2006JACS 特异位点检测DNA甲基化

合集下载

dna甲基化测序原理

dna甲基化测序原理

dna甲基化测序原理DNA甲基化测序原理DNA甲基化测序是一种用于检测DNA分子上甲基化修饰形式的方法。

甲基化是一种常见的DNA化学修饰形式,它可以影响基因的表达和细胞分化过程。

通过测序和分析DNA中的甲基化位点,科学家能够深入研究这种修饰对基因组功能的影响。

甲基化测序的原理基于DNA甲基化位点与未甲基化位点之间的区别。

在DNA分子中,甲基化通常发生在CpG位点(即DNA的Cytosine和Guanine碱基之间的连接点)。

未甲基化的CpG位点在测序中会被处理成TpG位点,而甲基化的CpG位点则保持不变。

甲基化测序通常通过两种方法进行:1. 亚硫酸转换法(Bisulfite Conversion):该方法通过使用亚硫酸盐将未甲基化的CpG位点转换为尿嘧啶(T),而甲基化的CpG位点则保持不变。

经过亚硫酸转换后的DNA样本可以通过测序技术直接检测出甲基化位点和未甲基化位点的差异。

2. 甲基化特异性切割(Methylation-specific cleavage):该方法使用甲基化特异性的限制性内切酶来识别甲基化的CpG位点,并在CpG位点附近切割DNA。

未甲基化的CpG位点由于没有甲基化修饰而不被切割。

通过测序这些切割的DNA片段,可以确定DNA分子上的甲基化位点的位置。

甲基化测序技术的发展为研究DNA甲基化在基因组中的分布和功能提供了重要的工具。

科学家可以利用这些技术研究不同细胞类型、病理状态以及环境因素对甲基化模式的影响,以及通过甲基化修饰调控基因表达的机制。

这些研究对于揭示基因组调控和疾病发生机制具有重要意义。

一种等位基因特异性甲基化的检测方法[发明专利]

一种等位基因特异性甲基化的检测方法[发明专利]

专利名称:一种等位基因特异性甲基化的检测方法专利类型:发明专利
发明人:仲集华
申请号:CN201310674292.2
申请日:20131202
公开号:CN103667488A
公开日:
20140326
专利内容由知识产权出版社提供
摘要:本发明公开了一种等位基因特异性甲基化的检测方法。

首先在TIMP3基因启动子区和第一外显子区寻找全部CCGG序列和SNP位点,然后结合等位基因特异性PCR技术和甲基化敏感性限制性酶切-PCR法,对TIMP3的一对等位基因启动子区CpG岛的甲基化状态进行特异性检测。

所述的SNP 必须位于转录区;所述的SNP在启动子区;所述的SNP在或者第一外显子区。

本发明的有益效果是,可以有效阻碍转录因子与启动子结合,导致转录失活,合成成熟功能蛋白受阻而导致细胞增殖失控。

申请人:仲集华
地址:116000 辽宁省大连市西岗区三元街42-4-1
国籍:CN
更多信息请下载全文后查看。

DNA甲基化检测

DNA甲基化检测

特异性位点的DNA甲基化的检测 BSP和MSP法
实验举例
通过BSP和MSP 方法对于前列腺癌 DLC-1基因启动子甲基化情况进 行检测。实验方法及结果: 1在线设计MSP引物 (/methprimer/index1.html) 2 DNA Extraction 3 DNA Bisulfite Treatment(Active Motif CO.,USA) 4 Bisulfite sequencing PCR 5 Methylation-Specific PCR
基因 APC
基因沉默对肿瘤的意义 对细胞增殖、迁移、粘附、骨架重组及染色质 稳定性失去调节作用
肿瘤类型 乳腺癌[17]、肺癌[18]、食管癌、结肠癌、胃癌、 胰、 肝癌
BRCA1
CDKN2A/p16 DAPK1
与DNA 修复与转录激活有关
周期素依赖性蛋白激酶抑制剂 钙/钙调素-依赖的丝氨酸/苏氨酸磷酸化酶; 凋亡 抑制
参考文献 1 W u C et al . Genes, Genetics, and Epigenetics: A Correspondence.Science, 2001, 293 (5532) : 1103-1105. 2 Wolff A P. Chromatin remodeling: why it is important in cancer.Oncogene, 2001, 20 (24) : 2988-2990. 3 Pennisi E. Behind the Scenes of Gene Expression.Science, 2001 , 293 (24) : 1064-1067. 4 Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene, 2001, 20 (24) : 3135-3155. 5 Holliday R. Mutation Res, 2001, 483 (Supp ll) : s3 6 周玉球.DNA甲基化分析技术的研究进展.国外医学遗传学分册 2001,24(6):303-308 7 Herman JG et al . Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands。Proc Natl A cad SciU SA , 1996, 93: 9821-9826. 8 Ahmad I, Rao DN. Chemistry and biology of DNA methyltransferases. Crit Rev Biochem MolBiol, 1996, 31: 361-380.

dna甲基化检测方法

dna甲基化检测方法

DNA甲基化检测方法引言DNA甲基化是一种常见的基因表达调控方式,可以影响基因的转录和表达,以及细胞分化和发育等生物学过程。

因此,对DNA甲基化状态的准确检测和分析对于理解疾病发生发展机制以及预防和治疗疾病具有重要意义。

本文将介绍几种常用的DNA甲基化检测方法,并对它们的原理和应用进行详细描述。

1. 甲基化特异性PCR(MSP)甲基化特异性PCR(Methylation Specific PCR,MSP)是一种经典的DNA甲基化检测方法。

该方法通过特殊的PCR反应体系和引物设计,可以区分甲基化和非甲基化的DNA序列。

具体步骤如下:•DNA提取:从待测样品中提取DNA。

•甲基化处理:对DNA进行化学甲基化处理,使甲基化的嵌合基对应DNA序列得以保留,非甲基化的嵌合基对应DNA序列则被转化为不同的碱基。

•PCR反应:使用特异性引物对甲基化和非甲基化的DNA片段进行扩增。

•电泳分析:将PCR产物进行凝胶电泳分析,根据PCR产物的大小和形态进行甲基化状态的判断。

MSP方法具有操作简便、快速、经济等优点,已广泛应用于DNA甲基化的研究和临床诊断中。

2. 甲基化敏感限制性内切酶PCR(MSRE-PCR)甲基化敏感限制性内切酶PCR(Methylation Sensitive Restriction Enzyme-PCR,MSRE-PCR)是一种基于限制性内切酶的DNA甲基化检测方法。

