排水采气工艺技术

合集下载

排水采气常见的工艺有哪些

排水采气常见的工艺有哪些

排水采气常见的工艺有哪些
排水采气是一种将废水中的可燃气体回收利用的工艺,常见的排水采气工艺有:
1. VSEP技术(薄膜分离技术):通过超滤膜对废水进行处理,分离出可燃气体并将其回收利用。

2. ADSorption技术(吸附技术):通过吸附剂吸附排水中的可燃气体,再通过脱附获得纯净的可燃气体。

3. MVR技术(机械蒸发再生技术):通过蒸发装置蒸发废水中的水分,生成水蒸气,并将其中的可燃气体回收利用。

4. CWS技术(压缩水气提取技术):通过压力吸附剂和温度降低,使废水中的可燃气体溶于水中,再通过压力释放将其分离出来。

5. 生物处理技术:利用微生物菌群降解废水中的有机物,产生可燃气体。

6. 催化燃烧技术:将废水中的可燃气体与氧气在催化剂的作用下进行燃烧,产生热能和二氧化碳。

以上是常见的排水采气工艺,每种工艺都有其优点和适用范围,具体选择哪种工艺应根据废水特点和处理要求来决定。

排水采气工艺技术

排水采气工艺技术

排水采气工艺技术嘿,咱今儿来聊聊排水采气工艺技术这档子事儿啊!你说这气啊,就跟那调皮的小孩子似的,有时候就藏在那些角落里不出来,这可咋办呢?这就得靠排水采气工艺技术啦!你想想看,气藏在地下,就像宝贝藏在一个大箱子里,而水呢,就像是挡在宝贝前面的障碍物。

排水采气不就像是把这些障碍物挪开,好让我们拿到宝贝嘛!这排水采气啊,方法可多了去了。

比如说有气举排水采气,就好像给气加了一股劲儿,“嘿”地一下就把气给举上来了。

还有电动潜油泵排水采气,那家伙,就跟个大力士似的,“嗡嗡”地把水给抽走,让气能顺顺利利地出来。

咱再说说泡排法,这就像是给气弄了个泡泡浴,让气在泡泡的带动下欢快地往上跑。

你说有意思不?这每种方法都有它的特点和适用情况,就跟咱人一样,各有各的本事。

你可别小瞧了这排水采气工艺技术,它可是关系到咱们能不能顺利用上气呢!要是没有它,那气不就被水困住出不来啦?那咱们做饭洗澡取暖可咋办呀?那不成,咱得把这技术好好研究研究,让气乖乖地为我们服务。

你说这气藏在地下那么深的地方,还得靠这些巧妙的技术才能弄出来,是不是很神奇?就好像变魔术一样,把看不见摸不着的气给变出来了。

而且啊,这技术还在不断发展进步呢,以后肯定会有更厉害的方法出现。

那我们平时生活中可得多关注关注这些技术,多了解了解,说不定哪天咱自己也能想出个好点子来改进一下呢!这排水采气工艺技术啊,真的是一门大学问,值得我们好好去琢磨琢磨。

反正我是觉得挺有意思的,你呢?难道不觉得这是个很神奇很有趣的事儿吗?总之啊,排水采气工艺技术可太重要啦!它就像一把钥匙,能打开气的宝库,让我们的生活变得更加便利和美好。

我们可不能小瞧了它,要好好研究它,让它为我们发挥更大的作用!。

排水采气工艺技术及其发展趋势

排水采气工艺技术及其发展趋势

国内外排水采气工艺技术及其发展趋势一、国内排水采气技术1、泡沫排水采气工艺泡沫排水采气工艺是将表面活性剂注入井内,与气水混合产生泡沫,减少气水两相垂直管流动的滑脱损失,增加带水量,起到助排的作用。

