《2.2.1 椭圆的标准方程》 教学案
选修2-1教案2.2.1椭圆及其标准方程、几何性质

2.2.1圆及其标准方程教学要求:从具体情境中抽象出椭圆的模型,掌握椭圆的定义,标准方程 教学重点:椭圆的定义和标准方程 教学难点:椭圆标准方程的推导 教学过程:一、新课导入:取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?(学生动手,观察结果)思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的长度保持不变,即笔尖到两个定点的距离之和等于常数. 二、讲授新课:1. 定义椭圆:把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆标准方程的推导:以经过椭圆两焦点12,F F 的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立直角坐标系xOy .设(,)M x y 是椭圆上任意一点,椭圆的焦距为()20c c >,那么焦点12,F F 的坐标分别为(),0c -,(),0c ,又设M 与12,F F 的距离之和等于2a ,根据椭圆的定义,则有122MF MF a +=,用两点间的距离公式代入,画简后的222221x y a a c+=-,此时引入222b ac =-要讲清楚. 即椭圆的标准方程是()222210x y a b a b+=>>. 根据对称性,若焦点在y 轴上,则椭圆的标准方程是()222210x y a b b a+=>>.两个焦点坐标()()12,0,,0F c F c -.通过椭圆的定义及推导,给学生强调两个基本的等式:122MF MF a +=和222b c a +=3. 例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a c ==y 轴上;⑶10,a b c +==(教师引导——学生回答) 例2 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.(教师分析——学生演板——教师点评) 三、巩固练习:1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -;⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=. 2. 作业:40P 第2题.2.2椭圆及其标准方程教学要求:掌握点的轨迹的求法,坐标法的基本思想和应用. 教学重点:求点的轨迹方程,坐标法的基本思想和应用. 教学难点:求点的轨迹方程,坐标法的基本思想和应用. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.关于椭圆的两个基本等式. 二、讲授新课:1. 例1 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程. 求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式. (教师引导——示范书写)2. 练习:1.点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么? (教师分析——学生演板——教师点评)2.求到定点()2,0A 与到定直线8x =的距离之比为2的动点的轨迹方程. (教师分析——学生演板——教师点评)3. 例2 在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.(教师引导——示范书写) 4. 练习: 1.47P 第7题.2.已知三角形ABC 的一边长为6,周长为16,求顶点A 的轨迹方程. 5.知识小结:①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程. 三、作业: 40P 第4题 精讲精练第8练.2.2椭圆的简单几何性质教学要求:根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图. 教学重点:通过几何性质求椭圆方程并画图. 教学难点:通过几何性质求椭圆方程并画图. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程. 二、讲授新课:1.范围——变量,x y 的取值范围,亦即曲线的取值范围:横坐标a x a -<<;纵坐标b x b -<<.方法:①观察图像法; ②代数方法.2.对称性——既是轴对称图形,关于x 轴对称,也关于y 轴对称;又是中心对称图形. 方法:①观察图像法; ②定义法.3.顶点:椭圆的长轴122A A a =,椭圆的短轴122B B b =,椭圆与四个对称轴的交点叫做椭圆的顶点,()()()()1212,0,,0,,0,,0A a A aB b B b --.4.离心率:刻画椭圆的扁平程度.把椭圆的焦点与长轴长的比c a 称为离心率.记ce a=. 可以理解为在椭圆的长轴长不变的前提下,两个焦点离开中心的程度.5.例题例4 求椭圆221625400x y +=的长轴和短轴的长,离心率,焦点和定点坐标. 提示:将一般方程化为标准方程. (学生回答——老师书写)练习:求椭圆22416x y +=和椭圆22981x y +=的长轴和短轴长,离心率,焦点坐标,定点坐标.(学生演板——教师点评)例5 点(),M x y 与定点()4,0F 的距离和它到直线25:4l x =的距离之比是常数45,求点M 的轨迹.(教师分析——示范书写)三、课堂练习:①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y +=与2211612x y += ⑵22936x y +=与221610x y +=(学生口答,并说明原因)②求适合下列条件的椭圆的标准方程.⑴经过点()(,P Q -⑵长轴长是短轴长的3倍,且经过点()3,0P ⑶焦距是8,离心率等于0.8 (学生演板,教师点评) ③作业:47P 第4题.。
