2013年中考数学复习分层训练36 专题四:归纳与猜想(含答案)

合集下载

2013年数学中考题汇编猜想、规律与探索题

2013年数学中考题汇编猜想、规律与探索题

中考复习专题:猜想、规律与探索题一 、选择题1. (2011浙江省,10,3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此规律,图A 6比图A 2多出“树枝”( ) A .28 B .56 C .60 D . 124【答案】C3. (2011广东肇庆,15,3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 ▲ .【答案】)2(+n n4. (2011内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)【答案】(1)4n n ++或24n n ++5. (2011湖南益阳,16,8分)观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1第1个图形第 2 个图形 第3个图形第 4 个图形第 18题图② 2 × 4 - 32 = 8 - 9 = -1 ③ 3 × 5 - 42 = 15 - 16 = -1④ ……(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由. 【答案】解:⑴246524251⨯-=-=-;⑵答案不唯一.如()()2211n n n +-+=-;⑶()()221n n n +-+ ()22221n n n n =+-++22221n n n n =+---1=-.6.(2011广东汕头,20,9分)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;(3)求第n 行各数之和. 【解】(1)64,8,15; (2)2(1)1n -+,2n ,21n -;(3)第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n 行各数之和等于2(21)(1)n n n --+=322331n n n -+-.二、填空题1. (2011四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个。

初中数学竞赛枚举、归纳与猜想(含答案)

初中数学竞赛枚举、归纳与猜想(含答案)

枚举、归纳与猜想一、枚举法枚举法起源于原始的计数方法,即数数。

关于这方面的例子,我们在第11讲中已介绍过,现在我们从另一角度来利用枚举法解题。

当我们面临的问题存在大量的可能的答案(或中间过程),而暂时又无法用逻辑方法排除这些可能答案中的大部分时,就不得不采用逐一检验这些答案的策略,也就是利用枚举法来解题。

采用枚举法解题时,重要的是应做到既不重复又不遗漏,这就好比工厂里的质量检验员的责任是把不合格产品挑出来,不让它出厂,于是要对所有的产品逐一检验,不能有漏检产品。

例1一个小于400的三位数,它是平方数,它的前两个数字组成的两位数还是平方数,其个位数也是一个平方数。

求这个三位数。

解:这道题共提出三个条件:(1)一个小于400的三位数是平方数;(2)这个三位数的前两位数字组成的两位数还是平方数;(3)这个三位数的个位数也是一个平方数。

我们先找出满足第一个条件的三位数:100,121,144,169,196,225, 256, 289, 324, 361。

再考虑第二个条件,从中选出符合条件者:169,256,361。

最后考虑第三个条件,排除不合格的256,于是找到答案是169和361。

说明:这里我们采用了枚举与筛选并用的策略,即依据题中限定的条件,面对枚举出的情况逐步排除不符合条件的三位数,确定满足条件的三位数,从而找到问题的答案。

例2哥德巴赫猜想是说:每个大于2的偶数都可以表示为两个质数之和。

问:168是哪两个两位数的质数之和,并且其中一个的个位数是1?解:168表示成两个两位质数之和,两个质数都大于68。

个位是1且大于68的两位数有71,81,91,其中只有71是质数,所以一个质数是71,另一个质数是168-71=97。

说明:解此题要求同学们记住100以内的质数。

如果去掉题目中“其中一个的个位数是1”的条件,那么上述答案不变,仍是唯一的解答。

如果取消位数的限制,那么还有168=5+163,168=11+157,168=17+151,…哥德巴赫猜想是1742年提出来的,至今已有250多年的历史了,它是数论中最有名的问题,中外许多著名的数学家都研究过,包括我国著名数学家华罗庚教授。

2013届中考数学押轴题备考复习 猜想、规律与探索2

2013届中考数学押轴题备考复习 猜想、规律与探索2

猜想、规律与探索一 选择题1.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ) A .(4,O)B.(5,0)C .(0,5)D .(5,5)【解题思路】方法一、在演草纸上按规律去画。

