甲基化检测原理及步骤

合集下载

甲基化测序原理

甲基化测序原理

甲基化测序原理甲基化测序是一种用于研究DNA甲基化状态的技术,它能够帮助我们了解基因组中甲基化的分布情况,从而深入理解基因表达调控、疾病发生机制等重要生物学问题。

在甲基化测序中,我们通常会使用一些特定的方法和技术来分析DNA中的甲基化信息,下面我们将对甲基化测序的原理进行详细介绍。

首先,我们需要了解DNA甲基化是什么。

DNA甲基化是指DNA分子中的甲基基团(-CH3)与DNA碱基结合的化学修饰过程,主要发生在胞嘧啶(C)碱基上。

这种化学修饰可以影响基因的表达和功能,对细胞的生长、分化和发育起着重要作用。

因此,研究DNA甲基化对于理解生物学过程和疾病机制至关重要。

甲基化测序的原理主要包括以下几个步骤,DNA提取、甲基化处理、测序和数据分析。

首先,我们需要从待测样本中提取DNA,并对DNA进行甲基化处理,将未甲基化的胞嘧啶与甲基化的胞嘧啶区分开来。

接下来,我们将进行测序,通过高通量测序技术获取DNA序列信息。

最后,我们需要对测序数据进行分析,识别出甲基化位点的信息。

在甲基化测序中,常用的技术包括甲基化特异性PCR、甲基化敏感限制酶切和甲基化敏感测序。

甲基化特异性PCR是一种通过特定引物扩增甲基化和非甲基化DNA片段的方法,可以用于检测DNA甲基化的状态。

甲基化敏感限制酶切是利用甲基化状态对限制酶的敏感性不同来区分甲基化和非甲基化DNA片段的方法。

而甲基化敏感测序则是利用高通量测序技术对甲基化DNA进行测序,从而获得甲基化位点的信息。

甲基化测序的原理虽然看似简单,但在实际操作中需要高度的技术和方法的支持。

同时,对于测序数据的分析也需要专业的知识和工具。

通过甲基化测序,我们可以全面了解基因组中的甲基化信息,从而深入研究基因表达调控、疾病发生机制等重要生物学问题,为生命科学研究提供重要的数据支持。

总之,甲基化测序是一种重要的技术手段,它为我们研究DNA甲基化提供了有力的工具。

通过深入理解甲基化测序的原理和方法,我们可以更好地开展基因组学研究,为生物学和医学领域的发展做出更大的贡献。

dna质谱检测甲基化的原理

dna质谱检测甲基化的原理

dna质谱检测甲基化的原理DNA质谱检测甲基化是一种常见的基因组DNA甲基化检测方法,它具有高灵敏度、高精度和高分辨率等优点,被广泛应用于基因表达调控、疾病诊断和治疗等领域。

