。
变轨后稳定运行的过程中机械能是守恒的,其速度大小仅取决于卫星所在轨道高度。
3. 卫星变轨中的切点问题【误区点拨】近地点加速只能提高远地点高度,不能抬高近地点,切点在近地点;远地点加速可提高近地点高度,切点在远地点。
例题1 如图所示,发射同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行;最后再次点火将其送入同步圆轨道3。
轨道1、2相切于P 点,2、3相切于Q 点。
当卫星分别在1、2、3上正常运行时,以下说法正确的是( )A. 在轨道3上的速率大于1上的速率B. 在轨道3上的角速度小于1上的角速度C. 在轨道2上经过Q 点时的速率等于在轨道3上经过Q 点时的速率D. 在轨道1上经过P 点时的加速度等于在轨道2上经过P 点时的加速度思路分析:对卫星来说,万有引力提供向心力,222GMm v m mr ma r rω===,得v =3rGM =ω,2r GM a =,而13r r >,即31v v <,31ωω<,A 不对,B 对。
物理高考复习专题强化五-天体运动的“三类热点”问题

专题强化五天体运动的“三类热点”问题【专题解读】1.本专题是万有引力定律在天体运行中的特殊运用,同步卫星是与地球表面相对静止的卫星;而双星或多星模型有可能没有中心天体,近年来常以选择题形式在高考题中出现。
2.学好本专题有助于学生更加灵活地应用万有引力定律,加深对力和运动关系的理解。
3.需要用到的知识:牛顿第二定律、万有引力定律、圆周运动规律等。
热点一近地卫星、同步卫星和赤道上物体的区别1.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种。
(2)极地轨道:卫星的轨道过南、北两极,即在垂直于赤道的平面内,如极地气象卫星。
(3)其他轨道:除以上两种轨道外的卫星轨道,所有卫星的轨道平面一定通过地球的球心。
2.同步卫星问题的“四点”注意(1)基本关系:G Mmr2=ma=mv2r=mrω2=m4π2T2r。
(2)重要手段:构建物理模型,绘制草图辅助分析。
(3)物理规律①不快不慢:具有特定的运行线速度、角速度和周期。
②不高不低:具有特定的位置高度和轨道半径。
③不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能在赤道上方特定的点运行。
(4)重要条件①地球的公转周期为1年,其自转周期为1天(24小时),地球半径约为6.4×103 km,地球表面重力加速度g约为9.8 m/s2。
②月球的公转周期约27.3天,在一般估算中常取27天。
③人造地球卫星的运行半径最小为r=6.4×103 km,运行周期最小为T=84.8 min,运行速度最大为v=7.9 km/s。
3.两个向心加速度卫星绕地球运行的向心加速度物体随地球自转的向心加速度产生原因由万有引力产生由万有引力的一个分力(另一分力为重力)产生方向指向地心垂直且指向地轴大小a=GMr2(地面附近a近似等于g)a=rω2,r为地面上某点到地轴的距离,ω为地球自转的角速度特点随卫星到地心的距离的增大而减小从赤道到两极逐渐减小4.两种周期(1)自转周期是天体绕自身某轴线转动一周所需的时间,取决于天体自身转动的快慢。
2019-2020年高三物理一轮复习 天体运动中的“四大难点”教案

2019-2020年高三物理一轮复习天体运动中的“四大难点”教案突破二 卫星的变轨问题1.变轨原理及过程人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图3所示。
(1)为了节省能量 ,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。
(2)在A 点点火加速,由于速度变大,进入椭圆轨道Ⅱ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ。
2.卫星变轨的实质(1)当卫星的速度突然增加时,G Mm r 2<m v 2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速率比原轨道时减小。
(2)当卫星的速率突然减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速率比原轨道时增大。
卫星的发射和回收就是利用这一原理。
突破三 天体运动中的能量问题卫星的机械能动能G Mm r 2=m v 2r E k =GMm 2r ∝m rE k =12mv 2势能与总能量同一卫星在同一圆形轨道上运动,其机械能不变(守恒)相同质量的卫星,在r 越大的轨道上,动能越小,势能越大,总能量越大三、典型例题分析【例1】 (多选)如图1所示 ,A 表示地球同步卫星,B 为运行轨道比A 低的一颗卫星,C 为地球赤道上某一高山山顶上的一个物体,两颗卫星及物体C 的质量都相同,关于它们的线速度、角速度、运行周期和所受到的万有引力的比较,下列关系式正确的是( )图1A.v B >v A >v C B .ωA>ωB >ωC C .F A >F B >F CD .T A =T C >T B解析 A 为地球同步卫星,故ωA =ωC ,根据v =ωr 可知,v A >v C ,再根据G Mm r 2=m v 2r 得到v =GMr,可见v B >v A ,所以三者的线速度关系为v B >v A >v C ,故选项A 正确;由ω=2πT 可知T A =T C ,再由G Mm r 2=m (2πT)2r可知T A >T B ,因此它们的周期关系为T A =T C >T B ,它们的角速度关系为ωB >ωA =ωC ,所以选项D 正确,B 错误;由F =G Mmr2可知F A <F B <F C ,所以选项C 错误。
2020高考导航必修2 第四章 专题突破天体运动中的“三大难点”

专题突破天体运动中的“三大难点”突破一近地卫星、同步卫星及赤道上物体的运行问题如图1所示,a为近地卫星,半径为r1;b为地球同步卫星,半径为r2;c为赤道上随地球自转的物体,半径为r3。