由于没有人工给垂直管举升补充能量,该工艺用于尚有一定自喷能力的井。

泡沫排水采气机理a.泡沫效应在气层水中添加一定量的起泡剂,就能使油管中气水两相管流流动状态发生显著变化。

气水两相介质在流动过程中高度泡沫化,密度显著降低,从而减少了管流的压力损失和携带积液所需要的气流速度。

b.分散效应气水同产井中,存在液滴分散在气流中的现象,这种分散能力取决于气流对液相的搅动、冲击程度。

搅动愈激烈,分散程度愈高,液滴愈小,就愈易被气流带至地面。

气流对液相的分散作用是一个克服表面张力作功的过程,分散得越小,作的功就越多。

起泡剂的分散效应:起泡剂是一种表面活性剂,可以使液相表面张力大幅度下降,达到同一分散程度所作的功将大大减小。

c.减阻效应减阻的概念起源于“在流体中加少量添加剂,流体可输性增加”。

减阻剂是一些不溶的固体纤维、可溶的长链高分子聚合物及缔合胶体。

减阻剂能不同程度地降低气水混合物管流流动阻力,提高液相的可输性。

d.洗涤效应起泡剂通常也是洗涤剂,它对井筒附近地层孔隙和井壁的清洗,包含着酸化、吸附、润湿、乳化、渗透等作用,特别是大量泡沫的生成,有利于不溶性污垢包裹在泡沫中被带出井口,这将解除堵塞,疏通孔道,改善气井的生产能力。

1.1)起泡剂的组成及消泡原理起泡剂由表面活性剂、稳定剂、防腐剂、缓蚀剂等复配而成。

其主要成分是表面活性剂,一般含量为30%~40%。

表面活性剂是一种线性分子,由两种不同基团组成,一种是亲水基团,与水分子的作用力强,另一种是亲油基团,与水分子不易接近。

当表面活性剂溶于水中后,根据相似相溶原理,亲水基团倾向于留在水中,而亲油基团倾向于分子在液体表面上整齐地取向排列形成吸附层,此时溶液表面张力大幅降低,当有气体进入表面活性剂溶液时,亲水基团定向排列在液膜内,亲油基团则定向排列在液膜内外两面,靠分子作用力形成稳定的泡沫。

其他排水采气工艺技术简介

其他排水采气工艺技术简介

保护器:
• 用来补偿电机内润滑油的损失、平衡电机 内外压力、防止井液进入电机,并承受泵的 轴向载荷。
变压器:
• 与普通电力变压器原理相同,将电网电 压(6kv)转变为潜油(水)电机所需电压 及照明和控制等系统电压。
变频控制器: • 用于自动控制电潜泵的启动、停机及 电动机和电缆系统的自动保护。
深井泵: • 由缸套、柱塞、进油阀和出油阀等部件组成; • 柱塞在缸套中作上、下往复运动; • 通过进油阀和出油阀的开启或关闭,把水抽入 泵内并排出到地面。
泵下附件: • 包括筛管、井下气水分离器; • 起除砂和分离水中气体的作用,使泵正常工作。
井口装置: 包括密封盒、出油闸门、出水闸门和出气 闸门等控制设备
送三部分组成。
多级离心泵:
• 由多级叶轮和导轮组成,分数节串联, 相邻两节泵的泵壳用法兰连接,轴用花键 套连接。
气液分离器: • 主要有沉降式和旋转式两种。接在泵的入 口下面,作用是使气体和液体分离。
潜油(水)电动机:
• 细长形悬挂式,定子和转子亦分数节,每节定 子都固定在电动机壳上,转子靠定位卡簧固定在轴 上。电动机内充满专用润滑油。
二、电潜泵排水采气 1.电潜泵的机组组成
电缆有圆形和扁形两种。作用是将地面电能输 送给井下电动机,要求它具有抗腐蚀性能和耐温耐 压性能好,并有较高的机械强度。
二、电潜泵排水采气 2.电潜泵工作原理
二、电潜泵排水采气 2. 电潜泵工作原理 电潜泵供电流程:地面电网→变压器→控制器→接线盒→电缆→电动机。 电潜泵工作流程:气液分离器→多级离心泵→单流阀→泄流阀→油管→井 口→排水管线。
气井开采工艺技术 其他排水采气工艺技术简介
抽油机排水采气简称机抽,就是将游梁式抽油机和有杆 深井泵装置用于油管抽水,套管间的环形空间采气。

七.排水采气工艺

七.排水采气工艺

典 型 的 柱 塞 气 举 装 置
一、柱塞气举装置
•柱塞
•井下管柱(卡定器和油管)
•地面设备(防喷管总成、三通总成、计量仪表和 控制器)
二、柱塞气举过程
关井恢复压力阶段
开井生产阶段
柱塞气举一个循环的压力变化
三、柱塞气举工艺参数设计方法
柱塞气举工艺参数
柱塞运行周期 开井时间和对应开井套压 关井时间和对应关井套压 所需的气液比和日产量 对于需要补充注气的情况,还要包括注气量
时,泡沫高度为泡沫始高的2/3为好。
三、泡沫排水采气工艺设计
选井 1.气井的产量
产量不高的中小型气水井,产水量一般在100m3/d 以下,气水比在160--1500m3/m3
2.油管下入的深度
3.油套管的连通情况 气流速度的控制
当气流速度小于1m/s或大于3m/s时,有利于带水.
气井投药时间 起泡剂最佳注入浓度和注入量 1.最佳注入浓度
d Cd
2
2
g
G