该方法利用甲基化敏感的限制性内切酶和非甲基化敏感的限制性内切酶对DNA进行切割,然后通过PCR扩增来检测DNA甲基化状态。

步骤如下:•DNA提取:从待测样品中提取DNA。

•限制性内切酶切割:使用甲基化敏感和非甲基化敏感的限制性内切酶对DNA进行切割,甲基化酶切割后产生线性DNA片段,非甲基化酶切割后产生环状DNA片段。

•PCR反应:对内切酶切割后的DNA片段进行PCR扩增。

•电泳分析:将PCR产物进行凝胶电泳分析,根据不同大小的PCR产物来判断DNA的甲基化状态。

dna甲基化检测方法

dna甲基化检测方法

dna甲基化检测方法
DNA甲基化检测是研究基因组表观遗传调控的重要方法之一,常用于癌症、神经系统疾病、发育障碍等研究。

常见的DNA甲基化检测方法包括:
1. 甲基化特异性限制酶消化(Methylation-Specific Restriction Enzyme Digestion):通过使用甲基化特异性限制酶,可以选择性地切割未甲基化或甲基化的DNA片段,从而区分甲基化和未甲基化的DNA区域。

2. 亲和富集(Methyl-CpG binding domn-based Pull-down Assay):通过亲和层析方法,利用DNA结合域能够结合甲基化的CpG位点的蛋白质,将甲基化的DNA片段富集出来,再通过测序或PCR等方法进行分析。

3. 甲基化特异性PCR(Methylation-Specific PCR,MSP):通过使用甲基化特异性引物,在Bisulfite处理后的DNA上进行PCR,从而区分甲基化和未甲基化的DNA 片段。

4. 甲基化敏感限制酶消化和PCR(Methylation-Sensitive Restriction Enzyme Digestion and PCR):通过使用甲基化敏感限制酶和甲基化特异性引物,在Bisulfite处理后的DNA上进行PCR,可以区分不同的甲基化状态。

5. 甲基化芯片技术(Methylation Array):采用芯片技术,可以同时检测大量的DNA甲基化位点,进行全基因组水平的甲基化分析。

以上方法各有优缺点,研究人员可以根据具体实验目的和
需求选择合适的方法进行DNA甲基化检测。

DNA甲基化检测方法

DNA甲基化检测方法

DNA甲基化检测方法DNA甲基化是一种常见的表观遗传修饰方式,通过甲基化在DNA分子上的加合,可以调节基因表达和遗传信息传递。

因此,DNA甲基化检测在遗传学研究、疾病诊断和治疗中具有重要意义。

本文将介绍几种常用的DNA甲基化检测方法,并对其原理、优缺点进行详细讨论。

1.甲基化特异性PCR法(MSP)甲基化特异性PCR法是一种利用特异性甲基化酶、限制性内切酶或碱性处理剂以及增强法进行检测的方法。

该方法的原理是通过甲基化特异性的酶对DNA进行酶切,使得未甲基化的DNA片段与经PCR增强的片段长度不同,从而通过凝胶电泳进行检测和分析。

优点是简单、快速且成本低廉,但缺点是需要设计和合成特异性甲基化酶。

2.基于测序的甲基化特异性分析基于测序的甲基化特异性分析方法主要有甲基化抑制PCR法(MIP)和甲基化敏感限制性内切酶测序法(MSRE-Seq)等。

甲基化抑制PCR法是通过特殊的多聚合酶在特定温度下对未甲基化的DNA完成增长,而甲基化DNA则无法进行扩增,从而区分甲基化和未甲基化的位点。

甲基化敏感限制性内切酶测序法则是首先使用甲基敏感限制性内切酶对DNA进行切割,然后进行测序分析。

这两种方法具有较高的精确性和灵敏性,但测序成本较高。

3. 甲基化特异性酶切测序法(MRE-Seq)甲基化特异性酶切测序法是一种通过甲基化特异性酶切和测序进行检测的方法。

该方法首先使用甲基敏感限制性内切酶将DNA切割成小片段,并在切割位点的两端加入特异性的测序引物,然后进行PCR增强和高通量测序。

通过测序得到的序列和甲基化位点的分布情况可以对DNA甲基化进行精确的定量和定位分析。

甲基化特异性酶切测序法具有高通量、高灵敏度和高分辨率等优点,但仍存在PCR偏差等问题。

4.甲基化微阵列甲基化微阵列是一种通过DNA的甲基化特异性杂交来检测和定量DNA 甲基化水平的方法。

该方法利用DNA片段与微阵列芯片上的探针发生特异性杂交,然后通过荧光信号检测和分析。

DNA甲基化检测方法

DNA甲基化检测方法DNA甲基化检测方法主要包括基于测序的方法和基于非测序的方法。

基于测序的方法包括甲基化指纹测序 (Methylome Sequencing) 和全基因组甲基化分析 (Whole Genome Bisulfite Sequencing, WGBS)。

基于非测序的方法包括限制性片段长度多态性 (Restriction Fragment Length Polymorphism, RFLP) 和甲基化特异性PCR (Methylation-Specific PCR, MSP)。

