采气工艺技术
采气工艺技术

第九章采气工艺技术天然气是指在不同地质条件下生成、运移,并以一定压力储集在地下岩层中的气体。
有的与原油伴生称为伴生气,有的单独存在称为非伴生气。
非伴生的天然气藏大约占60%。
天然气的主要成分是气态烃类,还含有少量非烃类气体。
通式C n H2n+2是目前已发现的大部分天然气的主要成分,其中以甲烷(CH4)为主。
在四川已发现的气藏中,甲烷含量均在80%以上。
在常压下,20℃时,甲烷、乙烷、丙烷、丁烷为气态,戊烷以上为液态,直至固态。
在天然气中,庚烷(C7H16)以上的烷烃含量极少。
除烃类外,天然气中还含有非烃类气体,如二氧化碳、氮气、硫化氢、氦气和氩气。
一般非烃类气体含量很低,但也有的天然气非烃类气体含量很高,在我国已发现一些以二氧化碳为主的天然气藏。
天然气在世界上仅次于石油和煤,为第三大能源。
进入90年代以来,随着剩余石油资源日趋减少和由于使用石油能源造成的环境污染问题,世界各国越来越重视开发、利用天然气资源,从而使得天然气在能源结构中的地位不断上升。
天然气的主要用途是工业和民用燃料,再就是化工原料。
随着科学技术的发展,天然气产量中用作化工原料的比例正在增大我国已发现的天然气藏的地质特点和储层特性给天然气开发、开采带来很大困难。
目前已探明的以中小型气田居多(南海西部、塔里木、陕甘宁的一些大气田的发现使这一情况正在改变),这一特点决定了我国天然气开发的分散性和复杂性。
我国已探明气田的埋藏深度大多在3000~6000m之间。
气层偏老,埋藏又深,四川二叠系以下地层天然气探明储量占总储量的70.04%,深层气藏开发占主导地位,其开发、开采的难度必然增大。
我国天然气储层大多属于中、低渗透储层,而且低渗、特低渗储层占了相当的比例,这些储层非均质明显,孔隙度低、连通性差,水敏、酸敏性突出,水锁贾敏效应严重,自然产能低,要达到经济而有效地开发,必须进行气层改造。
水驱气田已投入开发的气田中占相当的比重,这一问题四川气田尤为突出,据已投入的73个气田的不完全统计,水驱气田占总数的85%,出水井数在44%以上。
排水采气常见的工艺有哪些

排水采气常见的工艺有哪些
排水采气是一种将废水中的可燃气体回收利用的工艺,常见的排水采气工艺有:
1. VSEP技术(薄膜分离技术):通过超滤膜对废水进行处理,分离出可燃气体并将其回收利用。
2. ADSorption技术(吸附技术):通过吸附剂吸附排水中的可燃气体,再通过脱附获得纯净的可燃气体。
3. MVR技术(机械蒸发再生技术):通过蒸发装置蒸发废水中的水分,生成水蒸气,并将其中的可燃气体回收利用。
4. CWS技术(压缩水气提取技术):通过压力吸附剂和温度降低,使废水中的可燃气体溶于水中,再通过压力释放将其分离出来。
5. 生物处理技术:利用微生物菌群降解废水中的有机物,产生可燃气体。
6. 催化燃烧技术:将废水中的可燃气体与氧气在催化剂的作用下进行燃烧,产生热能和二氧化碳。
以上是常见的排水采气工艺,每种工艺都有其优点和适用范围,具体选择哪种工艺应根据废水特点和处理要求来决定。
排水采气工艺技术及其发展趋势

国内外排水采气工艺技术及其发展趋势一、国内排水采气技术1、泡沫排水采气工艺泡沫排水采气工艺是将表面活性剂注入井内,与气水混合产生泡沫,减少气水两相垂直管流动的滑脱损失,增加带水量,起到助排的作用。
由于没有人工给垂直管举升补充能量,该工艺用于尚有一定自喷能力的井。
泡沫排水采气机理a.泡沫效应在气层水中添加一定量的起泡剂,就能使油管中气水两相管流流动状态发生显著变化。