方法二、根据题意,结合图形我们可以发现第n (n+2)秒时跳蚤所在位置的坐标是⎩⎨⎧→→为偶数时为奇数时,n n),0(n )0n (,35= 5(5+2)所以要求坐标为(5,0)。

【答案】B【点评】本题主要考查规律探索,做此类问题关键在细心观察、认真分析,如果次数较少可按规律一次去画。

难度中等。

2.在平面直角坐标系中,正方形ABCD 的顶点坐标分别为A (1,1),B (1,-1),C (-1,-1),D (-1,1),y 轴上有一点P (0,2).作点P 关于点A 的对称点P 1,作点P 1关于点B 的对称点P 2,作点P 2关于点C 的对称点P 3,作点P 3关于点D 的对称点P 4,作点P 4关于点A 的对称点P 5,作点P 5关于点B 的对称点P 6,…,按此规律下去,则点P 2011的坐标为( ) A .(0,2) B .(2,0) C .(0,-2) D .(-2,0)【解题思路】P 1(2,0),P 2(0,-2),P 3(-2,0),P 4与P 重合.题中所述点列P 1→P 2→P 3→P 4→P 5→…是循环的,循环节是.P 1→P 2→P 3→P .∵2011=502×4+3,∴P 2011是循环点列中第503节的第三个点,即是P 3. 【答案】D【点评】此题考查探索、归纳和猜想的能力.探索应从简单到复杂、从特殊到一般、从具体到抽象进行,难度较大.对点(x ,y )的一次操作变换记为P 1(x ,y ),定义其变换法则如下:P 1(x ,y )=(y x +,y x -);且规定)),((),(11y x P P y x P n n -=(n 为大于1的整数).如P 1(1,2 )=(3,1-),P 2(1,2 )= P 1(P 1(1,2 ))= P 1(3,1-)=(2,4),P 3(1,2 )= P 1(P 2(1,2 ))= P 1(2,4)=(6,2-).则P 2011(1,1-)=( ) A .(0,21005) B .(0,-21005) C .(0,-21006) D .(0,21006)【解题思路】:P 1(1,1-)=(0,2);P 2(1,1-)=P 1(0,2)=(2,2-);P 3(1,1-)=P 1(P 2(1,1-)=P 1(2,2-)=(0,4);……由此可知当n 为奇数数时,横坐标为0,纵坐标为21(1)2n +,所以P 2011(1,1-)=(0,21006)【答案】D .【点评】:本题是规律探究性问题,解题时先从较简单的特例入手,从中探究出规律,再用得到的规律解答问题即可.本题难度较大,考查了学生分析问题的能力.也可以看作是新定义型问题.已知世运会、亚运会、奥运会分别于公元2009年、2010年、2012年举办。

中考数学思想方法 【猜想归纳】数式规律中的猜想归纳思想(学生版+解析版)

中考数学思想方法 【猜想归纳】数式规律中的猜想归纳思想(学生版+解析版)

数式规律中的猜想归纳思想知识方法精讲1.规律型:数字的变化类探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法,通常将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.2. 猜想归纳思想归纳猜想类问题也是探索规律型问题,这类问题一般给出一组具有某种有规律的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,通过认真观察、分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论。

考查学生的归纳、概括、类比能力。

有利于培养学生思维的深刻性和创造性。

解决归纳猜想类问题的基本思路是“观察→归纳→猜想→证明(验证)”,具体做法:(1)认真观察所给的一组数、式、图等,发现它们之间的关系;(2)根据它们之间的关系分析、概括,归纳它们的共性和蕴含的变化规律,猜想得出一个一般性的结论;(3)结合题目所给的材料情景证明或验证结论的正确性。

归纳猜想类问题可以分成四大类:(1)数式归纳猜想题这类题通常是先给出一组数或式子,通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论。

找出题目中规律,即不变的和变化的,变化的部分与序号的关系是解这类题的关键。

(2)图形归纳猜想题此类题通常给出一组图形的排列(或操作得到一系列的图形)探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系。