《2.2.1-椭圆及其标准方程》优秀教学设计

《2.2.1-椭圆及其标准方程》教学设计一、教学内容解析教学内容属概念性知识,是通过描述椭圆形成过程进行定义的作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点学生对椭圆和方程即数形结合思想的理解,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点圆锥曲线是平面解析几何研究的主要对象圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础教科书以椭圆为学习圆锥曲线的开始和重点,可见本节内容所处的重要地位通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础学习过程启发学生能够发现问题和提出问题,善于思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力二、教学目标设置:1.知识与技能目标(1)学生能掌握椭圆的定义焦点,焦距的概念.(2)学生能推导并掌握椭圆的标准方程.(3)学生在学习过程中进一步感受曲线方程的概念,体会建立曲线方程的基本方法,运用数形结合的数学思想方法解决问题.2.过程与方法目标:(1)学生通过经历椭圆形成的情境感知椭圆的定义并亲自参与归纳.培养学生发现规律、认识规律的能力.(2)学生类比圆的方程的推导过程尝试推导椭圆标准方程,培养学生利用已知方法解决实际问题的能力.(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等价转化等数学思想方法.3.情感态度与价值观目标:(1)通过椭圆定义的获得让学生感知数学知识与实际生活的密切联系培养学生探索数学知识的兴趣并感受数学美的熏陶.(2)通过标准方程的推导培养学生观察,运算能力和求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、学生学情分析1.能力分析①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱.2.认知分析①学生已初步熟悉求曲线方程的基本步骤,②学生已经掌握直线和圆的方程,对曲线的方程的概念有一定的了解,3.情感分析学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.四、教学策略分析教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“创设情境——总结概括——启发引导——探究完善——实际应用”的过程,发现新的知识,又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质.课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:1.引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义.2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性.这两种方法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性.在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量.五、教学过程:(一)复习引入1.给学生放视频天宫一号与神八的运行轨迹,说一说你对生活中椭圆的认识.伴随图片展示使同学们感到椭圆就在我们身边.意图:(1)、从学生所关心的实际问题引入,使学生了解数学来源于实际.(2)、使学生更直观、形象地了解后面要学的内容;2.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上同一定点,套上笔拉紧绳子,移动笔尖画出的轨迹是圆.再将这一条定长的细绳的两端固定在画图板上的两定点,当绳长大于两点间的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆随后动画呈现.同时演示在ppt上。
椭圆及其标准方程教学设计

椭圆及其标准方程的教学设计镇赉一中刘海武【设计理念】:本节课的教学设计是针对学习情况中等的学生设计的。
借助多媒体辅助手段,创设问题的情境,充分体现量力性,语言的严谨性,具体性和抽象性形结合的数学教学原则,引导学生自主学习,积极参与到教学中来,让学生在思维参与中学会学习、学会合作、学会创新。
让探究式教学走进课堂.一、【教材分析】:1、教学内容:选修2.2.1椭圆及其标准方程。
本节研究椭圆的定义、图形及标准方程的推导学生了解和体验椭圆的定义的推导和标准方程。
会运用待定系数法和定义法求椭圆标准方程。
2、教学地位:本节是在学生学完曲线和方程以及圆以后学习的一种圆锥曲线,它不仅可以检验前面所学的知识,而且还为后继内容双曲线、抛物线的学习提供研究方法,使学生在同化、顺应的过程中,将知识正确认识,所以这节课内容具有承上起下的重要作用。
3、教学重点:椭圆定义、标准方程4、教学难点:椭圆标准方程的建立和参数b的引入二、【教学目标】:1、知识与技能目标:(1).通过椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力。