6
d L g g
3
•则
u cr
4 gd L g 3C d g

0 .5
式中:Cd----曳力系数=0.44 d----液滴直径 • d=dmax最安全。表示最大液滴不下落时可连
续排液。
(2) 确定d----韦伯数
(6)界面张力
(7)临界胶束浓度(C.M.C) –胶束是指两亲性分子在水或非水溶液中 趋向于聚集(缔合或相变)。所有性质 在临界胶束浓度以上都存在转折。
(8)稳定性
–稳定性长的比短的起泡剂更易将地层水从
井பைடு நூலகம்带至地面,但稳定时间过长又会给地面

排水采气工艺技术

排水采气工艺技术

排水采气工艺技术排水采气工艺技术排水采气工艺技术是挖掘有水气藏气井生产潜力,提高气藏采收率的重要措施之一。

自五十年代美国首次将抽油机用于中小水量气井排水以来,到目前国外已开展了优选管柱、机抽、泡排、气举、柱塞举升、电潜泵、射流泵、气体射流泵和螺杆泵等多套成熟的单井排水采气工艺技术。

近年来,在这些应用已较为成熟的工艺技术方面的开展主要是新装备的配套研制。

国外还研究应用一些新的排水采气技术,如同心毛细管技术、天然气连续循环技术、井下气液别离同井回注技术、井下排水采气工艺、带压缩机的排水采气技术。

我国排水采气工艺以四川、西南油气田分公司为代表完善配套了泡排、气举、机抽、优选管柱、电潜泵、射流泵等六套排水采气工艺技术,并在此根底上研究应用了气举/泡排、机抽/喷射复合排水采气工艺。

1.泡沫排水采气工艺技术药剂由单一品种的起泡剂开展到了适合一般气井的8001—8003、含硫气井的84—S,凝析气井800〔b〕发泡剂,以及泡棒、酸棒和滑棒等固体发泡剂。

该工艺排液能力达100m3/d,井深可达3500m左右。

在泡沫排水采气工艺中国外还应用了同心毛细管加药工艺,它是针对低压气井积液、油气井防蜡等实际生产问题而研制出的一种新型工具,通常用316型不锈钢不锈钢制成,盘绕在一个同心毛细管滚筒上。

整套装置包括一个同心毛细管滚筒、一台吊车和一套不压井装置。

在同心毛细管底部装一套井下注入/单向阀组件。

化学发泡剂通过同心毛细管注入后经过单向阀被注入到井底。

这种同心毛细管柱可以在同一口井中重复屡次使用,也可以起出用于别的气井,具有经济、平安和高效的特点,其最大下入深度可达7315m。

2.优选管柱排水采气工艺技术开发了多相垂直管流动的数学模型、求解软件和诺模图,建立了气井井眼连续排液合理管柱,从而优化了设计和生产方式。

适用于井深小于3000m,产水量小于100m3/d,有一定自喷能力的气井。

3.气举排水采气工艺技术在气举排水采气工艺技术方面,主要是在气举优化设计软件和气举井下工具等方面开展最快。

凝析气藏排水采气工艺技术

凝析气藏排水采气工艺技术

凝析气藏排水采气工艺技术摘要:凝析气藏是油藏与天然气藏之间重要的油气藏类型,具有压力高、温度低、含气量大等特点。

在选择凝析气藏排水采气技术时时,必须要有一套成熟可靠的工艺技术才能确保其开采效率与效益。

本文针对当前常见天然气藏排水采气技术展开研究。

关键词:凝析气藏;开排水采气;技术措施气田开发的同时,由于储气层平面非均质性和气藏平面产气井产气量非均分布等原因,可能会导致气井过早受到边水的影响、被底水或者外来水淹没。