其解题关键是找出相邻两个图形之间的位置关系和数量关系。

(3)结论归纳猜想题结论归纳猜想题常考数值结果、数量关系及变化情况。

发现或归纳出周期性或规律性变化,是解题的关键。

(4)类比归纳猜想题类比归纳猜想题通常是指由两类对象的具有某些相同或相似的性质,和其中一类对象的某些已知的性质,推断出另一类对象也具有这些性质的一种题型,有时也指两个对象在研究方法、学习过程上类比,考查类比归纳推理能力。

2013全国部分地市中考(压轴题 )归纳猜想型问题(含考答案)

2013全国部分地市中考(压轴题 )归纳猜想型问题(含考答案)

归纳猜想型问题中考考点精讲考点一:猜想数式规律通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。

一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。

例1 (2013•巴中)观察下面的单项式:a,-2a2,4a3,-8a4,…根据你发现的规律,第8个式子是.思路分析:根据单项式可知n为双数时a的前面要加上负号,而a的系数为2(n-1),a的指数为n.解:第八项为-27a8=-128a8.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.对应训练1.(2013•株洲)一组数据为:x,-2x2,4x3,-8x4,…观察其规律,推断第n个数据应为.1.(-2)n-1x n考点二:猜想图形规律根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律。

其中,以图形为载体的数字规律最为常见。

猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论。

例2 (2013•牡丹江)用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是.思路分析:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2-1个;第3个图形共有三角形5+3×3-1个;第4个图形共有三角形5+3×4-1个;…;则第n 个图形共有三角形5+3n-1=3n+4个;解答:解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2-1个;第3个图形共有三角形5+3×3-1个;第4个图形共有三角形5+3×4-1个;…;则第n个图形共有三角形5+3n-1=3n+4个;故答案为:3n+4点评:此题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.例3 (2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线上.思路分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.对应训练2.(2013•娄底)如图,是用火柴棒拼成的图形,则第n个图形需根火柴棒.2.2n+13.(2013•江西)观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有点的个数为(用含n的代数式表示).3.(n+1)2解:第1个图形中点的个数为:1+3=4,第2个图形中点的个数为:1+3+5=9,3.(8052,0)考点四:猜想数量关系数量关系的表现形式多种多样,这些关系不一定就是我们目前所学习的函数关系式。

2013年中考数学二轮专题复习 专题三 归纳猜想问题课件

2013年中考数学二轮专题复习 专题三 归纳猜想问题课件

质,推断出另一类对象也具有这些性质的一种题
型,有时也指两个对象在研究方法、学习过程上类 比,考查类比归纳推理能力.
【例题 4】 (2012· 浙江一模)阅读材料:如图,△ABC 中,AB=AC,P 为底边 BC 上任意一点,点 P 到 两腰的距离分别为 r1,r2,腰上的高为 h,连结 1 1 AP, S△ABP+S△ACP=S△ABC, 则 即:AB·1+ AC·2 r r 2 2 1 = AB·h,∴r1+r2=h. 2
三、结论归纳猜想题
结论归纳猜想题常考数值结果、数量关系及变化情 况.发现或归纳出周期性或规律性变化,是解题的 关键.
【例题3】 (2012· 浙江金华一模)如 图,一只青蛙在圆周上标有数 字的五个点上跳,若它停在奇
数点上,则下次沿顺时针方向
跳两个点;若停在偶数点上, 则下次沿逆时针方向跳一个点.若青蛙从5这点开 始跳,则经过2 012次后它停在哪个数对应的点上
课 时 跟 踪 检 测
【例题2】 (2012· 浙江宁波)用同样大小的黑色棋子 按如图所示的规律摆放:
(1)第5个图形有多少黑色棋子?
(2)第几个图形有2 013颗黑色棋子?请说明理由.
分析 (1)根据图中所给的黑色棋子的颗数,找出其 中的规律,即可得出答案. (2)根据(1)所找出的规律,列出方程,即可求出答 案.

(2)如图2,∵四边形ABCD是正方形, ∴∠A=∠B=∠C=∠D=90°,AB =BC=CD=AD=2. ∵PE⊥AB,PF⊥BC,PG⊥DC, PH⊥AD, ∴四边形PEBF是矩形,四边形PFCG
图2
是矩形,四边形PGDH是矩形,四边形PHAE是矩 形, ∴PE=AH,PF=BE,PG=HD,PH=AE, ∴PE+PF+PG+PH=AH+BE+HD+AE=AD+ AB=4.故答案为4.