下面分别介绍这些方法的原理和应用。

全基因组甲基化分析是一种基于测序的DNA甲基化检测方法。

它通过对全基因组进行测序,得到每个碱基的甲基化状态。

首先,将DNA进行亚硫酸盐处理,将未甲基化的胞嘧啶转化为脱氧尿嘧啶,再进行测序。

然后,通过比对测序结果和参考基因组,可以得到每个位置的甲基化状态。

限制性片段长度多态性是一种基于非测序的DNA甲基化检测方法。

它通过酶切DNA后,观察酶切位点是否发生改变来判断甲基化的差异。

该方法利用了限制酶对于未甲基化的CpG位点酶切敏感,而对于甲基化的CpG位点酶切不敏感的特性。

首先,将DNA进行酶切,然后使用凝胶电泳等方法,观察DNA片段的长度差异。

甲基化特异性PCR是一种基于非测序的DNA甲基化检测方法。

它通过PCR扩增甲基化和未甲基化的DNA片段来检测甲基化的差异。

首先,将DNA进行亚硫酸盐处理,将未甲基化的胞嘧啶转化为脱氧尿嘧啶。

然后,设计特异性引物,选择甲基化和未甲基化的DNA片段进行PCR扩增。

最后,通过凝胶电泳等方法观察PCR产物,确定甲基化的差异。

DNA甲基化检测方法在许多领域广泛应用。

在癌症研究中,可以通过甲基化指纹测序和全基因组甲基化分析来鉴定癌细胞和正常细胞之间的甲基化差异,进一步了解癌症发生发展的机制。

在遗传学研究中,可以通过DNA甲基化检测来鉴定父母遗传给子代的甲基化模式,进一步研究甲基化在遗传变异中的作用。

DNA甲基化与基因表观修饰模式鉴定

DNA甲基化与基因表观修饰模式鉴定DNA甲基化与基因表观修饰模式鉴定是一种重要的基因组学研究方法,通过分析DNA甲基化及其他基因表观修饰模式的变化,揭示基因调控机制及其在生物发育、疾病发生等方面的作用。

本文将介绍DNA甲基化及其他基因表观修饰模式的概念、方法及其在研究中的应用。

DNA甲基化是细胞遗传学的一种基因表观修饰模式,通过在DNA链上附加甲基基团,影响基因的表达。

DNA甲基化在细胞分化、胚胎发育、肿瘤发生等生物学过程中起着重要作用。

研究表明,异常的DNA甲基化与许多疾病的发生和发展密切相关,如癌症、心血管疾病、神经系统疾病等。

因此,准确鉴定DNA甲基化模式对于深入理解基因组的结构和功能具有重要意义。

DNA甲基化的鉴定方法包括甲基化敏感型限制性内切酶消化、公共测序数据分析、甲基化特异性PCR和甲基化特异性测序等。

其中,甲基化敏感型限制性内切酶消化是常用的初筛方法,它通过酶切甲基化和未甲基化的DNA序列的不同,从而鉴定甲基化位点。

然而,这种方法的鉴定分辨率较低,只能鉴定局部的甲基化位点。

相比之下,公共测序数据分析可以鉴定全基因组的甲基化位点,但其鉴定的准确性与测序技术的质量和覆盖度密切相关。

甲基化特异性PCR和甲基化特异性测序是一种直接检测甲基化位点的方法,能够提供基因特异性的甲基化信息,但其局限性在于无法鉴定甲基化模式的变化。

除了DNA甲基化,还有其他重要的基因表观修饰模式,如组蛋白修饰、DNA羟甲基化、染色质重塑等。

组蛋白修饰主要包括乙酰化、甲基化、泛素化等修饰形式,通过改变染色质的结构,影响基因的表达状态。

DNA羟甲基化是一种新发现的DNA表观修饰模式,与DNA甲基化相互作用,共同调控基因的表达。

染色质重塑通过改变染色质的构象和蛋白质结合状态,调控基因的可及性和表达水平。

这些基因表观修饰模式在细胞分化、发育、疾病发生等过程中起着重要作用,其鉴定方法和分析策略与DNA甲基化类似。

在研究中,DNA甲基化及其他基因表观修饰模式的鉴定具有广泛的应用。

DNA甲基化检测方法

DNA甲基化检测方法DNA甲基化是指DNA分子中的脱氧核苷酸碱基上附加一个甲基基团(-CH3)的过程。

在哺乳动物细胞中,DNA甲基化主要发生在胞嘧啶(C)的CpG双核苷酸上。

DNA甲基化在基因调控、细胞分化、肿瘤发生等生物学过程中起着重要的作用。

因此,准确、可靠地检测DNA甲基化状态对于研究这些生物学过程具有重要的意义。

DNA甲基化的检测可以通过多种方法实现。

其中,传统的方法包括限制酶切和甲基化特异的PCR。

限制酶切是通过利用对DNA甲基化敏感的限制酶来切割甲基化和非甲基化的DNA序列,从而实现对DNA甲基化的检测。

而甲基化特异的PCR则是利用特异性引物将甲基化和非甲基化的DNA序列区分开来,通过PCR扩增来检测DNA甲基化状态。

这两种方法在实验操作上相对简单,但缺乏灵敏度和准确性。

近几年,随着高通量测序技术的发展,新一代测序技术为DNA甲基化检测提供了全新的方法。

其中,甲基化相关的测序技术包括甲基化敏感的限制酶切测序(Methyl-sensitive restriction enzyme sequencing)、甲基化特异的PCR测序(Bisulfite PCR sequencing)和甲基化信号鉴定测序(Bisulfite-independent methylome sequencing)等。

这些测序技术可以高效地检测DNA甲基化状态,并可以获得基因组范围内的甲基化图谱。

甲基化敏感的限制酶切测序是一种通过测序限制酶切位点来检测DNA甲基化的方法。

该方法首先使用甲基化敏感的限制酶切割重组的DNA样本,然后使用测序技术对切割的DNA片段进行测序,最后通过比对测序数据来鉴定DNA甲基化位点。

这种方法准确性高,但对测序深度要求较高。

甲基化特异的PCR测序是一种通过PCR扩增特定甲基化和非甲基化DNA片段的方法,再进行测序来检测DNA甲基化的方法。

该方法首先通过对DNA样本进行亚硫酸盐处理来将非甲基化的C转化为U,然后通过PCR扩增甲基化和非甲基化的DNA片段,最后通过测序来分辨甲基化和非甲基化的位点。

甲基化的检测方法与临床应用

甲基化的检测方法与临床应用摘要】DNA甲基化是表观遗传修饰最基本的方式,在维持正常细胞功能、胚胎发育和肿瘤发生、动脉粥样硬化中起着重要的作用,是当前学术研究的重点和热点。