图1【例1】(2018·青海西宁三校联考)如图2所示,a为放在赤道上相对地球静止的物体,随地球自转做匀速圆周运动,b为沿地球表面附近做匀速圆周运动的人造卫星(轨道半径约等于地球半径),c为地球的同步卫星。
下列关于a、b、c的说法中正确的是()图2A .b 卫星转动线速度大于7.9 km/sB .a 、b 、c 做匀速圆周运动的向心加速度大小关系为a a >a b >a cC .a 、b 、c 做匀速圆周运动的周期关系为T c >T b >T aD .在b 、c 中,b 的速度大解析 b 为沿地球表面附近做匀速圆周运动的人造卫星,根据万有引力定律有G Mm R 2=m v 2R ,解得v =GMR ,代入数据得v =7.9 km/s ,故A 错误;地球赤道上的物体与同步卫星具有相同的角速度,所以ωa =ωc ,根据a =rω2知,c 的向心加速度大于a 的向心加速度,根据a =GM r 2得b 的向心加速度大于c 的向心加速度,即a b >a c >a a ,故B 错误;卫星c 为同步卫星,所以T a =T c ,根据T =2πr 3GM得c 的周期大于b 的周期,即T a =T c >T b ,故C 错误;在b 、c 中,根据v =GM r ,可知b 的速度比c 的速度大,故D 正确。
答案 D1.2018年7月10日4时58分,我国在西昌卫星发射中心用长征三号甲运载火箭,成功发射了第三十二颗北斗导航卫星。
该卫星属倾斜地球同步轨道卫星,卫星入轨并完成在轨测试后,将接入北斗卫星导航系统,为用户提供更可靠服务。
通过百度查询知道,倾斜地球同步轨道卫星是运转轨道面与地球赤道面有夹角的轨道卫星,它的运转周期也是24小时,如图3所示,关于该北斗导航卫星说法正确的是( )图3A .该卫星可定位在北京的正上空B .该卫星与地球静止轨道卫星的向心加速度大小是不等的C .该卫星的发射速度v ≤7.9 km/sD .该卫星的角速度与放在北京地面上物体随地球自转的角速度大小相等解析 根据题意,该卫星是倾斜轨道,故不可能定位在北京的正上空,选项A 错误;由于该卫星的运转周期也是24小时,与地球静止轨道卫星的周期相同,故轨道半径、向心加速度均相同,故选项B 错误;第一宇宙速度7.9 km/s 是最小的发射速度,故选项C 错误;根据ω=2πT 可知,该卫星的角速度与放在北京地面上物体随地球自转的角速度大小相等,故选项D 正确。
2020版高考物理一轮复习第四章曲线运动万有引力与航天专题突破五天体运动中的三大难点学案解析版

专题突破五 天体运动中的三大难点命题点一 近地卫星、同步卫星与赤道上的物体的比较分析1.解决同步卫星问题的“四点”注意(1)基本关系:G Mm r 2=ma n =m v 2r =mrω2=m 4π2T2r .(2)重要手段:构建物理模型,绘制草图辅助分析. (3)物理规律:①不快不慢:具有特定的运行线速度、角速度和周期. ②不高不低:具有特定的位置高度和轨道半径.③不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能静止在赤道上方的特定的点上. (4)重要条件:①地球的公转周期为1年,其自转周期为1天(24小时),地球表面半径约为6.4×103km ,表面重力加速度g 约为9.8m/s 2.②月球的公转周期约27.3天,在一般估算中常取27天.③人造地球卫星的运行半径最小为r =6.4×103km ,运行周期最小为T ≈84min,运行速度最大为v =7.9km/s. 2.两个向心加速度例1 (多选)同步卫星与地心的距离为r ,运行速率为v 1,向心加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2.第一宇宙速度为v 2,地球半径为R ,则下列比值正确的是( ) A.a 1a 2=rRB.a 1a 2=(R r)2C.v 1v 2=r RD.v 1v 2=R r答案 AD解析 万有引力提供向心力,有G Mm r 2=m v 2r ,故v 1v 2=Rr,故选项D 正确;对于同步卫星和地球赤道上的物体,其共同特点是角速度相等,有a =ω2r ,故a 1a 2=r R,故选项A 正确. 变式1 (2018·前黄中学检测)有a 、b 、c 、d 四颗地球卫星,a 还未发射,在赤道表面上随地球一起转动,b 是近地轨道卫星,c 是地球同步卫星,d 是高空探测卫星,它们均做匀速圆周运动,各卫星排列位置如图1所示,则( )图1A .a 的向心加速度等于重力加速度gB .在相同时间内b 转过的弧长最长C .c 在4小时内转过的圆心角是π6D .d 的运行周期有可能是20小时 答案 B解析 地球同步卫星的角速度与地球自转的角速度相同,则知a 与c 的角速度相同,根据a n =ω2r 知,c 的向心加速度大于a 的向心加速度.由G Mm r 2=ma ,得a =GM r2,可知卫星的轨道半径越大,向心加速度越小,则地球同步卫星c 的向心加速度小于b 的向心加速度,而b 的向心加速度等于重力加速度g ,故a 的向心加速度小于重力加速度g ,故A 错误;由G Mm r 2=m v 2r,得v =GMr,则知卫星的轨道半径越大,线速度越小,所以b 的线速度最大,在相同时间内转过的弧长最长,故B 正确;c 是地球同步卫星,周期是24h ,则c 在4h 内转过的圆心角是4h24h ×2π=π3,故C 错误;由开普勒第三定律R3T2=k 知,卫星的轨道半径越大,周期越大,所以d 的运行周期大于c 的周期24h ,故D 错误.变式 2 (多选)(2018·高邮市期初)中国北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.如图2所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,则( )图2A .卫星a 的速度小于卫星c 的速度B .卫星a 的加速度大于卫星b 的加速度C .卫星b 的线速度大于赤道上的物体随地球自转的线速度D .