中考数学猜想型试题及解答

猜想型试题例1.如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.分析:本题要求学生在掌握全等三角形的概念和性质的基础上,灵活运用三角形全等的判定及性质进行结论猜想。

求解这类问题,不能随意乱猜,要结合题目给出的条件,根据图形直观的找出结论后再进行合理的推理论证。

解:(1)图中还有相等的线段是:AE=BF=CD ,AF=BD=CE , 事实上,∵△ABC 与△DEF 都是等边三角形,∴∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD , 又∵∠CED+∠AEF=120°,∠CDE+∠CED=120°∴∠AEF=∠CDE ,同理,得∠CDE=∠BFD , ∴△AEF ≌△BFD ≌△CDE (AAS ),所以AE=BF=CD ,AF=BD=CE 。

(2)线段AE 、BF 、CD 它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF 、BD 、CE 它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到。

说明:1.本题考查的是在三角形全等的判定及应用及旋转变换,它立意考查学生的观察、分析问题的能力. 2.因为几何直观是一种思维形式,它是人脑对客观事物及其关系的一种直接的识别或猜想的心理状态.它不仅拓展了学生的思维空间,考查了学生的能力,更因为几何直观具有发现的功能.这种思维既有形象思维的特点,又有抽象思维的特点,所以成为近几年中考试题的考点及热点问题。

练习一 1.已知:如图,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB 延长线上一点,且DE=BF 。

中考数学《归纳与猜想》复习教案中考数学真题网

中考数学复习归纳与猜想归纳是一种重要的推理方法,是根据具体事实和特殊现象,通过实验、观察、比较、概括出一般的原理和结论。

猜想是一种直觉思维,它是通过对研究对象的实验、观察和归纳、猜想它的规律和结论的一种思维方法。

猜想往往依据直觉来获得,而恰当的归纳可以使猜想更准确。

我们在进行归纳和猜想时,要善于从变化的特殊性中寻找出不变的本质和规律。

典型分析例1、用等号或不等号填空:(1)比较2x 与x 2+1的大小①当x =2时,2x x 2+1;②当x =1时,2x x 2+1;③当x =-1时,2x x 2+1.(2)可以推测:当x 取任意实数时,2x x 2+1.分析:本题是通过计算发现和猜想一般规律题,正确计算和发现规律是关键。

解:(1)<,=,<; (2)≤。

例2、观察下列分母有理化的计算:12121-=+,23231-=+,34341-=+,45451-=+…从计算结果中找出规律,并利用这一规律计算:1)2002)(200120021341231121(+++++++++ =____。

分析:解本题时,要抓住分每有理化后的结果都是两数之差,且可以错位相消。

还要注意相消后所剩下的是什么。

解:1)2002)(200120021341231121(+++++++++=)12002)(20012002342312(+-++-+-+-=)12002)(12002(+-=—1 =。

例3、 观察下列数表:1 2 3 4 … 第一行 2 3 4 5 … 第二行 3 4 5 6 … 第三行 4 5 6 7 … 第四行 … … … …第一列 第二列 第三列 第四列根据数表所反映的规律,猜想第6行与第6列的交叉点上的数应为____,第n 行与第n 列交叉点上的数应为____。

(用含正整数n 的式子表示)分析:本题要求的是同行同列交叉点上的数,因此,必须先研究同行同列交叉点上的数有什么规律,然后利用此规律解题。

解: 11 , 2n —1.例4、将一个边长为1的正方形纸,剪成四个大小一样的正方形,然后将其中的一个按同样的方法剪成四个正方形,如此循环下去,观察下列图形和所给表格中的数据后填空格。

专题复习 归纳与猜想(含答案)-

①1×12=1-12 ②2×23=2-23 ③3×34=3-34④4×45=4-45 ……专题复习 归纳与猜想归纳与猜想问题指的是给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探索题。

其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,这类问题有利于培养学生思维的深刻性和创造性。

一、知识网络图二、基础知识整理猜想规律型的问题难度相对较小,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。