(2)。
掌握椭圆的定义、标准方程,会用椭圆的定义标准方程解决实简单问题;(3)。
理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的上动点的相关点的轨迹方程的方法。
2、过程与方法目标:(1)通过观察图片、做画椭圆的实验,获得椭圆形成的感性认识。
(2)推导椭圆标准方程时,利用计算机直观形象的特点,扫除学生在参数a、b 的引入、焦点在y轴上标准方程理解上的障碍。
(3)采用互动探究式教学。
学生分组讨论,教师启发讨论的形式,加强师生、生生的交流,开拓思路。
3、情感态度与价值观目标:(1)通过学生个性化的学习增强学生的自信心和意志力。
(2)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
(3)通过神州五号的引入对学生进行爱国主义教育,增强民族自豪感。
2.2.1椭圆及其标准方程(二)2

2.2.1椭圆及其标准方程(二)【教学目标】1.理解椭圆的定义及标准方程;2.掌握用定义法和待定系数法求椭圆的标准方程;3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.【学科素养】数学抽象、逻辑推理,数学运算.【教学重点】椭圆的定义及标准方程的推导.【教学难点】理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.【学法指导】教师启发讲授,学生探究学习.复习回顾问题 1:椭圆的定义是什么?问题 2:椭圆的标准方程是怎样的?新知探究例2:如图,在圆422=+y x 上任意取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么? 点评:相关点法(代入法)(设计意图:利用直线中点坐标公式,探求动点轨迹)变式训练2:教材第50页B 组第一题例3:如图所示,设A ,B 的坐标分别是()()0,5,0,5-,直线BM AM ,相交于点M ,且它们的斜率之积是94-,求M点得轨迹方程。
(设计意图:把直线相关知识与椭圆结合到一起,加强知识之间的联系,以此培养学生 的知识串联能力)点评:参数法变式训练3:(教材第42页练习第4题)小结:求解与椭圆相关的轨迹问题的方法1、写出适合下列条件的椭圆的标准方程:(1)1,4==b a ,焦点在x 轴上;(2)15,4==c a ,焦点在y 轴上;(3)52,10==+c b a2、椭圆2211625x y +=的焦点坐标为( )A (0, ±3)B (±3, 0)C (0, ±5)D (±4, 0)3、在方程22110064x y +=中,下列a, b, c 全部正确的一项是( ) A a=100, b=64, c=36 B a=10, b=6, c=8C a=10, b=8, c=6D a=100, c=64, b=36 教材第42页练习第1题、第3题.课堂小结1.椭圆的概念及标准方程;2.求椭圆方程的方法.作业布置 习题2.2A 组5 、7板书设计椭圆及其标准方程1、椭圆的定义 例2: 例32、椭圆的标准方程课后感悟。
椭圆及其标准方程一优秀教学设计精选全文完整版

可编辑修改精选全文完整版教学设计(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导13分钟1.标准方程的推导.教师引导学生得出椭圆方程,由a、b的关系判定焦点在哪一个坐标轴上。
2.教师给出表格和学生一起总结椭圆的方让学生自己去推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输”为“发现”。
教师结合猜想加以引导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)F1(-c,0)、F2(c,0),这里c2=a2-b2;F1(-c,0)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与8分钟,练习12分钟例1求适合下列条件的椭圆的标准方程:1.教师引导学生得学生自己写解题过程 2.学生板演 3.学生讨论4.老师出示练习题(课件)学生做练习题(1)掌握椭圆方程a、b之间的关系 (2)掌握运用椭圆定义法、待定系数法求椭圆的标准方程。
高二数学2.2.1椭圆及其标准方程教案1人教新课标A版选修21

P F 2F 1课题:2.2.1椭圆及其标准方程(1) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:◆ 知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.◆ 过程与方法目标通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;已知几何图形建立直角坐标系的两个原则,及引入参量22b a c =-的意义,培养学生用对称的美学思维来体现数学的和谐美。
◆ 情感、态度与价值观目标会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.批 注教学重点:理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题。
教学难点:理解椭圆标准方程的推导过程及化简无理方程的常用的方法。