气水两相介质在流动过程中高度泡沫化,密度显著降低,从而减少了管流的压力损失和携带积液所需要的气流速度。
b.分散效应气水同产井中,存在液滴分散在气流中的现象,这种分散能力取决于气流对液相的搅动、冲击程度。
搅动愈激烈,分散程度愈高,液滴愈小,就愈易被气流带至地面。
气流对液相的分散作用是一个克服表面张力作功的过程,分散得越小,作的功就越多。
起泡剂的分散效应:起泡剂是一种表面活性剂,可以使液相表面张力大幅度下降,达到同一分散程度所作的功将大大减小。
c.减阻效应减阻的概念起源于“在流体中加少量添加剂,流体可输性增加”。
减阻剂是一些不溶的固体纤维、可溶的长链高分子聚合物及缔合胶体。
减阻剂能不同程度地降低气水混合物管流流动阻力,提高液相的可输性。
d.洗涤效应起泡剂通常也是洗涤剂,它对井筒附近地层孔隙和井壁的清洗,包含着酸化、吸附、润湿、乳化、渗透等作用,特别是大量泡沫的生成,有利于不溶性污垢包裹在泡沫中被带出井口,这将解除堵塞,疏通孔道,改善气井的生产能力。
1.1)起泡剂的组成及消泡原理起泡剂由表面活性剂、稳定剂、防腐剂、缓蚀剂等复配而成。
其主要成分是表面活性剂,一般含量为30%~40%。
表面活性剂是一种线性分子,由两种不同基团组成,一种是亲水基团,与水分子的作用力强,另一种是亲油基团,与水分子不易接近。
当表面活性剂溶于水中后,根据相似相溶原理,亲水基团倾向于留在水中,而亲油基团倾向于分子在液体表面上整齐地取向排列形成吸附层,此时溶液表面张力大幅降低,当有气体进入表面活性剂溶液时,亲水基团定向排列在液膜内,亲油基团则定向排列在液膜内外两面,靠分子作用力形成稳定的泡沫。
排水采气工艺技术

排水采气工艺技术排水采气工艺技术排水采气工艺技术是挖掘有水气藏气井生产潜力,提高气藏采收率的重要措施之一。
自五十年代美国首次将抽油机用于中小水量气井排水以来,到目前国外已开展了优选管柱、机抽、泡排、气举、柱塞举升、电潜泵、射流泵、气体射流泵和螺杆泵等多套成熟的单井排水采气工艺技术。
近年来,在这些应用已较为成熟的工艺技术方面的开展主要是新装备的配套研制。
国外还研究应用一些新的排水采气技术,如同心毛细管技术、天然气连续循环技术、井下气液别离同井回注技术、井下排水采气工艺、带压缩机的排水采气技术。
我国排水采气工艺以四川、西南油气田分公司为代表完善配套了泡排、气举、机抽、优选管柱、电潜泵、射流泵等六套排水采气工艺技术,并在此根底上研究应用了气举/泡排、机抽/喷射复合排水采气工艺。
1.泡沫排水采气工艺技术药剂由单一品种的起泡剂开展到了适合一般气井的8001—8003、含硫气井的84—S,凝析气井800〔b〕发泡剂,以及泡棒、酸棒和滑棒等固体发泡剂。
该工艺排液能力达100m3/d,井深可达3500m左右。
在泡沫排水采气工艺中国外还应用了同心毛细管加药工艺,它是针对低压气井积液、油气井防蜡等实际生产问题而研制出的一种新型工具,通常用316型不锈钢不锈钢制成,盘绕在一个同心毛细管滚筒上。
整套装置包括一个同心毛细管滚筒、一台吊车和一套不压井装置。
在同心毛细管底部装一套井下注入/单向阀组件。
化学发泡剂通过同心毛细管注入后经过单向阀被注入到井底。
这种同心毛细管柱可以在同一口井中重复屡次使用,也可以起出用于别的气井,具有经济、平安和高效的特点,其最大下入深度可达7315m。
2.优选管柱排水采气工艺技术开发了多相垂直管流动的数学模型、求解软件和诺模图,建立了气井井眼连续排液合理管柱,从而优化了设计和生产方式。
适用于井深小于3000m,产水量小于100m3/d,有一定自喷能力的气井。