本文将介绍DNA质谱检测甲基化的原理,主要包含基因组DNA甲基化检测原理、甲基化测序原理和质谱检测原理等方面。

一、基因组DNA甲基化检测原理基因组DNA甲基化是指DNA分子中的胞嘧啶(C)被甲基化,形成5-甲基胞嘧啶(5mC)的现象。

基因组DNA甲基化对基因表达调控具有重要作用,它可以通过影响转座子活性和基因转录水平来影响细胞功能和分化。

基因组DNA甲基化检测原理主要包括DNA甲基化水平表示、测定方法和基本原理等。

1.DNA甲基化水平表示DNA甲基化水平通常用5mC的含量表示。

在基因组中,5mC可以以不同的丰度存在,因此可以根据5mC的含量计算出DNA甲基化水平。

一般来说,较低的5mC含量意味着较高的基因表达水平,而较高的5mC含量则意味着较低的基因表达水平。

2.测定方法基因组DNA甲基化水平的测定方法主要包括甲基化敏感扩增多态性(MS-PCR)和亚硫酸氢盐测序(bisulfite sequencing)等。

MS-PCR 是一种基于PCR的方法,通过设计特异引物,在扩增过程中对未甲基化的C进行特异性切割,从而实现对5mC的定量检测。

亚硫酸氢盐测序则是一种基于高通量测序的方法,通过将DNA进行亚硫酸氢盐修饰,使未甲基化的C转化为尿嘧啶(U),而5mC则保持不变,从而实现对5mC的定量检测。

3.基本原理基因组DNA甲基化检测的基本原理是利用DNA分子中5mC与A、G、T等其他碱基在化学性质上的差异,实现对5mC的特异性识别和定量检测。

在MS-PCR方法中,未甲基化的C可以被特异性切割,而5mC则不会被切割,因此可以通过比较切割前后的PCR产物量来计算5mC的含量。

在亚硫酸氢盐测序方法中,未甲基化的C被转化为U,而5mC则保持不变,因此可以通过比较修饰前后的测序数据来计算5mC的含量。

甲基化原理及方法

甲基化原理及方法

甲基化检测方法(亚硫酸氢盐修饰测序法)基本原理在于:样本经亚硫氢酸盐处理后,甲基化的胞嘧啶(C)保持不变,但非甲基化的胞嘧啶被转化成脲嘧啶,因此在利用该处理产物作为模板的PCR产物中,甲基化的胞嘧啶还是胞嘧啶,但非甲基化胞嘧啶变成了脲嘧啶(胸腺嘧啶),此时检测到的胞嘧啶(C)即是样品中本身的甲基化位点.第一部分基因组DNA的提取。

DNA提取试剂盒,如果实验室条件成熟,自己配试剂提取完全可以。

DNA比较稳定,只要在操作中不要使用暴力,提出的基因组DNA应该是完整的。

此步重点在于DNA的纯度,即减少或避免RNA、蛋白的污染很重要。

因此在提取过程中需使用蛋白酶K及RNA酶以去除两者。

使用两者的细节:1:蛋白酶K可以使用灭菌双蒸水配制成20mg/ml;2:RNA酶必须要配制成不含DNA酶的RNA酶,即在购买市售RNA酶后进行再处理,配制成10mg/ml。

否则可能的后果是不仅没有RNA,连DNA也被消化了。

两者均于-20度保存。

验证提取DNA的纯度的方法有二:1:紫外分光光度计计算OD比值;2:1%-1.5%的琼脂糖凝胶电泳。

我倾向于第二种方法,这种方法完全可以明确所提基因组DNA的纯度,并根据Marker的上样量估计其浓度,以用于下一步的修饰。

第二部分亚硫酸氢钠修饰基因组DNA如不特别指出,所用双蒸水(DDW)均经高压蒸汽灭菌。

1:将约2ugDNA于1.5mlEP管中使用DDW稀释至50ul;2:加5.5ul新鲜配制的3M NaOH;3:42℃水浴30min;水浴期间配制:4:10mM对苯二酚(氢醌),加30ul至上述水浴后混合液中;(溶液变成淡黄色)5:3.6M亚硫酸氢钠(Sigma,S9000),配制方法:1.88g亚硫酸氢钠使用DDW稀释,并以3M NaOH滴定溶液至PH 5.0,最终体积为5ml。

这么大浓度的亚硫酸氢钠很难溶,但加入NaOH后会慢慢溶解,需要有耐心。

PH一定要准确为5.0。

加520ul至上述水浴后溶液中。

dna甲基化检测方法

dna甲基化检测方法

DNA甲基化检测方法引言DNA甲基化是一种常见的基因表达调控方式,可以影响基因的转录和表达,以及细胞分化和发育等生物学过程。

因此,对DNA甲基化状态的准确检测和分析对于理解疾病发生发展机制以及预防和治疗疾病具有重要意义。

本文将介绍几种常用的DNA甲基化检测方法,并对它们的原理和应用进行详细描述。

1. 甲基化特异性PCR(MSP)甲基化特异性PCR(Methylation Specific PCR,MSP)是一种经典的DNA甲基化检测方法。

该方法通过特殊的PCR反应体系和引物设计,可以区分甲基化和非甲基化的DNA序列。

具体步骤如下:•DNA提取:从待测样品中提取DNA。

•甲基化处理:对DNA进行化学甲基化处理,使甲基化的嵌合基对应DNA序列得以保留,非甲基化的嵌合基对应DNA序列则被转化为不同的碱基。

•PCR反应:使用特异性引物对甲基化和非甲基化的DNA片段进行扩增。

•电泳分析:将PCR产物进行凝胶电泳分析,根据PCR产物的大小和形态进行甲基化状态的判断。

MSP方法具有操作简便、快速、经济等优点,已广泛应用于DNA甲基化的研究和临床诊断中。

2. 甲基化敏感限制性内切酶PCR(MSRE-PCR)甲基化敏感限制性内切酶PCR(Methylation Sensitive Restriction Enzyme-PCR,MSRE-PCR)是一种基于限制性内切酶的DNA甲基化检测方法。