教学用具: 多媒体,三角板 教学方法: 推导,分析教学过程: 一、课前准备(预习教材P 38~ P 40)复习1:过两点(0,1),(2,0)的直线方程 .复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .二、新课导学 ※ 学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ;当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >. 新知2:焦点在x 轴上的椭圆的标准方程 ()222210x y a b a b +=>> 其中222b ac =- 若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 .※ 典型例题例1 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上;⑵4,15a c ==,焦点在y 轴上;⑶10,25a b c +==.变式:方程214x ym+=表示焦点在x 轴上的椭圆,则实数m 的范围 .小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ).彗星太阳A .23B .6C .43D .12练2 .方程219x ym-=表示焦点在y 轴上的椭圆,求实数m 的范围.三、总结提升 ※ 学习小结 1. 椭圆的定义: 2. 椭圆的标准方程:※ 知识拓展1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).A .(0,)+∞B .(0,2)C .(1,)+∞D .(0,1)3.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( ).A .4B .14C .12D .84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程 是 .5.如果点(,)M x y 在运动过程中,总满足关系式2222(3)(3)10x y x y ++++-=,点M 的轨迹是 ,它的方程是 .课后作业1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点()3,26P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =;⑶10,4a c a c+=-=.2. 椭圆2214x yn+=的焦距为2,求n的值.教学后记:。
学案3:2.2.1 椭圆的标准方程
2.2.1 椭圆的标准方程学习目标核心素养1.掌握椭圆的定义,会用椭圆的定义解决实际问题.(重点)2.掌握用定义法和待定系数法求椭圆的标准方程.(重点)3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.(难点)1.通过椭圆的定义、标准方程的学习,培养学生的数学抽象素养.2.借助于标准方程的推导过程,提升学生的逻辑推理、数学运算素养.新知初探1.椭圆的定义(1)定义:平面内与两个定点F1,F2的距离的(大于|F1F2|)的点的轨迹(或集合)叫做椭圆.(2)相关概念:两个定点F1,F2叫做椭圆的,两焦点的距离|F1F2|叫做椭圆的.思考1:椭圆定义中,将“大于|F1F2|”改为“等于|F1F2|”或“小于|F1F2|”的常数,其他条件不变,点的轨迹是什么?2.椭圆的标准方程焦点位置在x轴上在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形焦点坐标(±c,0)(0,±c) a,b,c的关系a2=初试身手1.已知点M 到两个定点A (-1,0)和B (1,0)的距离之和是定值2,则动点M 的轨迹是( ) A 一个椭圆 B .线段ABC .线段AB 的垂直平分线D .直线AB2.以下方程表示椭圆的是( ) A.x 225+y 225=1 B.2x 2-3y 2=2 C.-2x 2-3y 2=-1D.x 2n 2+y 2n 2+2=0 3.以坐标轴为对称轴,两焦点的距离是2,且过点(0,2)的椭圆的标准方程是( ) A.x 25+y 24=1 B.x 23+y 24=1 C.x 25+y 24=1或x 23+y 24=1 D.x 29+y 24=1或x 23+y 24=1 合作探究类型1 求椭圆的标准方程例1 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0); (2)焦点在y 轴上,且经过两个点(0,2)和(1,0); (3)经过点A (3,-2)和点B (-23,1). 规律方法确定椭圆方程的“定位”与“定量”提醒:若椭圆的焦点位置不确定,需要分焦点在x 轴上和在y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 跟踪训练1.求适合下列条件的椭圆的标准方程: (1)焦点分别为(0,-2),(0,2),经过点(4,32); (2)经过两点(2,-2),⎝⎛⎭⎫-1,142.类型2 椭圆的定义及其应用 [探究问题]1.如何用集合语言描述椭圆的定义?2.如何判断椭圆的焦点位置?3.椭圆标准方程中,a ,b ,c 三个量的关系是什么?例2 如图所示,已知椭圆的方程为x 24+y 23=1,若点P 为椭圆上的点,且∠PF 1F 2=120°,求△PF 1F 2的面积.母题探究(改变问法)在例题题设条件不变的情况下,求点P的坐标.类型3 与椭圆有关的轨迹问题例3如图,圆C:(x+1)2+y2=25及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于M,求点M的轨迹方程.规律方法在求动点的轨迹方程时,要对动点仔细分析,当发现动点到两定点的距离之和为定值且大于两定点之间的距离时,由椭圆的定义知其轨迹是椭圆,这时可根据定值及两定点的坐标分别求出a,c,即可写出其方程,这种求轨迹方程的方法叫定义法.