卫星b 的周期小于卫星c 的周期 答案 AC解析 由万有引力提供向心力,得:G Mm r 2=mv 2r ,则:v =GMr,由题图知卫星a 的轨道半径大于卫星c 的轨道半径,所以卫星a 的速度小于卫星c 的速度,故A 正确;由万有引力提供向心力,得G Mm r 2=ma n ,则a n =GMr 2,由题图知卫星a 与卫星b 的轨道半径相等,所以向心加速度大小也相等,故B 错误;卫星a 的周期为24 h ,卫星b 与卫星a 的轨道半径相同,故周期相同,则卫星b 的周期为24 h ,所以卫星b 与赤道上随地球自转的物体的周期是相等的;根据v =2πr T可知,轨道半径大的卫星b 的线速度大于赤道上物体随地球自转的线速度,故C正确;由万有引力提供向心力得G Mm r 2=mr 4π2T 2,则:T =2πr 3GM,由题图知卫星b 的半径大于卫星c 的半径,所以卫星b 的周期大于卫星c 的周期,故D 错误.命题点二 卫星变轨问题1.变轨原理及过程人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图3所示.图3(1)在A 点点火加速,由于速度变大,G Mm r 2<m v 2r,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅱ.在B 点(远地点)再次点火加速进入圆形轨道Ⅲ.(2)当卫星的速率突然减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速率比原轨道时增大,卫星的发射和回收就是利用这一原理.2.三个运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B ,在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .(2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k ,可知T 1<T 2<T 3.3.卫星运动中的机械能(1)只在万有引力作用下卫星绕中心天体做匀速圆周运动和沿椭圆轨道运动,机械能均守恒,这里的机械能包括卫星的动能、卫星(与中心天体)的引力势能.(2)质量相同的卫星,圆轨道半径越大,动能越小,势能越大,机械能越大.例 2 (多选)(2018·南通等六市一调)我国“天宫一号”飞行器已完成了所有任务,已于2018年4月2日坠入大气层后烧毁.如图4所示,设“天宫一号”原来在圆轨道Ⅰ上飞行,到达P 点时转移到较低的椭圆轨道Ⅱ上(未进入大气层),则“天宫一号”( )图4A .在P 点减速进入轨道ⅡB .在轨道Ⅰ上运动的周期大于在轨道Ⅱ上运动的周期C .在轨道Ⅰ上的加速度大于在轨道Ⅱ上的加速度D .在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能 答案 ABD解析 在P 点减速,万有引力大于需要的向心力,“天宫一号”做近心运动进入轨道Ⅱ,故A 正确;根据开普勒第三定律:R 13T 12=R 23T 22,且轨道Ⅰ半径大于在轨道Ⅱ的半长轴,所以在轨道Ⅰ上运动的周期大于在轨道Ⅱ上运动的周期,故B 正确;根据万有引力提供向心力:G Mmr2=ma n ,解得:a n =G M r2,可知在轨道Ⅰ上的加速度小于在轨道Ⅱ上的加速度,故C 错误;在轨道Ⅰ上P 点的动能大于在轨道Ⅱ上P 点的动能,在P 点由轨道Ⅰ转移到轨道Ⅱ时,需对飞行器做负功,故在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能,故D 正确.变式3 (多选)2016年10月19日,“神舟十一号”与“天宫二号”成功实现交会对接.如图5所示,交会对接前“神舟十一号”飞船先在较低圆轨道1上运动,在适当位置经变轨与在圆轨道2上运动的“天宫二号”对接.M 、Q 两点在轨道1上,P 点在轨道2上,三点连线过地球球心,把飞船的加速过程简化为只做一次短时加速.下列关于“神舟十一号”变轨过程的描述正确的有( )图5A .“神舟十一号”在M 点加速,可以在P 点与“天宫二号”相遇B .“神舟十一号”在M 点经一次加速,即可变轨到轨道2C .“神舟十一号”经变轨后速度总大于变轨前的速度D .“神舟十一号”变轨后的运行周期大于变轨前的运行周期 答案 AD解析 “神舟十一号”与“天宫二号”对接,需要“神舟十一号”提升轨道,即“神舟十一号”开动发动机加速做离心运动,使轨道高度与“天宫二号”轨道高度相同实现对接,故“神舟十一号”在M 点加速,可以在P 点与“天宫二号”相遇,故选项A 正确;卫星绕地球做圆周运动,向心力由万有引力提供,故由G Mm r 2=m v 2r ,解得线速度v =GMr,所以卫星轨道高度越大,线速度越小,“神舟十一号”在轨道2的速度小于在轨道1的速度,所以在M 点经一次加速后,到P 点后再减速一次,才可变轨到轨道2,故选项B 、C 错误;根据G Mm r 2=m 4π2rT2,解得周期T =2πr 3GM,可知轨道高度越大,周期越大,所以“神舟十一号”变轨后的运行周期大于变轨前的运行周期,故选项D 正确.变式4 (多选)(2018·苏州市模拟)“信使号”探测器围绕水星运行了近4年,在“信使号”水星探测器陨落水星表面之前,工程师通过向后释放推进系统中的高压氦气来提升轨道,使其寿命再延长一个月,如图6所示,释放氦气前,探测器在贴近水星表面的圆形轨道Ⅰ上做匀速圆周运动,释放氦气后探测器进入椭圆轨道Ⅱ,忽略探测器在椭圆轨道上所受阻力.则下列说法正确的是( )图6A .探测器在轨道Ⅱ的运行周期比在轨道Ⅰ的大B .探测器在轨道Ⅱ上某点的速率可能等于在轨道Ⅰ上的速率C .探测器在轨道Ⅰ和轨道Ⅱ上经过E 处时加速度相同D .探测器在轨道Ⅱ上远离水星过程中,势能和动能均增大 答案 ABC解析 根据开普勒第三定律知,r 3T2=k ,轨道Ⅱ的半长轴大于轨道Ⅰ的半径,则探测器在轨道Ⅱ的运行周期比在轨道Ⅰ的大,故A 正确.在轨道Ⅱ上E 点的速度大于在轨道Ⅰ上经过E 点时的速度,由于远离水星的过程中,速度减小,探测器在轨道Ⅱ上某点的速率可能等于在轨道Ⅰ上的速率,故B 正确.根据万有引力定律知,在不同轨道的E 点,所受的万有引力相等,根据牛顿第二定律知加速度相同,故C 正确.探测器在轨道Ⅱ上远离水星过程中,高度升高,势能增大,万有引力做负功,动能减小,故D 错误.命题点三 双星模型1.