随着研究的深入,各种各样的甲基化检测方法被开发出来同时在临床应用也初见端倪,甲基化的深入研究必将对人类健康产生深远的影响。

【关键词】表观遗传 DNA甲基化 PCR 检测重亚硫酸盐单亲遗传病肿瘤动脉粥样硬化老化DNA甲基化是一种重要的遗传外修饰,是表观遗传学(epigenetics)的重要组成部分[1]。

甲基化是指由DNA甲基转移酶介导,在胞嘧啶的第5位碳原子上加上一甲基基团,使之变成5-甲基胞嘧啶(5-mC)的化学修饰过程。

它参与了动物胚胎发育、基因印迹、X染色体失活等过程,在基因表达的调控中具有重要作用。

基因组正常甲基化模式改变与某些遗传病和肿瘤[2]以及动脉粥样硬化性[3]有着密切相关性。

本文就目前常用的甲基化检测方法和临床应用予以综述。

1 基因甲基化的检测方法1.1高效液相色谱柱Kuo等首次报道高效液相色谱柱(HPLC),它能够定量测定基因组整体甲基化水平,其过程是: 用酸或酶将DNA裂解为五类单核苷酸(包括5-mC)。

因五类核苷酸在极性溶液中的溶解度不同,在经过非极性的过滤柱时,出柱时间也不同,用波长260 nm的紫外光测定流出液的吸收峰并定量。

此法灵敏度高,是目前测定基因组DNA中5-mC总量最标准的方法,但不能了解甲基化的位置和状态信息且对DNA纯度要求较高。

1.2特异性位点的DNA甲基化的检测1.2.1甲基化敏感性限制性内切酶-PCR/Southern法甲基化敏感性限制性内切酶(methylation-sensitiverestri ctionendonuclease MS-RE)-PCR/Southern方法利用甲基化敏感性限制性内切酶对甲基化区的不切割的特性,将DNA消化为不同大小的片段后再进行分析。