跟踪训练2.已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,求动圆圆心的轨迹方程.规律方法椭圆上一点P 与椭圆的两焦点F 1、F 2构成的△F 1PF 2称为焦点三角形,解关于椭圆中的焦点三角形问题时要充分利用椭圆的定义、三角形中的正弦定理、余弦定理等知识.对于求焦点三角形的面积,若已知∠F 1PF 2,可利用S =12ab sin C 把|PF 1|·|PF 2|看成一个整体,利用定义|PF 1|+|PF 2|=2a 及余弦定理求出|PF 1|·|PF 2|,这样可以减少运算量. 当堂达标 1.思考辨析(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆. ( ) (2)椭圆x 216+y 225=1的焦点坐标是(±3,0). ( )(3)y 2a 2+x 2b2=1(a ≠b )表示焦点在y 轴上的椭圆. ( )2.已知椭圆x 225+y 216=1上一点P 到椭圆的一个焦点的距离为3,则到另一个焦点的距离为( )A .1B .5C .2D .73.椭圆x 225+y 29=1的两个焦点为F 1,F 2,过F 2的直线交椭圆于A ,B 两点,则△ABF 1的周长为( )A .10B .20C .40D .504.设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆C 上的点A ⎝⎛⎭⎫1,32到F 1,F 2两点的距离之和为4,则椭圆C 的方程是________.参考答案新知初探 1.(1)和等于常数 (2)焦点 焦距思考1:[提示] 2a 与|F 1F 2|的大小关系所确定的点的轨迹如下表:思考2:[提示] a ,b 的值及焦点所在的位置. 初试身手 1.【答案】B【解析】定值2等于|AB |,故点M 只能在线段AB 上. 2.【答案】C【解析】A 中方程为圆的方程,B ,D 中方程不是椭圆方程. 3.【答案】C【解析】若椭圆的焦点在x 轴上,则c =1,b =2,得a 2=5,此时椭圆方程是x 25+y 24=1;若焦点在y 轴上,则a =2,c =1,则b 2=3,此时椭圆方程是x 23+y 24=1.] 合作探究类型1 求椭圆的标准方程例1 解:(1)由于椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).∵2a =(5+4)2+(5-4)2=10,∴a =5. 又c =4,∴b 2=a 2-c 2=25-16=9. 故所求椭圆的标准方程为x 225+y 29=1.(2)由于椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).由于椭圆经过点(0,2)和(1,0),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,⇒⎩⎪⎨⎪⎧a 2=4,b 2=1. 故所求椭圆的标准方程为y 24+x 2=1.(3)法一:①当焦点在x 轴上时,a b依题意有⎩⎪⎨⎪⎧ (3)2a 2+(-2)2b2=1,(-23)2a2+1b2=1,解得⎩⎪⎨⎪⎧a 2=15,b 2=5.故所求椭圆的标准方程为x 215+y 25=1.②当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧(-2)2a 2+(3)2b2=1,1a 2+(-23)2b2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=15.因为a >b >0,所以无解.综上,所求椭圆的标准方程为x 215+y 25=1.法二:设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),依题意有⎩⎪⎨⎪⎧3m +4n =1,12m +n =1,解得⎩⎨⎧m =115,n =15.所以所求椭圆的标准方程为x 215+y 25=1.跟踪训练1.解:(1)法一:因为椭圆的焦点在y 轴上, 所以可设它的标准方程为y 2a 2+x 2b2=1(a >b >0).由椭圆的定义知2a =(4-0)2+(32+2)2+(4-0)2+(32-2)2=12,所以a =6. 又c =2,所以b =a 2-c 2=4 2. 所以椭圆的标准方程为y 236+x 232=1.法二:因为椭圆的焦点在y 轴上,所以可设其标准方程为y 2a 2+x 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧18a 2+16b 2=1,a 2=b 2+4,解得⎩⎪⎨⎪⎧a 2=36,b 2=32.所以椭圆的标准方程为y 236+x 232=1.(2)法一:若椭圆的焦点在x 轴上,a b由已知条件得⎩⎨⎧4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎨⎧1a 2=18,1b 2=14.所以所求椭圆的标准方程为x 28+y 24=1.同理可得:焦点在y 轴上的椭圆不存在. 综上,所求椭圆的标准方程为x 28+y 24=1.法二:设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 将两点(2,-2),⎝⎛⎭⎫-1,142代入, 得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1,解得⎩⎨⎧A =18,B =14,所以所求椭圆的标准方程为x 28+y 24=1.