双星模拟定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图7所示.图72.双星模拟特点:(1)各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω12r 1,Gm 1m 2L2=m 2ω22r 2 (2)两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2(3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L (4)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1. (5)双星的运动周期T =2πL 3G (m 1+m 2)(6)双星的总质量 m 1+m 2=4π2L3T 2G例3 (多选)(2018·泰州中学月考)2016年2月11日,科学家宣布“激光干涉引力波天文台(LIGO)”探测到由两个黑洞合并产生的引力波信号,这是在爱因斯坦提出引力波概念100周年后,引力波被首次直接观测到.在两个黑洞合并过程中,由于彼此间的强大引力作用,会形成短时间的双星系统.如图8所示,黑洞A 、B 可视为质点,它们围绕连线上O 点做匀速圆周运动,且AO 大于BO ,不考虑其他天体的影响.下列说法正确的是( )图8A .黑洞A 的向心力大于B 的向心力 B .黑洞A 的线速度大于B 的线速度C .黑洞A 的质量大于B 的质量D .两黑洞之间的距离越大,A 的周期越大 答案 BD解析 双星靠相互间的万有引力提供向心力,根据牛顿第三定律可知,黑洞A 对黑洞B 的作用力与黑洞B 对黑洞A 的作用力大小相等,方向相反,则黑洞A 的向心力等于B 的向心力,故A 错误;双星靠相互间的万有引力提供向心力,具有相同的角速度,由题图可知黑洞A 的半径比较大,根据v =ωr 可知,黑洞A 的线速度大于B 的线速度,故B 正确;在匀速转动时的向心力大小关系为:m A ω2r A =m B ω2r B ,由于A 的半径比较大,所以黑洞A 的质量小,故C 错误;双星系统的周期公式为:T =4π2L3G (m A +m B ),所以两黑洞之间的距离越大,A 的周期越大,故D 正确.变式5 2016年2月11日,美国科学家宣布探测到引力波,证实了爱因斯坦100年前的预言,弥补了爱因斯坦广义相对论中最后一块缺失的“拼图”.其实,孤立的恒星与一颗行星组成的系统就是一个双星系统.如图9所示,恒星a 、行星b 在万有引力作用下,绕连线上一点O 以相同的周期做匀速圆周运动.现测得行星b 做圆周运动的半径为r b ,运动的周期为T ,a 、b 的距离为l ,已知万有引力常量为G ,则( )图9A .恒星a 的质量为4π2r b3GT2B .恒星a 与行星b 的总质量为4π2l3GT2C .恒星a 与行星b 的质量之比为l -r br bD .恒星a 的运动可以等效于绕静止在O 点、质量为4π2r b3GT2的天体做半径为l -r b 的圆周运动答案 B解析 由题意可知,a 和b 到O 点的距离分别为l -r b 和r b ,设两星质量分别为M 1和M 2,由万有引力定律和牛顿第二定律及几何条件可得: 对M 1:GM 1M 2l 2=M 1⎝ ⎛⎭⎪⎫2πT 2(l -r b ),即M 2=4π2l 2(l -r b )GT2; 对M 2:GM 1M 2l 2=M 2⎝ ⎛⎭⎪⎫2πT 2r b ,即M 1=4π2l 2r bGT2; 则恒星a 与行星b 的总质量为 M 1+M 2=4π2l 2GT 2(l -r b +r b )=4π2l 3GT2.恒星a 与行星b 的质量之比为M 1M 2=r bl -r b恒星a 的运动可以等效于绕静止在O 点、质量为M 的天体做半径为(l -r b )的圆周运动,由万有引力定律和牛顿第二定律得GMM 1(l -r b )2=M 1(2πT )2(l -r b ),即M =4π2(l -r b )3GT 2综上所述,选项B 正确,A 、C 、D 错误.1.(2018·南京市期中)2016年8月16日1时40分,我国在酒泉卫星发射中心用“长征二号”运载火箭成功将世界首颗量子科学实验卫星“墨子号”发射升空,在世界上首次实现卫星和地面之间的量子通信.量子科学实验卫星“墨子号”由火箭发射至高度为500km 的预定圆形轨道.2016年6月在西昌卫星发射中心成功发射了第二十三颗北斗导航卫星G7.G7属于地球静止轨道卫星(高度为36000km),它使北斗系统的可靠性进一步提高.关于卫星,以下说法中正确的是( )A .这两颗卫星的运行速度可能大于7.9km/sB .量子科学实验卫星“墨子号”的向心加速度比北斗G7大C .量子科学实验卫星“墨子号”的周期比北斗G7大D .通过地面控制可以将北斗G7定点于南京市的正上方答案 B2.(多选)(2018·盐城中学质检)如图10,我国“探月工程”在2018年12月8日成功发射“嫦娥四号”卫星,卫星由地面发射后,进入地月转移轨道,经多次变轨后进入圆形工作轨道Ⅲ,并将最终实现人类探测器在月球背面的首次软着陆,下列说法错误的是( )图10A .卫星在轨道Ⅲ上的运行速度比月球的第一宇宙速度大B .卫星在轨道Ⅲ上经过P 点时的加速度比在轨道Ⅰ上经过P 点时的加速度小C .卫星在轨道Ⅲ上运行的周期比在轨道Ⅰ上短D .卫星在轨道Ⅳ上的机械能比在轨道Ⅱ上大 答案 ABD3.(多选)(2018·南京市、盐城市二模)某试验卫星在地球赤道平面内一圆形轨道上运行,每5天对某城市访问一次(即经过其正上方),下列关于该卫星的描述中正确的是( ) A .角速度可能大于地球自转角速度 B .线速度可能大于第一宇宙速度 C .高度一定小于同步卫星的高度 D .向心加速度一定小于地面的重力加速度 答案 AD解析 设卫星的运行周期为T ,地球自转的周期为T 0,则有2πT ×5T 0=2πT 0×5T 0+2π,或者2πT×5T 0+2π=2πT 0×5T 0,可得卫星的周期T =56T 0或者T =54T 0,卫星的角速度ω=2πT ,所以卫星的角速度可能大于地球自转角速度,也可能小于地球自转角速度,A 正确;由于第一宇宙速度是最大环绕速度,所以所有卫星的线速度小于等于第一宇宙速度,B 错误;由万有引力提供向心力可得,周期T =4π2r3GM,故卫星的高度越高,周期越大,由A 选项解析可知,卫星的周期可能大于也可能小于同步卫星的周期,所以卫星的高度可能大于也可能小于同步卫星的高度,C 错误;根据牛顿第二定律GMm r 2=ma ,向心加速度a =GMr 2,卫星的高度高于地面,所以其向心加速度小于地面的重力加速度,D 正确.4.