常用的酶有HpaⅡ-MspⅠ(识别序列CCGG)其中HpaⅡ和MspⅠ均能识别CCGG序列,然而当序列中的胞嘧啶发生甲基化时,HpaⅡ不切割,利用HpaⅡ-MspⅠ的这种属性处理DNA,随后进行Southern 或PCR扩增分离产物,明确甲基化状态[4]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Site-Specific Detection of DNA Methylation UtilizingmCpG-SEERCliff I.Stains,†Jennifer L.Furman,†David J.Segal,‡and Indraneel Ghosh*,†Contribution from the Department of Chemistry,Uni V ersity of Arizona,Tucson,Arizona85721, and the Department of Medical Pharmacology and Toxicology,Uni V ersity of California,Da V is,California95616Received February6,2006;Revised Manuscript Received May21,2006;E-mail:ghosh@ Abstract:Currently there are no direct methods for the sequence-specific detection of DNA-methylation at CpG dinucleotides,which provide a possible diagnostic marker for cancer.Toward this goal,we present a methodology termed mCpG-SE quence E nabled R eassembly(mCpG-SEER)of proteins utilizing a split green fluorescent protein(GFP)tethered to specific DNA recognition elements.Our system,mCpG-SEER, employs a zinc-finger attached to one-half of GFP to target a specific sequence of dsDNA,while a methyl-CpG binding domain protein attached to the complementary half of GFP targets an adjacent methylated CpG dinucleotide site.We demonstrate that the presence of both DNA sites is necessary for the reassembly and concomitant fluorescence of the reassembled GFP.We further show that the GFP-dependent fluorescence reaches a maximum when the methyl-CpG and zinc-finger sites are separated by two base pairs and the fluorescence signal is linear to5pmol of methylated target DNA.Finally,the specificity of this reporter system,mCpG-SEER,was found to be>40-fold between a methylated versus a nonmethylated CpG target site.IntroductionUnderlying the complex cellular regulatory pathways are intricate patterns of covalent modifications of DNA comprising the epigenome.1These modifications are integral to normal cellular processes such as transcriptional regulation.2DNA methylation in higher eukaryotes occurs at cytosines in CpG dinucleotides by the transfer of a methyl group from S-adenosylmethionine to the C5-position of cytosine catalyzed by DNA methyltranferases.In normal cells methylation is pre-dominantly found at repetitive genomic regions,such as transposable elements and satellite DNA.Strikingly,CpG islands associated with the promoter regions of genes involved in cancer are generally unmethylated in normal cells but aberrantly methylated in tumor cells.3,4Thus,the detection of aberrant patterns of methylation is an emerging area of early detection for human carcinomas.To recognize specific sites of DNA methylation we would need a system that can recognize specific sequences of double-stranded(dsDNA)as well as methylated DNA.The site-specific recognition of dsDNA can be achieved by using either sequence-specific DNA-binding proteins or de-signed polyamides.Of special note is the zinc-finger class of DNA-binding proteins that consist of tandem repeats of a R domain,stabilized by coordination to zinc.The R-helix of this domain can specifically recognize a3bp tract of dsDNA in the major groove.5Moreover,protein design and selection ap-proaches have helped identify an almost complete lexicon of zinc-fingers for targeting3bp tracts.6-10These seminal advances allow for the design of sequence-specific proteins to recognize virtually any dsDNA target of interest.11Another elegant approach for dsDNA detection has also been recently demon-strated using sequence-specific polyamides.12,13However,nei-ther zinc-fingers nor polyamides alone can currently detect subtle chemical modifications such as DNA methylation in a sequence-specific manner.We present a new approach for the direct detection of specific sites of cytosine methylation building upon our recently developed methodology for the detection of double-stranded DNA(dsDNA)called SE quence E nabled R eassembly(SEER). Direct detection of specific sequences of double-stranded DNA (dsDNA)utilizing the SEER approach was recently demon-strated using modular zinc-finger DNA-binding domains at-tached to split reporter proteins,such as GFP14and -lacta-†University of Arizona.‡University of California,Davis.(1)Hotchkiss,R.D.J.Biol.Chem.1948,175,315-332.(2)Jaenisch,R.;Bird,A.Nat.Genet.2003,33,245-254.(3)Costello,J.F.;et al.Nat.Genet.2000,24,132-138.(4)Esteller,M.;Corn,P.G.;Baylin,S.B.;Herman,J.G.Cancer Res.2001,61,3225-3229.(5)Wolfe,S.A.;Nekludova,L.;Pabo,C.O.Annu.Re V.Biophys.Biomol.Struct.2000,29,183-212.(6)Choo,Y.;Klug,A.Proc.Natl.Acad.Sci.U.S.A.1994,91,11163-11167.(7)Dreier,B.;Beerli,R.R.;Segal,D.J.;Flippin,J.D.;Barbas,C.F.,III.J.Biol.Chem.2001,276,29466-29478.(8)Dreier,B.;Fuller,R.P.;Segal,D.J.;Lund,C.V.;Blancafort,P.;Huber,A.;Koksch,B.;Barbas,C.F.,III.J.Biol.Chem.2005,280,35588-35597.(9)Elrod-Erickson,M.;Pabo,C.O.J.Biol.Chem.1999,274,19281-19285.(10)Segal,D.J.;Dreier,B.;Beerli,R.R.;Barbas,C.F.,III.Proc.Natl.Acad.Sci.U.S.A.1999,96,2758-2763.(11)Segal,D.J.Methods2002,26,76-83.(12)Fechter,E.J.;Olenyuk,B.;Dervan,P.B.J.Am.Chem.Soc.2005,127,16685-16691.(13)Warren,C.L.;Kratochvil,N.C.;Hauschild,K.E.;Foister,S.;Brezinski,M.L.;Dervan,P.B.;Phillips,G.N.,Jr.;Ansari,A.Z.Proc.Natl.Acad.Sci.U.S.A.2006,103,867-872.Published on Web07/12/200610.1021/ja060681j CCC:$33.50©2006American Chemical Society J.AM.CHEM.SOC.2006,128,9761-976599761mase.15In our current design we chose GFP as our split-reporter protein due to its undetectable background fluorescence.16,17We envisioned that the direct detection of mCpG sites could be achieved by redesigning the SEER system to recognize CpG methylation.In this new design we envisioned that a sequence specific DNA-binding protein could recognize a dsDNA site adjacent to the mCpG site,while a second DNA-binding protein, selective for mCpG sites,could then be used to detect site-specific methylation.We hypothesized that the two DNA binding proteins attached to two halves of GFP would localize on adjacent sites on a target dsDNA resulting in the reassembly of the parent GFP fold.The DNA-localized split-GFP would then autocatalyze fluorophore formation,thus producing an observable signal that directly reports on the methylation status of a specific methylated CpG site.To recognize methylated DNA we have focused on the naturally occurring methyl-CpG binding domain(MBD)family of proteins that consists of MBD1,MBD2,MBD3,MBD4and MeCP2.18,19NMR structures of MBD1(with and without DNA)20,21and of MeCP2(without DNA),22have shown that these MBDs have similar structures and make specific