类型2 椭圆的定义及其应用 [探究问题]1.[提示] P ={M ||MF 1|+|MF 2|=2a,2a >|F 1F 2|}.2.[提示] 判断椭圆焦点在哪个轴上就要判断椭圆标准方程中x 2项和y 2项的分母哪个更大一些,即“谁大在谁上”.3.[提示] 椭圆的标准方程中,a 表示椭圆上的点M 到两焦点间距离的和的一半,可借助图形帮助记忆.a ,b ,c (都是正数)恰是构成一个直角三角形的三条边,a 是斜边,所以a >b ,a >c ,且a 2=b 2+c 2(如图所示).例2 解:由已知a =2,b =3, 得c =a 2-b 2=4-3=1,|F 1F 2|=2c =2, 在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|·cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|. ①由椭圆定义,得|PF 1|+|PF 2|=4,即|PF 2|=4-|PF 1|. ②②代入①解得|PF 1|=65.所以S △PF 1F 2=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335,即△PF 1F 2的面积是35 3.母题探究解:设P 点坐标为(x 0,y 0).由本例解答可知S △PF 1F 2=12|F 1F 2|·|y 0|=353,解得|y 0|=353,即y 0=±353, 将y 0=±353代入x 24+y 23=1得x =±85,所以点P 的坐标为⎝⎛⎭⎫±85,±353. 类型3 与椭圆有关的轨迹问题例3 解:由垂直平分线性质可知|MQ |=|MA |, |CM |+|MA |=|CM |+|MQ |=|CQ |. ∴|CM |+|MA |=5.∴M 点的轨迹为椭圆,其中2a =5, 焦点为C (-1,0),A (1,0), ∴a =52,c =1,∴b 2=a 2-c 2=254-1=214.∴所求轨迹方程为:x 2254+y 2214=1.跟踪训练2.解:如图所示,设动圆圆心为M (x ,y ),半径为r ,由题意动圆M 内切于圆C 1, ∴|MC 1|=13-r . 圆M 外切于圆C 2,∴|MC 2|=3+r .∴|MC 1|+|MC 2|=16>|C 1C 2|=8,∴动圆圆心M 的轨迹是以C 1、C 2为焦点的椭圆, 且2a =16,2c =8, b 2=a 2-c 2=64-16=48, 故所求轨迹方程为x 264+y 248=1.当堂达标1.[提示] (1)× 需2a >|F 1F 2|. (2)× (0,±3).(3)× a >b >0时表示焦点在y 轴上的椭圆. 2.【答案】D【解析】由|PF 1|+|PF 2|=10可知到另一焦点的距离为7. 3.【答案】B【解析】由椭圆的定义得|AF 1|+|AF 2|=2a =10,|BF 1|+|BF 2|=2a =10,所以△ABF 1的周长为|AF 1|+|BF 1|+|AB |=20,故选B. 4.【答案】x 24+y 23=1【解析】由|AF 1|+|AF 2|=2a =4得a =2,∴原方程化为x 24+y 2b 2=1,将A ⎝⎛⎭⎫1,32代入方程得b 2=3,∴椭圆方程为x 24+y 23=1.。
2.2.1 椭圆及其标准方程
课题:2.2.1椭圆及其标准方程重难点突破预设方案一、联系生活实际,突破重难点。
《数学课程标准》指出:“教师应该充分利用学生已有的生活经验,指导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值”。
数学起源于生活,又作用于生活,运用所学数学知识,解决生活中的许多实际问题,能使学生进一步对数学产生亲切感,增强学生对数学知识的应用意识,从而培养学生的自主创新能力。
在《椭圆及其标准方程》一课中,1、取一条定长的细绳,把它的两端都固定在图板的同一处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个什么图形?2.如果把细绳两端拉开一段距离,分别固定在图板上的两点F1、F2处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?3.在问题2中,移动的笔尖始终满足怎样的几何条件?教师轻而易举地突破了重点。
二、采到“自主探究”的学习方式,突破重难点。
“自主探究”地学习更有利于知识的掌握和能力的培养。
在教学中当学生已经理解椭圆定义的情况下解决问题情境中提出的实际问题时,教师趁热打铁地让学生自主探究:1.到两定点F1(-2,0)和F2(2,0)的距离之和为4的点的轨迹是() A.椭圆B.线段C.圆D.以上都不对2.若焦点在x轴上的椭圆的方程是x26+y2m2=1,则该椭圆焦距的取值范围是()A.(0,6) B.(0,6) C.(0,26) D.(0, 12)3.若椭圆x225+y29=1上一点P到一个焦点的距离为5,则P到另一个焦点的距离为()A.5B.6 C.4D.1学生掌握了知识,并体会到了自己的自主作用,同时教学的重难点也迎刃而解。
三、通过有效的学生活动进一步巩固知识,使重难点化于无形。
当学生已经对知识有一定的掌握后。
若方程x25-k+y2k-3=1表示椭圆,求k的取值范围.(易错辨析:忽略椭圆标准方程的隐含条件致误)教师安排让学生用使本节的知识在学生的脑袋里相当牢固。
椭圆及其标准方程(优秀获奖教案)-椭圆及其标准方程教案