3.气举排水采气工艺技术在气举排水采气工艺技术方面,主要是在气举优化设计软件和气举井下工具等方面开展最快。
采气井站生产与管理:低压气井开采工艺技术

对于在高压生产时采用井下节流器的新采气工艺技术,在气井开 采后期,必须拆除井下节流器,才能实现降阻增压开采工艺技术。 对于在高压生产时地面节流开采的气井,则采用降阻增压开采工艺 和常温非低压气开采工艺。
降阻增压开采工艺流程
常温非低压气开采工艺
降阻增压开采工艺与非低压气开采工艺比较技术特点
(1)取消了节流降压环节和加热炉; (2)取消了不必要的弯头、回转流程管线, 缩短了管线长度; (3)从井口到计量全过程,通过流程设备 的压力损失减少了; (4)只适用于原气井压力较高,到开采后 期井口压力虽高于用户用气压力或天然气输配管 网系统输气压力。
增压采气流程图
利用压缩机进行增压开采的工艺技 术,不仅可以提高低压气井天然气的输 气压力,还可以进一步降低气井井口压 力直至 1 atm,达到降低气井废弃压力, 增大气井采气量,提高气井最终采收率 的目的。
活塞式压缩机
螺杆式压缩机
压缩机增压采气工艺主要用活 塞式压缩机和螺杆式压缩机增压。
干线增压输气则大都使用离心 式压缩机和活塞式压缩机。
离心式压缩机
高压气井的天然气进入高压用户或输入高压 集输气管网进行长输,低压气井的天然气可就近 输给低压用户或输入低压集输气管网进行输送。
在不需外部供给能源的条件下,维持气井正 常或增加产量生产,提高低压气井生产能力,推 迟气井进入外加设备增压开采的时间。
三、喷射器增压采气工艺技术
1.喷射器的结构及工作原理 由高压、低压、混合三部分组成。 高压部分有高压天然气入口管、高压喷嘴;低
二、高低压分输采气工艺技术
由于同一气田气井开采时间不一致,气井压力下降的速率不同,进入同一管网系统的 气井,可能一部分已成为低压气井,井口压力较低,而另一部分气井井口压力还较高。
采油采气工艺技术研究

采油采气工艺技术研究随着科学技术的飞速发展,工业化进程不断加快,石油产品的需求量也大幅度提高。
采气厂的采气工艺也随着科技的进步不断更新,气田的有效开发对我国能源的多样化提供了保障。
采气过程是一个复杂的生产工艺过程,利用天然气的流动性,将气藏开采到地面上来进一步处理,经过分离处理,将天然气中多余的杂质去除,最后将天然气压缩处理,并输送至用户,满足用户的需求。
本文主要对气田的采气工艺进行研究和选择,满足不同阶段采气工艺的需求,有效解决气田在开发过程中的问题,保障气田的高产稳产,提高气田的采收效率。
标签:天然气;采气工艺;开发;采收效率1.前言近年来,我国油田的天然气的勘探开发并没有重大的突破,现阶段发现的油气田已经全部投入开采工作当中去,储采的比例严重失衡。
不仅如此,已经探明的油气田的地质比较复杂,开发的难度较大,不仅如此,随着开发的进一步深入,油气田的地层压力和产能不断下降,稳定生产的难度也越来越大,因此对于适应不断变化的采气工况的工艺技术的研究是非常有必要的,要不断的适应油气田自身的储藏特点,同时还要保障采气的高产稳产效率,提高油气田的采收效率。
2、国内常见的采气技术2.1涡轮泵排水采气工艺涡轮泵是一种液力涡轮高速驱动的井下泵装置,利用高速水力涡轮代替昂贵的潜油电机来驱动井下离心泵采油,具有可靠性高、调节容易、重量轻、体积小、耐高温和抗腐蚀等优点,这些都是潜油电泵所无法比拟的。
涡轮泵系统的地面部分和井下完井结构与水力射流泵相同,井下涡轮泵由多级涡轮和多级混流泵或离心泵组成,后者类似于潜油电泵。