(多选)(2018·如东县调研)研究表明,地球自转周期在逐渐改变,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,且地球的质量、半径都不变,则经过若干亿年后( )A .近地卫星的向心加速度比现在大B .近地卫星的运行周期与现在相等C .同步卫星的向心加速度比现在小D .同步卫星的运行速度比现在大 答案 BC解析 对近地卫星,根据万有引力提供向心力G Mm R 2=ma 近知,向心加速度a 近=GM R2,由于地球的质量和半径都不变,故近地卫星的向心加速度大小不变,故A 错误;根据万有引力提供向心力G Mm R 2=m 4π2RT2知,近地卫星的运行周期T =4π2R3GM,由于地球的质量、半径不变,故近地卫星的周期不变,故B 正确;万有引力提供同步卫星做圆周运动的向心力,有F =G Mm r 2=m 4π2r T 2=m v 2r =ma 同,则r =3GMT 24π2,v =GM r ,a 同=GMr2,由于地球自转周期变大,故同步卫星的轨道半径r 变大,则同步卫星的向心加速度和运行速度都变小,故C 正确,D 错误.5.宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至因为万有引力的作用而吸引到一起.如图11所示,某双星系统中A 、B 两颗天体绕O 点做匀速圆周运动,它们的轨道半径之比r A ∶r B =1∶2,则两颗天体的( )图11A .质量之比m A ∶mB =2∶1 B .角速度之比ωA ∶ωB =1∶2C .线速度大小之比v A ∶v B =2∶1D .向心力大小之比F A ∶F B =2∶1 答案 A解析 双星绕连线上的一点做匀速圆周运动,其角速度相同,周期相同,两者之间的万有引力提供向心力,F =m A ω2r A =m B ω2r B ,因为轨道半径之比r A ∶r B =1∶2,所以质量之比m A ∶m B =2∶1,选项A 正确,B 、D 错误;由线速度v =ωr 可知,线速度大小之比为v A ∶v B =1∶2,选项C 错误.1.(2018·南京市三模)如图1,“天宫一号”目标飞行器运行在平均高度约362千米的圆轨道上.在北京航天飞控中心监控下,已于2018年4月2日8时15分左右再入大气层烧毁,完成使命.关于“天宫一号”,下列说法正确的是( )图1A .在轨运行的周期比月球绕地球的周期长B .在轨运行的加速度比地面处重力加速度大C .在轨运行的速度比第一宇宙速度小D .进入大气层后,速度增大,机械能增大答案 C2.(多选)(2018·常州市一模)2017年9月25日,微信启动页“变脸”:由此前美国卫星拍摄地球的静态图换成了我国“风云四号”卫星拍摄地球的动态图,如图2所示.“风云四号”是一颗静止轨道卫星,关于“风云四号”,下列说法正确的有( )图2A .能全天候监测同一地区B .运行速度大于第一宇宙速度C .在相同时间内该卫星与地心连线扫过的面积相等D .向心加速度大于地球表面的重力加速度答案 AC解析 由于是同步卫星,故相对地面静止,能全天候监测同一地区,故A 正确;由万有引力提供向心力,得G Mm r 2=m v 2r ,解得:v =GM r,而第一宇宙速度是近地卫星的最大环绕速度,故同步卫星的速度小于第一宇宙速度,故B 错误;根据开普勒第二定律,在相同时间内该卫星与地心连线扫过的面积相等,故C 正确;向心加速度由万有引力产生,故a n =GM r 2,而地球表面的重力加速度g =GM R2,由于r >R ,故该卫星的向心加速度小于地球表面的重力加速度,故D 错误.3.(多选)(2018·江苏省一模)2017年12月26日03时44分,我国成功将“遥感三十号”03组卫星发射升空,并进入高度约为500km 的预定轨道.下列有关说法中正确的是( )A .该卫星的发射速度一定等于7.9km/sB .该卫星的周期一定小于24hC .该卫星的速率一定大于同步卫星的速率D .相同时间内该卫星与地球的连线扫过的面积一定等于同步卫星与地球的连线扫过的面积 答案 BC解析 7.9 km/s 是最小的发射速度,“遥感三十号”03组卫星的发射速度一定大于7.9 km/s ,故A 错误;“遥感三十号”03组卫星的高度约为500 km ,其轨道半径小于同步卫星的轨道半径,同步卫星的周期为24 h ,根据开普勒第三定律r 3T2=k 可知该卫星的周期一定小于24 h ,故B正确;根据万有引力提供向心力可得v=GMr,所以该卫星的速率一定大于同步卫星的速率,故C正确;面积定律指的是同一颗天体与中心天体连线在相同时间内扫过的面积相等,所以相同时间内该卫星与地球的连线扫过的面积不一定等于同步卫星与地球的连线扫过的面积,故D错误.4.(多选)(2018·江苏百校12月大联考) 2017年6月15日11时00分,中国在酒泉卫星发射中心采用“长征四号”乙运载火箭,成功发射首颗X射线空间天文卫星“慧眼”,并在GW170817引力波事件发生时成功监测了引力波源所在的天区.已知“慧眼”在距离地面550km的圆轨道上运动,则其( )A.线速度介于第一宇宙速度和第二宇宙速度之间B.运行周期小于同步卫星的运行周期C.角速度小于近地卫星的角速度D.向心加速度小于静止在地球赤道上某一物体的向心加速度答案BC5.(多选)(2018·镇江市模拟)如图3所示是北斗导航系统中部分卫星的轨道示意图,已知P、Q、M三颗卫星均做匀速圆周运动,其中P是地球同步卫星,则( )图3A.卫星P、M的角速度ωP<ωMB.卫星Q、M的加速度a Q>a MC.卫星P、Q的机械能一定相等D.卫星Q不可能相对地面静止答案AD6.(2018·盐城中学最后一卷)2017年9月,我国控制“天舟一号”飞船离轨,使它进入大气层烧毁,残骸坠入南太平洋一处号称“航天器坟场”的远离大陆的深海区,在受控坠落前,“天舟一号”在距离地面380km的圆轨道上飞行,则下列说法中正确的是( )A.