contacts in the major groove of DNA.We envisioned that by using a protein from this family we could detect methylation in CpG islands by redesigning our previously described SEER meth-odology.As a first test of our proposed detection system for mCpG sites,we chose the well-characterized MBD2protein from humans.MDB2has a binding affinity of2.7nM for mCpG sites,while its binding affinity for nonmethylated-CpG sites is at least70-fold less.23We hypothesized that this difference in binding affinities would allow us to selectively target mCpGsites versus nonmethylated-CpG sites.Since numerous sites on a genome are methylated,we also needed to introduce sequence specificity,which can be readily achieved by either natural or designed zinc-fingers.As proof of concept,we employed the well-studied Zif268zinc-finger(K d)6nM)24to recognize a site adjacent to the mCpG site.Molecular modeling suggested that attachment of the zinc-finger specificity domain to the N-terminal GFP fragment and the MBD to the C-terminal GFP fragment would result in a viable protein-DNA complex positioned for reassembly of the GFP halves(Figure1).Each protein fragment was designed with a15-amino acid linker separating the split-protein reporter from the DNA-binding domain to ensure conformational flexibility as30amino acids can theoretically span a distance of approximately100Å.We considered possible steric clashes due to the juxtaposition of the MBD and zinc-finger domains(Figure1,inset)on DNA and chose to focus initial experiments in the context of a dsDNA target containing a10bp spacing(34Å)between the mCpG and zinc-finger site.The10bp spacing had been shown to be optimal in the context of our previous SEER systems.We hypothesized that this separation between binding sites would both minimize steric clashes and position the mCpG-SEER proteins on the same surface of dsDNA.Experimental SectionGeneral Materials.All materials were obtained from Sigma-Aldrich unless otherwise noted.2XYT media was purchased from Becton Dickinson,and ZnCl2was obtained from EM Sciences.Urea and DTT were obtained from Research Products International.Cloning,Expression,and Purification of mCpG-SEER Proteins.A plasmid containing an Escherichia coli optimized gene for human MBD2(residues147-215)was obtained from GenScript.The follow-ing primers were used to clone MBD2into an existing cassette (containing the C-terminal portion of GFP,residues158-238,separated by a15-amino acid linker):5′-GCGTATGAATTCGGAAAGCG-GCAAACGC-3′and5′-CGGTTAACCGGTCATTTTGCCGGTACG-3′.The pETDuet plasmid containing the CGFP-MBD2gene was then transformed into electrocompetent BL21(DE3)cells(Novagen).An overnight culture of these cells was used to inoculate a1-L culture of 2XYT with Amp(Research Products International)at an OD600of0.05. Protein expression was induced at an OD600of1.32using1mM IPTG (Research Products International)for3h.Cells were pelleted and frozen overnight at-20°C.Cells were then lysed using sonication and clarified by centrifugation.SDS-PAGE analysis showed that CGFP-MBD2was expressed in both the soluble and insoluble fractions.(14)Stains,C.I.;Porter,J.R.;Ooi,A.T.;Segal,D.J.;Ghosh,I.J.Am.Chem.Soc.2005,127,10782-10783.(15)Ooi,A.T.;Stains,C.I.;Ghosh,I.;Segal,D.J.Biochemistry2006,45,3620-3625.(16)Ghosh,I.;Hamilton,A.D.;Regan,L.J.Am.Chem.Soc.2000,122,5658-5659.(17)Magliery,T.J.;Wilson,C.G.M.;Pan,W.L.;Mishler,D.;Ghosh,I.;Hamilton,A.D.;Regan,L.J.Am.Chem.Soc.2005,127,146-157. (18)Hendrich,B.;Abbott,C.;McQueen,H.;Chambers,D.;Cross,S.;Bird,A.Mamm.Genome1999,10,906-912.(19)Hendrich,B.;Bird,A.Mol.Cell.Biol.1998,18,6538-6547.(20)Ohki,I.;Shimotake,N.;Fujita,N.;Jee,J.G.;Ikegami,T.;Nakao,M.;Shirakawa,M.Cell2001,105,487-497.(21)Ohki,I.;Shimotake,N.;Fujita,N.;Nakao,M.;Shirakawa,M.EMBO J.1999,18,6653-6661.(22)Wakefield,R.I.D.;Smith,B.O.;Nan,X.S.;Free,A.;Soteriou,A.;Uhrin,D.;Bird,A.P.;Barlow,P.N.J.Mol.Biol.1999,291,1055-1065.(23)Fraga,M.F.;Ballestar,E.;Montoya,G.;Taysavang,P.;Wade,P.A.;Esteller,M.Nucleic Acids Res.2003,31,1765-1774.(24)Pavletich,N.P.;Pabo,C.O.Science1991,252,809-817.Figure 1.mCpG-SEER strategy.CGFP-MBD2(pink and red)and NGFP-Zif268(cyan and blue)are shown in ribbon form.The mCpG island is shown as spheres,cytosines are colored cyan with methyl groups highlighted in green,the zinc-finger binding site is highlighted in orange. (Inset)Structure of5-methylcytosine as well as the surface of an MBD bound to DNA.A R T I C L E S Stains et al. 9762J.AM.CHEM.SOC.9VOL.128,NO.30,2006CGFP -MBD2from either fraction was purified separately under denaturing conditions using Ni-NTA resin (Qiagen)using Buffer A (10mM Tris-HCl at pH )7.5,100mM NaCl,1mM DTT,and 100µM ZnCl 2)plus 4M Urea.The protein was characterized by SDS-PAGE and mass spectrometry (Supporting Information),concentrations were determined using absorbance measurements at 280nm ( )14440M -1cm -1).The NGFP -Zif268fusion protein (containing residues 1-157of GFP)was expressed and purified as described previously.14NGFP -Zif268was characterized by SDS-PAGE and mass spectrometry (Supporting Information),concentrations were determined using ab-sorbance measurements at 280nm ( )17210M -1cm -1).Detailed information including the sequences of NGFP -Zif268and CGFP -MBD2as well as detailed purification procedures can be found in the Supporting Information.Refolding Expirements.HPLC-purified target DNA sequences were obtained from IDT,and herring sperm DNA was purchased from Invitrogen.Oligos were annealed in 1×BamHI Buffer (NEB)using the following procedure:heating to 95°C for 7min,cooling to 56°C at a rate of 1°C/min,equilibrating at 56°C for 5min,and finally cooling to 25°C at a rate of 1°C/min using a Techne Genius thermocycler.All refolding experiments were conducted using 3.5kD MWCO Slide-A-Lyzer Dialysis Cassettes (Pierce).Sequences for all DNA targets used for testing the specificity and dependence on target-site spacing of mCpG-SEER are given in Table 1and the Supporting Information (Table S1),respectively.For experiments used to determine mCpG-SEER specificity and dependence on target site spacing,NGFP -Zif268(5µM),CGFP -MBD2(20µM),and target DNA (2.5µM for 10bp targets;1µM for 2bp targets)were mixed in Buffer A containing 4M Urea.These samples were refolded by gradually dialyzing into Buffer A containing 2,1,and 0.5M urea and then twice into Buffer A with no urea (final concentration of urea )350nM)over a period of 2days.All refolding experiments were conducted at 4°C in uncovered chambers;after refolding,each sample was