地面动力液经动力液油管注入井下,驱动涡轮,涡轮带动泵旋转,将井液采到地面。
涡轮泵能承受300℃的高温,可以用于斜井,还能用于含腐蚀介质井、产砂井的开采。
2.2同心毛细管技术同心毛细管是针对低压气井积液、油气井防腐、清除盐垢和清蜡等实际生产问题而研制出的一种新型工具,能够经济有效地解决上述油气井生产问题,降低生产作业费用,提高作业井产量。
采气工艺介绍教材

第一节气藏的分类开采
2、有边、底水(或油)气藏的开采 (1)控水采气 气井在出水前和出水后,为了使气井更好地产气,都存在控制 出水问题。对水的控制是通过控制临界流量和控制临界压差来实现 (2)堵水 对气井的堵水要根据不同的出水类型采取不同的堵水措施。 (3)排水采气 排水采气方式有两种,一是单井中的排水采气,二是在一气藏 中的水活跃区打采水井排水或把水淹井改为排水井,以减缓水向主 力气井的推进速度。
44
第一节气藏的分类开采
(4)黑油处理 部分含有边底黑油的气藏开采要考虑黑油的处理问题,气井出 黑油给天然气处理系统所带来的主要问题是: ①分离器液面难以控制,分离效果不好; ② 黑油与水及乙二醇的亲和性较强,易形成混合物,使乙二 醇再生系统不能正常工作; ③黑油不利于海底管线的输送。 所以对于含有边底水的气藏的开采,海上平台要设置油和污水 的处理系统。
1111
第二节气井管理及海上气井生产管柱
二、海上气田常用生产管柱介绍 1、海上气井生产管柱的基本要求 ①满足开发方案的要求; ②井下必须安装安全控制装置(油管用安全阀、油套环空封 隔器); ③井下工具成熟可靠,结构简单安全; ④对含腐蚀流体的气井,井下工具及油管应选用抗腐蚀性 能的材料; ⑤油管扣型应选用气密性良好的特殊螺纹; ⑥对高温、高压气井尽可能减少橡胶密封件; ⑦对含有H2S,CO2等腐蚀气体的气井,封隔器尽量靠近气层 以保护套管。
1818
第三节 排液采气工艺
表1 四川气田排水采气工艺
的适应性及目前达到的水平
1919
第三节 排液采气工艺
二、优选管柱排水采气 为了提高优选管柱排水采气工艺的成功率和增产效果在实际应 用中要注意以下几个问题: ①优选管柱排水采气工艺的关键在确定气井的产量,使其满足 于连续排液的临界流动条件。在气水产量较大的开采早期,两相流 动的压力摩阻损失是主要矛盾,宜选较大尺寸油管生产,油管处的 对比流速Vr≥1,是采用大尺寸油管的必要条件。 ②精选施工井是这项工艺获得成功的重要因素之一。其选井原 则是:气井的水气比WGR≤40m3 /103m3;气流的对比参数Vr=qr,, 均小于1;产出的气水需就地分离,并有相应的低压输气系统和水 处理系统。 ③在拟定设计方案时,油管下入深度应进行强度校核。含硫化 氢气井需用抗硫油管。
天然气开采及集输工艺技术分析

天然气开采及集输工艺技术分析摘要:天然气的开采以及集输是当下石油资源开采过程中非常重要的一部分工作,要重视这部分工作,通过各种措施力求改进这部分的工作现状,这样才能够推动天然气开采工艺不断完善和发展。
本文对天然气的开采和技术工艺技术方面的工作进行了总结。
关键词:天然气,开采技术,集输工艺1前言天然气开采和油气集输是油气开采的重要工作内容。
其工艺流程相对复杂,易受各种因素影响。
如果控制不当,不仅会对集输效率产生很大影响,而且容易引发各种安全事故。
在天然气工艺流程的生产过程中,生产出的混合气首先通过管道输送至处理站,通过油气处理流程对天然气进行有效分离。
经过相应的除杂处理,达到使用标准。
处理后的天然气将被输送至储罐。