该方法利用甲基化敏感的限制性内切酶和非甲基化敏感的限制性内切酶对DNA进行切割,然后通过PCR扩增来检测DNA甲基化状态。

步骤如下:•DNA提取:从待测样品中提取DNA。

•限制性内切酶切割:使用甲基化敏感和非甲基化敏感的限制性内切酶对DNA进行切割,甲基化酶切割后产生线性DNA片段,非甲基化酶切割后产生环状DNA片段。

•PCR反应:对内切酶切割后的DNA片段进行PCR扩增。

•电泳分析:将PCR产物进行凝胶电泳分析,根据不同大小的PCR产物来判断DNA的甲基化状态。

甲基化检测技术在癌症早期筛查中的潜力

甲基化检测技术在癌症早期筛查中的潜力

甲基化检测技术在癌症早期筛查中的潜力摘要:甲基化检测技术是一种用于测量DNA分子上的甲基化修饰水平的先进方法,具有在癌症早期筛查中的广泛应用潜力。

回顾了甲基化检测技术的原理、方法和应用,探讨了其在癌症早期筛查中的潜力,并讨论了未来发展方向。

甲基化检测技术可用于癌症的早期诊断、亚型鉴定、风险评估、治疗预测和疾病监测,为个体化医疗提供了有力支持。

标准化、生物信息学分析、成本效益等问题仍需解决。

未来的发展方向包括多组学方法、单细胞甲基组学和非侵入性检测技术,将进一步提高甲基化检测技术的应用广度和准确性。

关键字:甲基化检测技术、癌症早期筛查、DNA甲基化、癌症诊断一、引言癌症,作为当今社会面临的严重健康挑战之一,每年夺去数百万人的生命。

虽然在过去几十年中,医疗科学和技术取得了巨大的进步,但癌症仍然是一个复杂而具有挑战性的疾病,其早期诊断对于治疗成功至关重要。

癌症在早期阶段通常没有明显的症状,早期筛查成为预防和治疗癌症的关键战略之一。

二、甲基化检测技术的原理甲基化检测技术是一种用于测量DNA分子上的甲基化修饰水平的方法。

这项技术的原理基于DNA甲基化是一种表观遗传学修饰,通过在DNA分子的胞嘧啶(C)碱基上附加甲基基团(CH3)来调节基因的活性。

DNA甲基化在维护基因组稳定性、基因表达调控以及细胞分化等生物学过程中起着关键作用。

在癌症中,某些基因的甲基化水平发生异常变化,导致基因的活性失调,从而促进肿瘤的发生和发展。

甲基化检测技术的原理如下:1.DNA提取:从研究样本(通常是患者的血液、组织或细胞样本)中提取DNA。

这可以通过化学方法或自动化DNA提取仪器来完成。

2.亚硫酸氢盐处理:DNA样本通常需要经过亚硫酸氢盐处理,以去除DNA中的碱基。

这个步骤会将未甲基化的胞嘧啶碱基(C)转化为尿嘧啶(U),而甲基化的胞嘧啶碱基(5-methylcytosine)则保持不变。

3.甲基化检测方法:甲基化检测技术有多种方法,包括但不限于以下几种:(1)甲基化特异性PCR(MSP):这是一种常用的方法,通过使用甲基化和非甲基化DNA的不同引物来扩增DNA片段。