2.2.1椭圆及其标准方程(1)教学目标:重点: 椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程.难点:椭圆标准方程的建立和推导.知识点:椭圆定义及标准方程.能力点:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力懂得欣赏数学的“简洁美”,并渗透数形结合和等价转化的数学思想方法.教育点:通过椭圆定义的归纳和标准方程的推导,培养学生发现规律、认识规律并利用规律解决实际问题的能力,培养学生探索数学的兴趣,激发学生的学习热情.自主探究点:1.通过教学情境中具体的学习活动(如动手实验、自主探究、合作交流等),引导学生发现并提出数学问题,并在作出合理推导的基础上,形成椭圆的定义;2.探讨椭圆标准方程的最简形式,并通过对解决问题过程的反思,获得求曲线方程的一般方法.考试点:椭圆定义及标准方程,利用其解决有关的椭圆问题易错易混点:在用椭圆标准方程时,学生一般在“焦点的位置”上容易出错.拓展点:如何利用坐标法探讨其它圆锥曲线的方程.教具准备多媒体课件和三角板课堂模式学案导学一、引入新课【创设情景】材料1:对椭圆的感性认识.通过演示课前准备的生活中有关椭圆的实物和图片,让学生从感性上认识椭圆.材料2:20XX 年6月16日下午18时,“神州九号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州九号”飞船的运行轨道是什么?多媒体展示“神州九号”运行轨道图片.【设计意图】利用多媒体,展示学生常见的椭圆形状的物品,让学生从感性上认识椭圆.通过“神州九号”的轨道录像,让学生感受现实,激发学生的学习兴趣,培养爱国思想. 思考1:自然界处处存在着椭圆,我们如何用自己的双手画出椭圆呢?思考2:在圆的学习中我们知道,平面内到一定点的距离为定长的点的轨迹是圆.那么,到两定点距离之和等于常数的点的轨迹又是什么呢?【设计意图】对于生活中、数学中的圆,学生已经有一定的认识和研究,但对椭圆,学生只停留在直观感受,基于它俩的关系,引导学生用上一章所学,来研究椭圆. 学生分组做试验,教师同时做好指导:按照课本上介绍的方法,学生用一块纸板;两个图钉,一根无弹性的细绳试画椭圆,让学生自己动手画,同桌相互切磋,探讨研究.(提醒学生:作图过程中注意观察椭圆的几何特征,即椭圆上的点要满足怎样的几何条件)思考:点M 运动时,12,F F 移动了吗?点M 按照什么条件运动形成的轨迹是椭圆?1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程, 师生共同总结规律:当1212||||||MF MF F F +> 时,M 点的轨迹为椭圆;当1212||||||MF MF F F +=时,M 点的轨迹为线段1F 2F ; 当1212||||||MF MF F F +<时,M 点的轨迹不存在. 【设计意图】在本环节中并不是急于向学生交待椭圆的定义,而是设计一个实验,一是为了给学生一个动手实验的机会,让学生体会椭圆上点的运动规律;二是通过实践思考,为进一步上升到理论做准备.二、探究新知 (一)归纳定义思考:焦点为21,F F 的椭圆上任一点M ,有什么性质?设椭圆上任一点为M ,则有)22(22121F F c a a MF MF =>=+【设计意图】通过学生观察、思考、讨论,概括出椭圆的定义,让学生全程参与概念的探究过程,加深理解,提高概括能力和数学语言的表达能力.(二)椭圆标准方程的推导复习提问求曲线方程的一般步骤:(教师提问,针对对于学生回答情况做一总结) (1)建系、设点;(2)写出点的集合;(3)列式;(4)化简;(5)证明. 思考:如何建系,才能使求出的方程最简呢?由学生自主提出建立坐标系的不同方法,教师根据学生提出的“建系”方式,把学生分成若干组,分别按不同的建系的方法推导方程,进行比较。
宿迁市沭阳县潼阳中学高中数学教案:《2.2.1 椭圆的标准方程(1)》
教学案科目: 数学 主备人: 备课日期: 课 题第 1 课时计划上课日期:教学目标知识与技能1.进一步理解椭圆的定义;理解椭圆标准方程的推导.2.掌握椭圆的标准方程,会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标,能用标准方程判定是否是椭圆过程与方法引导启发、自主探究情感态度 与价值观教学重难点椭圆的标准方程及推导教学流程\内容\板书关键点拨 加工润色一、问题情境情景一 复习上节课内容,重点是椭圆的定义.上节课我们已经学习了椭圆的定义,请大家回忆一下我们是如何定义椭圆的?平面内到两个定点12F F ,的距离的和等于常数(大于12F F )的点的轨迹叫做椭圆,两个定点12F F ,叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.情景二 展示图片一,思索:油罐的横截面是不是椭圆?情景三 展示图片二,思索:把一个圆压扁了,像一个椭圆,它究竟是不是椭圆? 情景四 展示图片三,思索:中国第一颗人造地球卫星“东方红一号”的运动轨迹是椭圆,这是如何精确定位的呢?师:椭圆是一个优美的图形,其中蕴涵了许多性质,那如何研究这些性质呢? 生:(思考)师:在解析几何中,我们学过的图形有哪些? 生:直线和圆.师:不错.那以圆为例,在解析几何中我们通过什么研究圆的性质呢? 生:圆的方程.122F F=2()xc+-222(a y a ac+=a c>>,则:22b x师:由直线方程的截距式是否可以得到启发?∴椭圆方程为:即为椭圆在x,师:怎样推导焦点在轴上的椭圆的标准方程?(用小黑板做演示)生:交换师:(板书两种方程和图形)师:椭圆标准方程的特点是什么?生:x,轴分别为椭圆的两个对称轴,焦点在坐标轴上,焦点的中心是原点.!未指错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《2.2.1 椭圆的标准方程》 教学案
教学目标
1.进一步理解椭圆的定义;理解椭圆标准方程的推导.