placed at 4°C.Fluorescence spectra were acquired 2days post-refolding for the 10bp targets and 7h post-refolding for the 2bp targets.For experiments used to determine the limit of detection of dsDNA for mCpG-SEER,NGFP -Zif268(5µM),CGFP -MBD2(20µM),and decreasing concentrations of target DNA (500,250,100,and 50nM)containing a 2bp spacing between the mCpG and zinc-finger sites were mixed in Buffer A containing 4M urea.These samples were refolded by gradually dialyzing into Buffer A containing 2,1,0.5M urea,and twice into Buffer A with no urea (final concentration of urea )350nM)over a period of 2days.All refolding experiments were conducted at 4°C in uncovered chambers;after refolding,each sample was placed at 4°C.Fluorescence spectra were acquired 2days post-refolding.Fluorescence Measurements.All spectra were acquired on a Photon Technology International spectrofluorometer with excitation and emis-sion wavelengths of 468and 505nm,respectively.Slit widths were set to 5nm for excitation and 10nm for emission.Relative intensities were determined by subtracting background emission values at 505nm for refolded mCpG-SEER proteins at the same concentration with no DNA;these samples were then normalized relative to the sample with the highest fluorescence intensity.Results and DiscussionInitial mCpG Detection.Initial modeling studies suggested that a target oligo containing a 10bp separation between the mCpG and zinc-finger sites would allow the DNA-binding proteins to be positioned approximately on the same face of dsDNA while avoiding noticeable steric clashes upon binding.To test this idea 5µM of NGFP -Zif268and 20µM of CGFP -MBD2,were refolded in the presence or absence of a methylated (mCpG-10-Zif268)dsDNA target which contained a 10bp spacing between the mCpG and Zif268sites.Fluorescence spectra were acquired 2days post refolding by exciting at 468nm and monitoring emission at 505nm.Signal due to GFP reassembly was observed only for samples containing both halves of GFP in the presence of the methylated target oligonucleotide (Figure 2),whereas no fluorescence was observed without DNA.These experiments clearly validated our design and indicated that the designed mCpG-SEER system could detect mCpG islands and that the split-protein reporter did not spontaneously reassemble.mCpG-SEER Specificity.To further address the specificity of the mCpG-SEER system,we independently varied each target site and assayed the ability of the GFP fragments to refold and produce a fluorescence signal.Control DNA sequences contain-ing a 10bp spacer between the MBD2and Zif268sites were designed as follows:(1)no methylation (CpG-10-Zif268),(2)no Zif268site (mCpG only),and (3)a single bp mutation in the Zif268site (mCpG-10-Zif268,G to T).Mixtures of the two proteins,NGFP -Zif268(5µM)and CGFP -MBD2(20µM),were allowed to refold separately in the presence of 2.5µM of each target dsDNA sequence as well as an equivalent amount of herring sperm DNA (Figure 3).Importantly,a very low levelTable 1.Specificity Targets formCpG-SEERaRed,blue,and pink indicate the respective MBD2,Zif268,and mutationsites.Figure 2.Fluorescence excitation (monitored at 505nm)and emission (excited at 468nm)spectra of NGFP -Zif268(5µM)+CGFP -MBD2(20µM)in the presence (green)or absence (blue)of 2.5µM target DNA (mCpG-10-Zif268)in buffer A.Detection of DNA Methylation Using mCpG-SEERA R T I C L E SJ.AM.CHEM.SOC.9VOL.128,NO.30,20069763of fluorescence was observed for the CpG-10-Zif268site,which was 15-fold lower than the cognate methylated target (Figure 3).These data clearly demonstrate the ability of mCpG-SEER to discern between methylated-versus nonmethylated-CpG sites via the use of the methyl-CpG binding domain.Additionally,the requirement for the adjacent zinc-finger binding site was verified by the lack of fluorescence in the presence of the target that contained an arbitrary DNA sequence adjacent to a methylated-CpG site.Furthermore,the exquisite sequence specificity of the zinc-finger was validated by almost a complete loss of fluorescence by a single-base pair mutation (G to T)in the zinc-finger target st the absence of an observable signal for the sample containing nonspecific herring sperm DNA reconfirms the requirement for both a mCpG site and a zinc-finger site to be in close proximity to induce reassembly of GFP.mCpG-SEER Dependence on Target Site Spacing.To further address the requirements for target site spacing between the CpG and zinc-finger sites we devised a set of experiments to probe the GFP reassembly-dependent fluorescence signal intensity as a function of target site distance.Fourteen dsDNA targets were tested with spacings of zero through thirteen bp’s between the mCpG and zinc-finger binding sites.Mixtures of the two proteins,NGFP -Zif268(5µM)and CGFP -MBD2(20µM),were allowed to refold separately in the presence of 2.5µM of each target dsDNA sequence (Figure 4).An analogous experiment using 5µM of each mCpG-SEER protein was also performed and produced similar results (Supporting Information,Figure S6).The results of these experiments yield several interesting insights into the requirements for maximum signal generation for the mCpG-SEER system.No reassembly is observed when DNA-binding domains are juxtaposed next to one another (0bp spacing),presumably caused by the inaccessibility of both target sites simultaneously by the DNA-binding proteins (mo-lecular modeling indicates that MBD2occupies a surface area greater than just the mCpG site on dsDNA,Figure 1inset).Second,a sharp increase in fluorescence is observed for target site spacings at 1and 2bp spacing.These results suggest that at 2bp the two GFP halves are best oriented for reassembly probably due to the relatively close proximity (the local concentration of each half determined by modeling is ap-proximately 5mM).Third,the helical nature of dsDNA is visualized in the repeating maxima and minima of GFPreassembly as observed by the fluorescence intensity changes as a function of DNA length and pitch.We attribute this phenomenon to the increasing distance as well as positioning of each DNA-binding protein of the surface of dsDNA.As the distance between target sites is increased,the orientations of the binding sites also change along the helical axis.This yields discrete maxima and minima and is further supported by results from similar experiments using our SEER-GFP system (Sup-porting Information,Figure S2)and SEER-Lac system.15mCpG-SEER Limit of Detection.The limit of detection of mCpG-SEER was determined for an oligo containing a 2bp separation between the mCpG site and the zinc-finger site (mCpG-2-Zif268).Mixtures of the two mCpG-SEER proteins,NGFP -Zif268(5µM)and CGFP -MBD2(20µM),were allowed to refold in the presence of decreasing amounts of mCpG-2-SEER target DNA (Figure 5).These experiments show that 50nM dsDNA (5pmol)is readily visible overbackgroundFigure 3.Fluorescence emission at 505nm of NGFP -Zif268(5µM)+CGFP -MBD2(20µM)in the presence of indicated double-stranded DNA controls (2.5µMeach).Figure 4.mCpG-SEER fluorescence emission spectra at 505nm.NGFP -Zif268(5µM)+CGFP -MBD2(20µM)in the presence of target dsDNA (2.5µM each)as a function of increasing spacing between targetsites.Figure 5.Relative fluorescence emission at 505nm of NGFP -Zif268(5µM)+CGFP -MBD2(20µM)in the presence of the decreasing concentrations of mCpG-2-Zif268target DNA.