在轨运行时,“天舟一号”的线速度大于第一宇宙速度B.在轨运行时,“天舟一号”的角速度小于同步卫星的角速度C.受控坠落时,应通过“反推”实现制动离轨D.“天舟一号”离轨后,在进入大气层前,运行速度不断减小答案 C解析第一宇宙速度是环绕地球运动的卫星的最大速度,则“天舟一号”在轨运行时的线速度小于第一宇宙速度,选项A错误;“天舟一号”在轨运行时的运转半径小于同步卫星的运转半径,根据角速度ω=GMr3可知,其角速度大于同步卫星的角速度,选项B错误;受控坠落时要先调头,让原本朝后的推进器向前点火,通过反推实现制动,故C正确;“天舟一号”离轨后,在进入大气层前,运行半径逐渐减小,地球的引力做正功,则运行速度不断增大,D错误.7.(多选)(2018·南京市学情调研)如图4所示,一颗人造卫星原来在椭圆轨道1绕地球E运行,在P点变轨后进入轨道2做匀速圆周运动.下列说法正确的是( )图4A.不论在轨道1还是轨道2运行,卫星在P点的机械能相同B.不论在轨道1还是轨道2运行,卫星在P点的向心加速度相同C.卫星在轨道1的任何位置都具有相同的加速度D.卫星经过P点时,在轨道2的速度大于在轨道1的速度答案BD8.(2018·泰州中学月考)2012年6月16日,刘旺、景海鹏、刘洋三名宇航员搭乘“神舟九号”飞船飞向太空,6月24日执行手动载人交会对接任务后,于29日10时03分乘返回舱安全返回.返回舱在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图5所示.关于返回舱的运动,下列说法中正确的有( )图5A.正常运行时,在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度B.在轨道Ⅱ上经过A的速率大于在轨道Ⅰ上经过A的速率C.在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期D.在同一轨道Ⅱ上经过A的速率小于经过B的速率答案 D9.(多选)(2018·如皋市调研)我国“神舟十一号”载人飞船于2016年10月17日7时30分发射成功.飞船先沿椭圆轨道飞行,在接近400km高空处与“天宫二号”对接,然后做圆周运动.两名宇航员在空间实验室生活、工作了30天.“神舟十一号”载人飞船于11月17日12时41分与“天宫二号”成功实施分离,如图6所示,11月18日顺利返回至着陆场.下列判断正确的是( )图6A.飞船变轨前后的机械能守恒B .对接后飞船在圆轨道上运动的速度小于第一宇宙速度C .宇航员在空间实验室内可以利用跑步机跑步来锻炼身体D .分离后飞船在原轨道上通过减速运动逐渐接近地球表面答案 BD解析 每次变轨都需要发动机对飞船做功,故飞船机械能不守恒,故A 错误;根据万有引力提供向心力G Mm r 2=m v 2r ,得v =GM r,故轨道半径越大,线速度越小,第一宇宙速度是近地卫星的最大环绕速度,故对接后飞船在圆轨道上的线速度比第一宇宙速度小,故B 正确;利用跑步机跑步是由于重力作用,人与跑步机之间有压力,又由于有相对运动,人受到摩擦力作用运动起来,在空间实验室内,宇航员处于完全失重状态,无法跑步,故C 错误;当飞船要离开圆形轨道返回地球时,飞船做近心运动,万有引力要大于向心力,故要减小速度,故D 正确.10.(多选)(2018·锡山中学月考)“嫦娥一号”探月卫星沿地月转移轨道直奔月球,在距月球表面200km 的P 点进行第一次变轨后被月球捕获,先进入椭圆轨道Ⅰ绕月飞行,如图7所示.之后,卫星在P 点又经过两次变轨,最后在距月球表面200km 的圆形轨道Ⅲ上绕月球做匀速圆周运动.对此,下列说法正确的是( )图7A .卫星在轨道Ⅲ上运动到P 点的速度小于在轨道Ⅱ上运动到P 点的速度B .卫星在轨道Ⅰ上运动周期比在轨道Ⅲ上长C .Ⅰ、Ⅱ、Ⅲ三种轨道相比较,卫星在轨道Ⅲ上运行的机械能最小D .卫星在轨道Ⅲ上运动到P 点时的加速度大于沿轨道Ⅰ运动到P 点时的加速度 答案 ABC解析 卫星在轨道Ⅱ上的P 点进入轨道Ⅲ,需减速,可知卫星在轨道Ⅲ上运动到P 点的速度小于在轨道Ⅱ上运动到P 点的速度,故A 正确;根据开普勒第三定律知,a 3T2=k ,轨道Ⅰ的半长轴大于轨道Ⅲ的半径,则卫星在轨道Ⅰ上的周期大于在轨道Ⅲ上的周期,故B 正确;卫星在轨道Ⅰ上的P 点进入轨道Ⅱ,需减速,则机械能减小,在轨道Ⅱ上的P 点进入轨道Ⅲ,需减速,则机械能减小,可知卫星在轨道Ⅲ上的机械能最小,故C 正确;卫星在不同轨道上的P 点,所受的万有引力大小相等,根据牛顿第二定律知,加速度相等,故D 错误.11.(多选)(2018·兴化一中四模)我国的“天链一号”卫星是地球同步卫星,可为中低轨道卫星提供数据通讯,如图8所示为“天链一号”卫星a 、赤道平面内的低轨道卫星b 和地球的位置关系示意图,O 为地心,卫星a 的轨道半径是b 的4倍,已知卫星a 、b 绕地球同向运行,卫星a 的周期为T ,下列说法正确的是( )。
2020版高考一轮物理复习数字课件第4章专题五 天体运动中的“三大难点”
2.变轨的两种情况
考点三 天体中的“追赶相遇”问题 卫星的追赶问题可以分为同向追赶和反向追赶两种情况,其实质为分析运转角度相差 2π 弧度的时间关系,熟知圆周运动的周期公式是分析此类问题的关键。 (2019·福建泉州二模)当地球位于太阳和木星之间且三者几乎排成一条直线时,称 之为“木星冲日”,2017 年 4 月 7 日出现了一次“木星冲日”。已知木星与地球几 乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离大约是地 球到太阳距离的 5 倍。则下列说法正确的是( ) A.下一次的“木星冲日”时间肯定在 2019 年 B.下一次的“木星冲日”时间肯定在 2018 年 C.木星运行的加速度比地球的大 D.木星运行的周期比地球的小
考点二 卫星(航天器)的变轨及对接问题