其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。

相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。

由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的又一热点。

★ 范例精讲【归纳与猜想】例1【河北实验区05】观察右面的图形(每个正方形的边长均为1)和相应等式,探究其中的规律:⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。

解:⑴5×56=5-56⑵11+-=+⨯n nn n n n 。

例2〖归纳猜想型〗将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,⑵如果剪n 次共有A n 个正方形,试用含n 、A n 的等式表示这个规律; ⑶利用上面得到的规律,要剪得22个正方形,共需剪几次? ⑷能否将正方形剪成2004个小正方形?为什么? ⑸若原正方形的边长为1,设a n 表示第n 次所剪的正方形的边长,试用含n 的式子表示a n ;⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系.解:⑴100×3+1=301,规律是:本次剪完后得到的小正方形的个数比上次剪完后得到的小正方形的个数多3个;⑵A n =3n +1;⑶若A n =22,则3n +1=22,∴n =7,故需剪7次; ⑷若A n =2004,则3n +1=2004,此方程无自然数解, ∴不能将原正方形剪成2004个小正方形;⑸a n =12n ;⑹a 1=12<1,a 1+a 2=12+14=34<1,a 1+a 2+a 3=12+14+18=78<1,……从而猜想到:a 1+a 2+a 3+…+a n <1.直观的几何意义如图所示。