甲基化检测原理及步骤

甲基化检测原理及步骤

DNA亚硫酸氢盐修饰和纯化操作步骤修饰设计:使用CpGenome TM kit使胞嘧啶转化为尿嘧啶的步骤如下。

中等温度碱性pH下使DNA变性成为单链形式暴露出碱基。

试剂一,一种包含亚硫酸氢根的钠盐,可使未甲基化的胞嘧啶磺化和水解脱氨,产生一种尿嘧啶磺酸盐中间产物。

然后DNA在另一种盐﹙试剂二﹚存在的条件下与一种微粒载体﹙试剂三﹚结合,并通过重复离心和在70%的乙醇中重悬浮脱盐。

向尿嘧啶的转化是通过在90%的乙醇中反复碱性脱磺酸基作用和脱盐完成的。

DNA最终在TE缓冲液中通过加热从载体上洗脱下来。

第一步:试剂准备(1)3 M NaOH原料(用前现配)把1g干NaOH片剂溶解在8.3mL水中。

使用此类腐蚀性碱,注意小心谨慎和实验操作。

(2)20 mM NaOH/90% EtOH(用前现配)配制1mL该溶液需:900μl 100%的乙醇,93.4μl水,6.6μl 3M的氢氧化钠。

(3)溶解试剂Ⅰ(用前现配)打开前将试剂瓶加温至室温。

对每份待修饰的样本,称取0.227g DNA修饰试剂Ⅰ加入0.571mL水中。

充分涡旋振荡混合。

使用该试剂时要小心谨慎,因为它对呼吸系统和皮肤有刺激性。

用大约20μl 3M NaOH调整pH至5.0,用pH试纸检测pH值。

试剂Ⅰ避光保存以免分解。

为了最佳效果,试剂应在配置后立即使用。

(4)溶解试剂Ⅱ打开前将试剂瓶加温至室温。

将1μl β-巯基乙醇加入20mL去离子水中。

每份待修饰的DNA样本需将750μl该溶液加入到1.35g DNA修饰Ⅱ。

充分混合确保完全溶解。

过量的试剂可用箔纸包裹的容器、2℃-8℃、避光保存长达6周。

第二步:DNA修饰程序1、在带有螺旋形瓶盖的1.5-2.0mL的微量离心管中:将7.0μl 3M NaOH加入到含有1.0 μg DNA的100μl水中(10ng/μl),混匀。