最后,将选择合适的天然气运输工艺,将天然气输送给客户。
天然气从井口到处理厂有多种集输工艺。
拟采用的工艺技术需要从技术、经济等方面综合考虑。
2 天然气开采技术研究在气井中常常存在地下水流入井底的情况,但是当气井的产量不高时,井中的流体的数量相对较多时,容易产生积液,它的存在将会产生回压,限制气井的生产能力,有时甚至会导致气井完全关闭。
所以我们要排水采气,就是排除气井中多余的积液,使气井恢复正常生产能力。
2.1 优选管柱排水采气技术在天然气开采的中后期,气井的产气量必然会不断降低,导致排水能力的下降,而优选管柱排水采气工艺就是在利用管柱的重新调整,提高排水的能力,以便充分利用自身力量完成排水采气的目的。
相对来说,此种技术在实施上较为便捷,使用期长,成本少,不需要额外过多的投资,充分利用自身能力实现排水采气的一种开采技术,2.2 泡沫排水采气技术泡沫排水采气技术适用于弱喷、间喷气井,通过利用利用井内的气体或注入泡沫剂,降低积液表面的张力,使得液体以泡沫的方式快速上升到地表,达到最终排液采气的目的,在这过程中,泡沫助剂的添加比例不可超过总体的30%,总的来说,此种技术带来的经济效益较为明显。
2.3 增压开采技术面对相对分散和地理环境较为复杂的气井,可以采取压缩机增压开采,增压开采又可分为单井增压和集中增压,针对储量较大的低压气井,通常采取前者,用来降低井口的流动压力,实现稳定和谐的生产状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采气工艺技术
采气工艺技术是指利用先进的工艺和设备对地下油气资源进行开发和生产的一系列技术措施。
它包括勘探、开发、生产和维护等环节,是保障天然气资源开发利用的重要环节。
采气工艺技术的主要内容包括地质勘探、钻井、完井、采气、输送和储气等环节。
首先是地质勘探,通过对地质条件的精确测量和分析,确定天然气的矿藏规模和分布状态,为后续开采工作提供重要依据。
其次是钻井,钻井是指使用专门的设备和工艺,在地下钻探井口,以便进一步获取天然气资源。
完井是指在钻井完成后,对井口进行封堵和沉淀处理,以确保天然气不会外泻和污染环境。
采气是核心环节,一般通过管网系统或提气装置将天然气运送到地面进行收集和进一步加工。
输送是将采集到的天然气通过管道或其他输送设备送往对应的使用地点,为人们提供能源。
最后是储气,通过特殊的仓储设备将采集到的天然气进行存储,以备不时之需。
采气工艺技术的发展离不开科技的支持。
随着科技的不断进步,各种新型设备和工艺技术被引入到采气工艺中,不仅提高了采气效率,也减少了资源浪费和环境污染。
例如,近年来,无人机在天然气勘探中被广泛应用,它可以快速精准地获取地质数据,提高勘探效率。
在钻井环节,高效钻井技术和自动化控制系统的应用,使得钻井作业更加安全可靠。
同时,新型的脱硫、除尘和脱水设备,减少了天然气生产过程中的有害气体和固体颗粒物的排放,保护了环境。
另外,随着气田资源的不断减少,开发难度也越来越大。
因此,
采气工艺技术也在不断地创新和完善。
例如,CO2驱油和提
气技术,通过将二氧化碳注入油层,提高油气开采效率;污水处理与回用技术,将废水经过处理再利用,减少水资源的消耗。
这些技术的应用,提高了油气资源的开采效率,延长了气田资源的寿命。
综上所述,采气工艺技术是保障天然气资源开采利用的重要环节,它涵盖了勘探、开发、生产和维护等多个环节。
随着科技的发展,各种新型设备和工艺技术的引入,使得采气工艺技术不断创新和完善,提高了采气效率,减少了资源浪费和环境污染。