解析:所有航天器在近圆形轨道上绕地球运动的速度大小均小于第一宇宙速度,选 项 A 错误;对接轨道处的空间存在稀薄的大气,“天宫一号”克服空气阻力做功, 机械能减少,速率减小,万有引力大于做圆周运动所需的向心力,若不加干预, “天宫一号”将做近心运动,使轨道高度缓慢下降,此过程中万有引力做正功, 其动能增加,选项 B、C 正确;由于万有引力提供向心力,航天员在“天宫一号” 中处于失重状态,但地球对它的引力作用仍存在,选项 D 错误。
B.a3>a2>a1
C.a3>a1>a2
D.a1>a2>a3
考点一 近地卫星、赤道上物体及同步卫星的运行问题
解析:由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度 相等,根据 a=ω2r,r2>r3,则 a2>a3;由万有引力定律和牛顿第二定律得, GMr2m=ma,由题目中数据可以得出,r1<r2,则 a2<a1;综合以上分析有, a1>a2>a3,选项 D 正确。
专题:天体运动的三大难点破解3 剖析宇宙中的双星、三星模型(讲义)
重点:1. 根据万有引力定律求解双星、三星模型的周期,线速度等物理量;2. 双星、三星两种模型的特点。
难点:双星、三星模型的向心力来源。
一、双星模型绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如下图,双星系统模型有以下特点:〔1〕各自需要的向心力由彼此间的万有引力互相提供即221L m Gm =m 1ω21r 1,221L m Gm =m 2ω22r 2; 〔2〕两颗星的周期及角速度都一样即T 1=T 2,ω1=ω2;〔3〕两颗星的半径与它们之间的间隔 关系为r 1+r 2=L ;〔4〕两颗星到圆心的间隔 r 1、r 2与星体质量成反比即1221r r m m =; 〔5〕双星的运动周期T =2π)(213m m G L +;〔6〕双星的总质量公式m 1+m 2=GT L 2324π。
二、三星模型第一种情况:三颗星连在同一直线上,两颗星围绕中央的星〔静止不动〕在同一半径为R 的圆轨道上运行。
特点:1. 周期一样; 2. 三星质量一样; 3. 三星间距相等;4. 两颗星做圆周运动的向心力相等。
原理:A 、C 对B 的引力充当向心力,即:,可得:GmR T 543π=,同理可得线速度:R Gm R 25。
第二种情况:三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行。
特点:1. 运行周期一样; 2. 半径一样; 3. 质量一样; 4. 所需向心力相等。
原理:B 、C 对A 的引力的合力充当向心力,即:r Tm R Gm F 2222430cos 2π==︒合,其中R r 33=,可得:运行周期GmRR T 32π=。
例题1 如图,质量分别为m 和M 的两颗星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间间隔 为L 。
A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧。
引力常数为G 。
〔1〕求两星球做圆周运动的周期。
〔2〕在地月系统中,假设忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1。
2020年高考物理一轮总复习第四章第六讲天体运动中的四大难点教案
第六讲 天体运动中的四大难点热点一 近地卫星、赤道上的物体及同步卫星的运行问题 (师生共研)三种匀速圆周运动的参量比较[典例1] (2019·山西大学附中模块诊断)同步卫星离地心距离为r ,运行速率为v 1,加速度为a 1;地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R ,则下列比值正确的是( )A.v 1v 2=r RB .v 1v 2=⎝ ⎛⎭⎪⎫R rC.a 1a 2=⎝ ⎛⎭⎪⎫r R2D .a 1a 2=r R解析:对于地球同步卫星和以第一宇宙速度运动的近地卫星,由万有引力提供做匀速圆周运动所需向心力,得:G mM r 2=m v 2r,得v =GM r ,则得v 1v 2=⎝ ⎛⎭⎪⎫R r ,A 错误,B 正确.因为地球同步卫星的角速度和地球赤道上的物体随地球自转的角速度相同,由a 1=ω2r ,a 2=ω2R 可得:a 1a 2=rR,D 正确,C 错误. 答案:BD热点二 双星及多星模型 (自主学习)1.模型特征 (1)多星系统的条件 ①各星彼此相距较近.②各星绕同一圆心做匀速圆周运动. (2)多星系统的结构由两星之间的万有引力提供,故两星的运行所需向心力都由其余行星对其万2-1.[双星模型] 双星系统由两颗恒星组成,两恒星在万有引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )。
高考物理总复习 专题 天体运动的三大难点破解3 剖析宇宙中的双星、三星模型同步练习
剖析宇宙中的双星、三星模型(答题时间:30分钟)1. 经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的直径远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。
现测得两颗星之间的距离为L,质量之比为m1:m2=3:2。
则可知()A. m1:m2做圆周运动的角速度之比为2:3B. m1:m2做圆周运动的线速度之比为3:2C. m1做圆周运动的半径为D. m2做圆周运动的半径为L2. 月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。
据此观点,可知月球与地球绕O点运动的线速度大小之比约为()A. 1:6400B. 1:80C. 80:1D. 6400:13. 在太空中,两颗靠得很近的星球可以组成双星,它们只在相互间的万有引力作用下,绕球心连线上的某点做周期相同的匀速圆周运动。
则下列说法不正确的是.....()A. 两颗星有相同的角速度B. 两颗星的旋转半径与质量成反比C. 两颗星的加速度与质量成反比D. 两颗星的线速度与质量成正比4. 某国际研究小组观测到了一组双星系统,它们绕二者连线上的某点做匀速圆周运动,双星系统中质量较小的星体能“吸食”质量较大的星体的表面物质,达到质量转移的目的。