注意:如果样本含有的DNA量不到1.0μg,就向样本DNA中加入2 μl DNA修饰试剂Ⅳ并加水至总体积100μl。

DNA甲基化检测方法

DNA甲基化检测方法

DNA甲基化检测方法DNA甲基化是一种常见的表观遗传修饰方式,通过甲基化在DNA分子上的加合,可以调节基因表达和遗传信息传递。

因此,DNA甲基化检测在遗传学研究、疾病诊断和治疗中具有重要意义。

本文将介绍几种常用的DNA甲基化检测方法,并对其原理、优缺点进行详细讨论。

1.甲基化特异性PCR法(MSP)甲基化特异性PCR法是一种利用特异性甲基化酶、限制性内切酶或碱性处理剂以及增强法进行检测的方法。

该方法的原理是通过甲基化特异性的酶对DNA进行酶切,使得未甲基化的DNA片段与经PCR增强的片段长度不同,从而通过凝胶电泳进行检测和分析。

优点是简单、快速且成本低廉,但缺点是需要设计和合成特异性甲基化酶。

2.基于测序的甲基化特异性分析基于测序的甲基化特异性分析方法主要有甲基化抑制PCR法(MIP)和甲基化敏感限制性内切酶测序法(MSRE-Seq)等。

甲基化抑制PCR法是通过特殊的多聚合酶在特定温度下对未甲基化的DNA完成增长,而甲基化DNA则无法进行扩增,从而区分甲基化和未甲基化的位点。

甲基化敏感限制性内切酶测序法则是首先使用甲基敏感限制性内切酶对DNA进行切割,然后进行测序分析。

这两种方法具有较高的精确性和灵敏性,但测序成本较高。

3. 甲基化特异性酶切测序法(MRE-Seq)甲基化特异性酶切测序法是一种通过甲基化特异性酶切和测序进行检测的方法。

该方法首先使用甲基敏感限制性内切酶将DNA切割成小片段,并在切割位点的两端加入特异性的测序引物,然后进行PCR增强和高通量测序。

通过测序得到的序列和甲基化位点的分布情况可以对DNA甲基化进行精确的定量和定位分析。

甲基化特异性酶切测序法具有高通量、高灵敏度和高分辨率等优点,但仍存在PCR偏差等问题。

4.甲基化微阵列甲基化微阵列是一种通过DNA的甲基化特异性杂交来检测和定量DNA 甲基化水平的方法。

该方法利用DNA片段与微阵列芯片上的探针发生特异性杂交,然后通过荧光信号检测和分析。

septin9基因甲基化检测原理

septin9基因甲基化检测原理

septin9基因甲基化检测原理引言:近年来,基因检测技术的发展为临床诊断和疾病预防提供了新的可能性。

基于DNA甲基化的检测方法已成为常用的生物标记物检测手段之一。

其中,septin9基因甲基化检测已经被广泛应用于结直肠癌的早期筛查。

本文将介绍septin9基因甲基化检测的原理及其在临床中的应用。

一、DNA甲基化的概述DNA甲基化是一种通过在DNA分子中加入甲基基团来修饰基因表达的机制。

在DNA甲基化过程中,甲基转移酶将甲基基团添加到DNA分子的胞嘧啶(C)碱基上,形成甲基化胞嘧啶(mC)。

DNA 甲基化通常发生在CpG位点上,即胞嘧啶和鸟嘌呤(G)相邻的碱基。

二、septin9基因甲基化检测原理septin9基因位于人类染色体17上,是一个与肿瘤发生和发展相关的重要基因。

在癌症发生过程中,septin9基因的甲基化水平通常会发生改变。

septin9基因甲基化检测是通过检测septin9基因的甲基化状态来判断患者是否存在结直肠癌的一种方法。

septin9基因甲基化检测通常采用基于聚合酶链式反应(PCR)的技术。

具体步骤如下:1. 样本采集:从患者的血液中提取出DNA样本,这一步骤通常采用抽血的方式进行。

2. DNA甲基化处理:将DNA样本进行甲基化处理,使未甲基化的胞嘧啶(umC)转化为甲基化胞嘧啶(mC),以便后续的PCR反应。

3. PCR反应:使用特定的引物和酶,对septin9基因的DNA进行扩增。

PCR反应的结果将根据septin9基因在结直肠癌患者和健康人群中的甲基化差异而有所不同。

4. 产物检测:通过电泳等方法,对PCR反应的产物进行检测。

根据septin9基因的甲基化差异,可以判断样本是否存在结直肠癌。

三、septin9基因甲基化检测的临床应用septin9基因甲基化检测作为一种非侵入性的检测方法,已经在结直肠癌的早期筛查中得到了广泛应用。

相比传统的结直肠镜检查和粪便潜血试验,septin9基因甲基化检测具有以下优势:1. 非侵入性:septin9基因甲基化检测只需要提取血液样本,无需进行疼痛和不适的结肠镜检查。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DNA亚硫酸氢盐修饰和纯化操作步骤修饰设计:使用CpGenome TM kit使胞嘧啶转化为尿嘧啶的步骤如下。

中等温度碱性pH下使DNA变性成为单链形式暴露出碱基。

试剂一,一种包含亚硫酸氢根的钠盐,可使未甲基化的胞嘧啶磺化和水解脱氨,产生一种尿嘧啶磺酸盐中间产物。

然后DNA在另一种盐﹙试剂二﹚存在的条件下与一种微粒载体﹙试剂三﹚结合,并通过重复离心和在70%的乙醇中重悬浮脱盐。

向尿嘧啶的转化是通过在90%的乙醇中反复碱性脱磺酸基作用和脱盐完成的。

DNA最终在TE缓冲液中通过加热从载体上洗脱下来。

第一步:试剂准备
(1)3 M NaOH原料(用前现配)
把1g干NaOH片剂溶解在8.3mL水中。

使用此类腐蚀性碱,注意小心谨慎和实验操作。

(2)20 mM NaOH/90% EtOH(用前现配)
配制1mL该溶液需:900μl 100%的乙醇,93.4μl水,6.6μl 3M的氢氧化钠。

(3)溶解试剂Ⅰ(用前现配)
打开前将试剂瓶加温至室温。

对每份待修饰的样本,称取0.227g DNA修饰试剂Ⅰ加入0.571mL水中。

充分涡旋振荡混合。

使用该试剂时要小心谨慎,因为它对呼吸系统和皮肤有刺激性。

用大约20μl 3M NaOH调整pH至5.0,用pH试纸检测pH值。

试剂Ⅰ避光保存以免分解。

为了最佳效果,试剂应在配置后立即使用。

(4)溶解试剂Ⅱ
打开前将试剂瓶加温至室温。

将1μl β-巯基乙醇加入20mL去离子水中。

每份待修饰的DNA样本需将750μl该溶液加入到1.35g DNA修饰Ⅱ。

充分混合确保完全溶解。

过量的试剂可用箔纸包裹的容器、2℃-8℃、避光保存长达6周。

第二步:DNA修饰程序
1、在带有螺旋形瓶盖的1.5-2.0mL的微量离心管中:将7.0μl 3M NaOH加入到含有1.0 μg DNA的100μl水中(10ng/μl),混匀。