中考数学二轮复习真题演练:归纳猜想型问题

二轮复习真题演练归纳猜想型问题一、选择题1.(2013•南平)给定一列按规律排列的数:1234,,,251017,…,则这列数的第6个数是()A.637B.635C.531D.7391.A2.(2013•重庆)下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8cm2,第(3)个图形的面积为18cm2,…,则第(10)个图形的面积为()A.196cm2B.200cm2C.216cm2D.256cm22.B3.(2013•呼和浩特)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156 B.157 C.158 D.1593.B4.(2013•重庆)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1棵棋子,第②个图形一共有6棵棋子,第③个图形一共有16棵棋子,…,则第⑥个图形中棋子的颗数为()A.51 B.70 C.76 D.814.C5.(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)5.D6.(2013•济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.54cm2B.58cm2C.516cm2D.532cm26.B二.填空题7.(2013•沈阳)有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第8个等式为7.82+92+722=7328.(2013•曲靖)一组“穿心箭”按如下规律排列,照此规律,画出2013支“穿心箭”是8.9.(2013•三明)观察下列各数,它们是按一定规律排列的,则第n个数是.1371531,,,,2481632,…9.21 2nn10.(2013•莱芜)已知123456789101112…997998999是由连续整数1至999排列组成的一个数,在该数中从左往右数第2013位上的数字为 . 10.7 11.(2013•红河州)下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有 个实心圆.11.4212.(2013•衡阳)观察下列按顺序排列的等式:a 1=1−12,a 2=1124-,a 3=1135-,a 4=1146-,…,试猜想第n 个等式(n 为正整数):a n = . 12.112n n -+13.(2013•遂宁)为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为 .13.6n+2 14.(2013•深圳)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有 个正方形14.9115.(2013•南宁)有这样一组数据a 1,a 2,a 3,…a n ,满足以下规律:a 1=12,a 2=111a -,a 3=211a -,…,a n =111n a --(n≥2且n 为正整数),则a 2013的值为 (结果用数字表示). 15.-116.(2013•大庆)已知111(1)1323=-⨯ ,1111()35235=-⨯,1111()57257=-⨯,…依据上述规律,计算113+⨯135⨯+157+⨯…11113+⨯的结果为(写成一个分数的形式)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题四 归纳与猜想
1.(2012年广东肇庆)观察下列一组数:23,45,67,8
9
,…,它们是按一定规律排列的,那么这
一组数的第k 个数是________.
2.(2012年湖南株洲)一组数据为:x ,-2x 2,4x 2,-8x 2,…,观察其规律,推断第n 个数据应
为__________.
3.(2011年浙江)如图Z4-2,下面是按照一定规律画出的“树形图”,经观察可以发现:图
A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,…,照此规律,图A 6比图A 2多出“树枝”( )
图Z4-2
A .28个
B .56个
C .60个
D .124个
4.(2012年山东滨州)求1+2+22+23+…+22 012的值,可令S =1+2+22+23+…+22 012,则
2S =2+22+23+24+…+22 013,因此,2S -S =22 013-1.仿照以上推理,计算出1+5+52+53+…+52 012的值为( ) A .5
2 012
-1 B .5
2 013
-1 C.52 013-14 D.52 012-1
4
5.(2012年贵州毕节)在图Z4-3中,每个图案均由边长为1的小正方形按一定的规律堆叠而
成,照此规律,第10个图案中共有______个小正方形.
图Z4-3
6.(2011年湖南常德)先找规律,再填数:
11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=1
56,…… 则
12 011+12 012-________=1
2 011×2 012
.
7.(2012年河北)某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同
学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎝⎛⎭⎫11+1,第2位同学报
⎝⎛⎭
⎫12+1……这样得到的20个数的积为________________.
8.(2010年浙江嵊州)如图Z4-4,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,
OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则“17”在射线__________上;“2 007”在射线____________上.
图Z4-4
9.(2012年云南)观察图Z4-5的图形的排列规律(其中▲、■、★分别表示三角形、正方形、
五角星).若第一个图形是三角形,则第18个图形是________________(填图形名称).
▲■★■▲★▲■★■▲★▲…… 图Z4-5
10.(2011年广东湛江)已知:A 23=3×2=6,A 35=5×4×3=60,A 45=5×4×3×2=120,A 4
6=
6×5×4×3=360,…,观察前面的计算过程,寻找计算规律计算A 37=
_______________(直接写出计算结果),并比较A 310________A 4
10(填“>”或“<”或“=”).
11.(2012年广东汕头)观察下列等式:
第1个等式:a 1=11×3=1
2×⎝⎛⎭⎫1-13; 第2个等式:a 2=13×5=12×⎝⎛⎭⎫13-15; 第3个等式:a 3=15×7=12×⎝⎛⎭⎫15-17; 第4个等式:a 4=17×9=12×⎝⎛⎭
⎫17-19; ……
请解答下列问题:
(1)按以上规律列出第5个等式:a 5=______=______;
(2)用含有n 的代数式表示第n 个等式:a n =______=______(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.
12.(2010年浙江宁波)18世纪瑞士数学家欧拉证明了简单多面体中顶点数V、面数F、棱数E 之间存在的一个有趣的关系式,被称为欧拉公式.请你观察图Z4-6中的几种简单多面体模型,解答下列问题:
(1)根据上面的多面体模型,完成表格中的空格:
图Z4-6
多面体顶点数V 面数F 棱数E
四面体44
长方体8612
正八面体812
正十二面体201230
你发现顶点数V、面数F、棱数E之间存在的关系式是______________;
(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是__________;
(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而
成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值.
参考答案
1.
2k
2k+1
2·(-1)n+1·2n-1x n 3.C
4.C解析:设S=1+5+52+53+…+52 012,则5S=5+52+53+54+…+52 013.
因此,5S-S=52 013-1,S=52 013-1
4.
5.100 6.
1
1 0067.218.OE OC
9.五角星10.210<
11.解:根据观察知答案分别为:
(1)1
9×111
2×⎝



1
9-
1
11
(2)1
(2n-1)(2n+1)1
2×⎝



1
2n-1

1
2n+1
(3)a1+a2+a3+a4+…+a100
=1
2×⎝



1-
1
3+
1
2×⎝



1
3-
1
5+
1
2×⎝



1
5-
1
7+
1
2×⎝



1
7-
1
9+…+
1
2×⎝



1
199-
1
201
=1
2⎝
⎛1-1
3+
1
3-
1
5+
1
5-
1
7+
1
7-
1
9+…+⎭

1
199-
1
201=
1
2(1-
1
201)=
1

200
201=
100
201.
12.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2.
(2)由题意,得F-8+F-30=2,解得F=20.
(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线,
∴共有24×3÷2=36(条)棱.
那么24+F-36=2,解得F=14.
∴x+y=14.。

相关文档
最新文档