根据大爆炸宇宙学可知,双星间的距离在缓慢增大,假设星体的轨道近似为圆,则在该过程中()A. 双星做圆周运动的角速度不断减小B. 双星做圆周运动的角速度不断增大C. 质量较大的星体做圆周运动的轨道半径渐小D. 质量较大的星体做圆周运动的轨道半径增大5. 如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,最新观测表明“罗盘座T星”距离太阳系只有3260光年,比天文学家此前认为的距离要近得多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
剖析宇宙中的双星、三星模型
(答题时间:30分钟)
1. 经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的直径远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。
现测得两颗星之间的距离为L,质量之比为m1:m2=3:2。
则可知()
A. m1:m2做圆周运动的角速度之比为2:3
B. m1:m2做圆周运动的线速度之比为3:2
C. m1做圆周运动的半径为
D. m2做圆周运动的半径为L
2. 月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。
据此观点,可知月球与地球绕O点运动的线速度大小之比约为()
A. 1:6400
B. 1:80
C. 80:1
D. 6400:1
3. 在太空中,两颗靠得很近的星球可以组成双星,它们只在相互间的万有引力作用下,绕球心连线上的某点做周期相同的匀速圆周运动。
则下列说法不正确的是
.....()
A. 两颗星有相同的角速度
B. 两颗星的旋转半径与质量成反比
C. 两颗星的加速度与质量成反比
D. 两颗星的线速度与质量成正比
4. 某国际研究小组观测到了一组双星系统,它们绕二者连线上的某点做匀速圆周运动,双星系统中质量较小的星体能“吸食”质量较大的星体的表面物质,达到质量转移的目的。
根据大爆炸宇宙学可知,双星间的距离在缓慢增大,假设星体的轨道近似为圆,则在该过程中()
A. 双星做圆周运动的角速度不断减小
B. 双星做圆周运动的角速度不断增大
C. 质量较大的星体做圆周运动的轨道半径渐小
D. 质量较大的星体做圆周运动的轨道半径增大
5. 如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,最新观测表明“罗盘座T星”距离太阳系只有3260光年,比天文学家此前认为的距离要近得多。
该系统是由一颗白矮星和它的类日伴星组成的双星系统,由于白矮星不停地吸收由类日伴星抛出的物质致使其质量不断增加,科学家预计这颗白矮星在不到1000万年的时间内会完全“爆炸”,从而变成一颗超新星,并同时放出大量的γ射线,这些γ射线到达地球后会对地球的臭氧层造成毁灭性的破坏。
现假设类日伴星所释放的物质被白矮星全部吸收,并且两星间的距离在一段时间内不变,两星球的总质量不变,则下列说法正确的是()
A. 两星间的万有引力不变
B. 两星的运动周期不变
C. 类日伴星的轨道半径增大
D. 白矮星的轨道半径增大
6. 双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。
研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化。
若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()
1. C 解析:两星的周期相同即两者运行一周的时间相同,故其运动的角速度相同,A项
错误;由于两星的向心力相同,有,故有,由于,联立前式有、,故C项正确,D项错误;m1、m2做圆周运动的角速度相同,
线速度之比为2:3,故B项错误。
2. C 解析:万有引力提供向心力,设地球、月球之间的距离为L,质量分别为m1、m2,做圆周运动的半径分别为L1、L2,线速度分别为v1、v2,二者有相同的角速度,万有引力提
供向心力,
有,
得,有v=r
ω,
故,C正确。
3. D 解析:双星运动的角速度相同,选项A正确;由
22
1122
F m r m r
ωω
==,可得1122
m r m r
=,即两颗星的旋转半径与质量成反比,选项B正确;
1122
F m a m a
==,可知两颗星的加速度与质量成反比,选项C正确;
22
12
12
12
v v
F m m
r r
==,故可知两颗星的线
速度与质量不成正比关系,选项D错误。
故选D。
4. AD 解析:根据双星运动的角速度向心力大小相等,有:22
1122
m r m r
ωω
=,2
12
11
2
12
()
m m
G m r
r r
ω
=
+
,联立可得:ω=,212
1
12
()
m r r
r
m m
+
=
+
,所以A、D正确;
B、C错误。
5. BC 解析:图片下面的中间亮点即为白矮星,上面的部分为类日伴星(中央的最亮的为类似太阳的天体),组成的双星系统的周期T相同,设白矮星与类日伴星的质量分别为M1和M2,圆周运动的半径分别为R1和R2,由万有引力定律:,可得,,两式相加可得G(M1+M2)T2=4π2L3(①式),M1R1=M2R2(②式)。
由①式可知白矮星与类日伴星的总质量不变,则周期T不变,B对;由②式可知双星运行半径与质量成反比,类日伴星的质量逐渐减小,故其轨道半径增大,C对D错;依题意两星间距离在一段时间内不变,由万有引力定律可知,两星的质量总和不变而两星质量的乘积必定变化,则万有引力必定变化,A错。
6. B 解析:双星间的万有引力提供向心力。
设原来双星间的距离为L,质量分别为M、m,圆周运动的圆心距质量为m的恒星距离为r。
对质量为m 的恒星:G 2Mm L =m 2T
π⎛⎫ ⎪⎝⎭2·r; 对质量为M 的恒星:G 2Mm L =M 2T π⎛⎫ ⎪⎝⎭
2(L -r ), 得G 2M m L +=2
24T π·L, 即T 2=234()
L G M m π+。
则当总质量为k (M +m ),间距为L′=nL T ,选项B 正确。