(Inset)Linear fit to the data.A R T I C L E S Stains et al.9764J.AM.CHEM.SOC.9VOL.128,NO.30,2006and that the signal scales linearly with dsDNA concentration (Figure 5,inset).Specificity of mCpG-SEER at 2bp Spacing.For a final set of experiments we interrogated the sensitivity for mCpG islands of mCpG-SEER at the optimal 2bp spacing between target sites.Mixtures of the two mCpG-SEER proteins,NGFP -Zif268(5µM)and CGFP -MBD2(20µM),were allowed to refold in the presence of DNA controls (Table 1)at 1µM and an equivalent amount of herring sperm DNA.Results of these experiments are given in Figure 6.These experiments reconfirmed the requirement for an adjacent zinc-finger site to achieve efficient reassembly,and the choice of the 2bp spacing resulted in significant optimization of signal from the target site.The specificity for our system can be observed in the >40-fold difference in signal due to GFP reassembly between the methylated and nonmethylated target dsDNA site.It is possible that this high degree of specificity at high protein concentrations may be due to a decreased affinity of MBD2for unmethylated CpG sites when fused to unfolded split proteins such as CGFP.23A second mCpG-SEER experiment was also carried out using 100nM target DNA (2bp spacing)and yielded similar results (Sup-porting Information,Figure S7),with no observable signal from the nonmethylated target site.ConclusionPrevious work in protein design has demonstrated the ability to assemble multifunctional protein complexes using specific domains 25-29and the ability to select proteins,through the use of phage display,which bind unnatural DNA nucleobases.30Webuild upon these concepts by employing a naturally occurring DNA-binding protein which recognizes the methylation of cytosine residues in CpG sites to assemble a ternary protein complex for the site-specific detection of CpG methylation.This detection system builds upon our previously described meth-odology for detecting DNA in its native state utilizing split-reporter proteins termed SEER.The specificity of mCpG-SEER for methylation will allow for a sensitive alternative method for the direct detection of mCpG sites.Future experiments in this area will be focused on optimizing conditions to generate efficient reassembly of the current split-GFP or other GFP variants 31,32as well as analyzing the ability of mGpG-SEER to detect mCpG in a genomic context where numerous mCpG sites will be present.The sensitivity of mCpG-SEER to the helical turn of dsDNA yields insights into the application of this system for detection of mCpG sites on specific promoters.Unexpectedly,we found that,while the mCpG-SEER signal is dependent on the helical nature of dsDNA,a 2bp separation between the mCpG island and zinc-finger site yielded maximal GFP reassembly.Systems which employ zinc-fingers,which are specific for promoter sequences 2bp’s downstream of a suspected mCpG site,would therefore be the most sensitive.These principles will be used in future experiments to determine the methylation status of specific promoter sites of genes associated with human cancers such as BRCA1,33p15,34and GSTP1.35Thus,our approach toward the direct recognition of methylated DNA may be utilized in the early diagnosis of human carcinomas based on site-specific patterns of methylation.We have clearly demonstrated the successful detection of site-specific CpG island methylation in dsDNA with our rationally designed mCpG-SEER system.This strategy could be expanded to other split-proteins,such as -lactamase 15,36or luciferase,37which could further amplify signal by substrate turnover and possibly increase sensitivity.We believe that our approach is modular,and given the available lexicon of zinc-fingers,7,8,10almost any sequence of interest adjacent to a mCpG site could be targeted.Thus,mCpG-SEER represents a new and potentially useful method for the direct detection of CpG methylation,which may find applications in delineating the epigenome and in cancer research.Acknowledgment. C.I.S.and J.L.F.were supported by anNIH training grant.We thank members of the Ghosh lab and Bernard Futscher for helpful comments.Models were rendered using PyMol;DeLano,W.L.().Supporting Information Available:Details of cloning,sequencing,purification,characterization,and the complete ref 3citation are available free of charge via the Internet at .JA060681J(25)Devit,M.;Cullen,P.J.;Branson,M.;Sprague,G.F.,Jr.;Fields,S.GenomeRes.2005,15,560-5.(26)Kim,C.Y.;Alekseyev,V.Y.;Chen,A.Y.;Tang,Y.;Cane,D.E.;Khosla,C.Biochemistry 2004,43,13892-8.(27)Nevado,J.;Gaudreau,L.;Adam,M.;Ptashne,M.Proc.Natl.Acad.Sci.U.S.A.1999,96,2674-7.(28)Park,S.H.;Zarrinpar,A.;Lim,W.A.Science 2003,299,1061-4.(29)Tan,W.;Zhu,K.;Segal,D.J.;Barbas,C.F.,III;Chow,S.A.J.Virol.2004,78,1301-13.(30)Simon,M.D.;Shokat,K.M.J.Am.Chem.Soc.2004,126,8078-9.(31)Shaner,N.C.;Steinbach,P.A.;Tsien,R.Y.Nat.Methods 2005,2,905-909.(32)Hu,C.D.;Kerppola,T.K.Nat.Biotechnol.2003,21,539-545.(33)Rice,J.C.;Ozcelik,H.;Maxeiner,P.;Andrulis,I.;Futscher,B.W.Carcinogenesis 2000,21,1761-1765.(34)Herman,J.G.;Jen,J.;Merlo,A.;Baylin,S.B.Cancer Res.1996,56,722-727.(35)Song,J.Z.;Stirzaker,C.;Harrison,J.;Melki,J.R.;Clark,S.J.Oncogene2002,21,1048-1061.(36)Galarneau, A.;Primeau,M.;Trudeau,L. E.;Michnick,S.W.Nat.Biotechnol.2002,20,619-622.(37)Paulmurugan,R.;Gambhir,S.S.Anal.Chem.2003,75,1584-1589.Figure 6.Fluorescence emission at 505nm of NGFP -Zif268(5µM)+CGFP -MBD2(20µM)in the presence of indicated double-stranded DNA controls (1µM each).Detection of DNA Methylation Using mCpG-SEER A R T I C L E SJ.AM.CHEM.SOC.9VOL.128,NO.30,20069765。

相关文档
最新文档