2.掌握椭圆的标准方程,会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标,能用标准方程判定是否是椭圆
教学重难点
椭圆的标准方程及推导
教学流程
一、问题情境
情景一 复习上节课内容,重点是椭圆的定义.上节课我们已经学习了椭圆的定义,请大家回忆一下我们是如何定义椭圆的?平面内到两个定点12F F ,的距离的和等于常数(大于12F F )的点的轨迹叫做椭圆,两个定点12F F ,叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.
情景二 展示图片一,思索:油罐的横截面是不是椭圆?
情景三 展示图片二,思索:把一个圆压扁了,像一个椭圆,它究竟是不是椭圆? 情景四 展示图片三,思索:中国第一颗人造地球卫星“东方红一号”的运动轨迹是椭圆,这是如何精确定位的呢?
师:椭圆是一个优美的图形,其中蕴涵了许多性质,那如何研究这些性质呢? 生:(思考)
师:在解析几何中,我们学过的图形有哪些?
生:直线和圆.
师:不错.那以圆为例,在解析几何中我们通过什么研究圆的性质呢? 生:圆的方程.
师:大家还记得圆的方程是怎样建立的吗?(个别提问)
生:(回答问题,教师加以引导)得出圆的标准方程的基本步骤:建坐标系、设点、列等式、代坐标、化简.
师:那么大家觉得这种方法是否适用于椭圆呢?
生:可以.
师:那么请大家来研究一下椭圆的方程是什么?
生:(研究探索椭圆的方程,教师适时加以引导)
二、建构数学
(1)如何建立适当的坐标系?原则:尽可能使方程的形式简单、运算简单;
(一般利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴.)[ ①建立适当的直角坐标系:
以直线12F F 为x 轴,线段12F F 的垂直平分线为y 轴,建立如图所示坐标系.
②设点:设()P x y ,是椭圆上的任意一点,122F F c = ,1(0)F c
∴-,,1(0)F c ,;
③根据条件112P F P F a +=2a =(1) ④化简:(移项,两边平方)22222222()()
ac x a y a ac -+=-, 师:能否美化结论的形象?
0a c >> ,220a c ∴->,令222a c b
-=, 则:222222b x a x a b
+=. 师:由直线方程的截距式是否可以得到启发?
∴椭圆方程为:22221x y a b
+=.(a ,b 即为椭圆在x ,y 轴上的截距) 师:怎样推导焦点在y 轴上的椭圆的标准方程?(用小黑板做演示)
生:交换x ,y 就可以得到.
师:(板书两种方程和图形)
师:椭圆标准方程的特点是什么?
生:x ,y 轴分别为椭圆的两个对称轴,焦点在坐标轴上,焦点的中心是原点. 师:焦点位于x ,y 轴上时的焦点坐标分别是什么?
生:(回答,教师板书)
师:a b c ,,之间存在一个什么关系?
生:222a b c
=+ 师:如何判断椭圆的焦点的位置?
生:在分母较大的对应轴上.
三、数学运用
例1 已知一个运油车上的贮油罐横截面的外轮廓线是一个椭圆,它的焦距为2.4 m ,外轮廓线上的点到两个焦点的距离和为3 m ,求这个椭圆的标准方程.
例2 将圆422=+y x 上的点的横坐标保持不变,纵坐标变为原来的一半,求所得到的曲线的方程,并说明它是什么曲线?
四、回顾反思。