注意:如果样本含有的DNA量不到1.0μg,就向样本DNA中加入2 μl DNA修饰试剂Ⅳ并加水至总体积100μl。

再加入7.0μl 3M NaOH并混匀。

2、50℃ DNA孵育10分钟(加热块或水浴)
3、加入550 μl新鲜配制的DNA修饰试剂Ⅰ并涡旋振荡。

4、加热块或水浴50℃避光孵育4-16小时。

第三步:初步脱盐
1、强力涡旋振荡悬浮DNA修饰Ⅲ。

用10x的1mL塑料移液管枪头来回吸排悬液以分散仍存在的凝块。

2、向含DNA溶液的管中加入5μl充分悬浮的DNA修饰试剂Ⅲ。

3、加入750μl DNA修饰试剂Ⅱ并充分混匀。

4、室温孵育5-10分钟。

5、5000 X g离心10秒使DNA试剂Ⅲ成颗粒状。

(应出现一种白色的小颗粒。

)弃去上清。

6、加入1.0mL 70%的乙醇,涡旋振荡,5000 X g离心10秒,弃去上清。

该步骤重复进行,共3次。

7、将第三次上清弃去后,离心管高速离心2分钟,用塑料移液管枪头移去剩余上清。

第四步:完成DNA修饰(脱磺酸基作用),再次脱盐,并洗脱。

1、适量样本加入50μl 20 mM NaOH/90% EtOH溶液。

2、充分涡旋振荡悬浮颗粒,再室温孵育5分钟。

3、5000 X g离心以移除管顶所有成分。

加入1.0mL 90%的乙醇并涡旋振荡洗脱颗粒。

再旋转,除去上清。

再次重复该步骤。

4、第二次洗脱除去上清后,高速离心样本3分钟。

5、用塑料移液管头除去所有剩余上清。

试管室温晾干10-20分钟(必须除去酒精气味)。

6、加入TE缓冲液。

注意:加入TE的量取决于起始DNA的量和目的用途所需的加入浓度。

例如,如果加入25μl TE,基于完全恢复1μg DNA的最终浓度应为40ng/μl。

快速强力涡旋振荡直到颗粒完全悬浮。

用手轻打或轻敲内容物至管顶(但是不要离心)。

7、50-60℃下样本孵育15分钟以洗脱DNA。

8、高速离心2-3分钟并用塑料移液管头转移样本(上清)到新管。

9、进行MSP或测序,或-15~-25℃可保存达2个月,-80℃可保存6个月。

避免重复融化和解冻;可分量储存。

不要将DNA存储在自动除霜冰箱。

10、当从一管中转移已解冻的DNA以备用时,避免将试剂Ⅲ转移到PCR反应管中。

通常首先将管充分离心,使残留的试剂Ⅲ固体成颗粒状。

三、MSP
(1)引物合成
运用特别设计的针对甲基化和非甲基化序列的引物,引物由上海生物工程有限公司合成。


表1
表1 甲基化引物序列及扩增条件
hMLH1引物引物序列(5’~3’)产物长度温度甲基化(M) 正义ACGTAGACGTTTTATTAGGGTCGC 115 bp 55℃甲基化(M) 反义CCTCATCGTAACTACCCGCG 115 bp 55℃非甲基化(U) 正义TTTTGATGTAGATGTTTTATTAGGGTTGT 124 bp 55℃非甲基化(U) 反义ACCACCTCATCATAACTACCCACA 124 bp 55℃(2)PCR反应条件
a 反应体系:10×PCR缓冲液5μl,2.5mmol/LdNTP4μl,甲基化上下游引物和去甲
基化上下游引物分别为1μl,甲基化模板DNA5μl,Taq酶0.25μl,加水至总体积50μl。

b 循环条件:
共35个循环
(3)PCR产物结果判定:琼脂糖凝胶电泳
a 甲基化阳性:甲基化特异性引物扩增出相应长度的片断,但非甲基化特异性引物未
扩增出相应长度的片断,则判断基因启动子区5’CpG岛甲基化阳性。

b 甲基化阴性:非甲基化特异性引物扩增出相应长度的片断,但甲基化特异性引物未扩增出相应长度的片断。

则判断基因启动子区5’CpG岛甲基化阴性。

相关文档
最新文档