为了保持天然气储量和采收率的长期稳定发展,必须采取一定的措施来减少水对储层的损害。

气井产出水使流入井渗流阻力及气液相管流总能量损耗明显增加。

因此,当进入井筒的天然气压力低于地层压力时,会发生气体携液流动导致气液两相界面下降,伴随着水侵的影响越来越大,气藏能量衰减,甚至由于井底积液严重,导致停产。

此外,在高含水阶段,由于储层流体性质变化及地层压力下降导致气体吸附能力降低,最终使天然气无法通过井筒产出。

1.凝析气藏的开发技术难点1.1凝析气藏资源储层的构造影响因素凝析气藏资源是低渗透的油气资源之一,从结构上看,以断层和裂缝为主、透镜体和其他因素的作用。

由于其储集层物性差、非均质性强、渗流阻力大,常规试井方法不能准确反映气藏内复杂的流动状态。

地质断裂活动可使地层发生变化,继而引起地层流体性质的变化、压力系统等产生改变,改变气藏储层埋藏条件。

不同类型油气藏由于其成因机理及藏储环境不同,对藏储层改造方式也各不相同。

一些致密砂岩储层,具有某种透镜体,对于气藏资源的分布有一定的影响,由于透镜体造型、分布及规模等方面均有不同,导致气藏开发难度大。

因此对不同类型的低渗透油气藏进行分析评价时,要结合其实际情况选择合理有效的开发方式及参数。

1.2凝析气藏资源的开发难点气井在天然情况下,产能偏低,非均质程度相对较高的储集层由于物性差异导致其产液能力不同,在开采过程中容易出现水窜现象。

由于其非均质性很强,投产以后,气井的主力储层得到很好的动用,采气速度加快,层间矛盾愈加尖锐,不能有效地调动各个储层之间产能;地层水矿化度较低,气层伤害严重。

石油工程技术 井下作业 排水采气工艺--主要技术类型

石油工程技术   井下作业   排水采气工艺--主要技术类型

排水采气工艺--主要技术类型泡沫排水采气(简称泡排)的基本原理,是从井口向井底注入某种能够遇水起泡的表面活性剂(起泡剂)。

井底积水与起泡剂接触以后,借助天然气流的搅动,生成大量低密度含水泡沫,随气流从井底携带到地面,从而达到排出井筒积液的目的。

排水采气是解决“气井积液”的有效方法,也是水驱气田生产中常见的釆气工艺。

目前现场应用的常规排水采气工艺可分为:机械法和物理化学法。

机械法即优选管柱排水采气工艺、气举排水采气工艺、电潜泵排水采气工艺、机抽等排水采气工艺等,物理化学法即泡沫排水采气法及化学堵水等方法。

1排水采气·优选管柱小油管排水采气工艺技术适用于有水气藏的中、后期。

此时井已不能建立“三稳定”的排水采气制度,转入间歇生产,有的气井已濒临水淹停产的危险。

对这样的气井及时调整管柱,改换成较小管径的油管生产,任可以恢复稳定的连续自喷。

1.1优点:1.1.1属自力式气举,能充分利用其藏自身能量,不需人为施加外部能源助喷。

1.1.2变工艺井由间歇生产为较长时期的连续生产,经济效益显著。

1.1.3设计成熟、工艺可靠,成功率高。

1.1.4设备配套简单,施工管理方便,易于推广。

1.2缺点:1.2.1工艺井必须有一定的生产能力,无自喷能力的井必须辅以其他诱喷措施复产或采用不压井修井工艺作业。

1.2.2工艺的排液能力较小,一般在120m3/d左右。

1.2.3对11/2in小油管常受井深影响。

一般在2600m左右。

优选管柱排水采气工艺是在有水气井开采的中后期,重新调整自喷管柱的大小,减少气流的滑脱损失,以充分利用气井自身能量的一种自力式气举排水采气方法。

对排液能力比较好、流速比较高,产水量比较大的天然气井,可适当的放大管径生产,达到提高井口压力,减少阻力损失,增加产气量的目的。

该工艺理论成熟,施工容易,管理方便,工作制度可调,免修期长,投资少,其存在的工艺局限性是:气井排液量不宜过大,下入油管深度受油管强度的限制,因压井后复产启动困难,起下管柱时要求能实现不压井起下作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排水采气工艺技术
故在液体中的气泡总是很快上升至液面,使液体以泡沫的方式被带出,达到排出井内积液的目的。

该工艺适用于弱喷、间喷的产水气井,井底温度≤120℃,抗凝析油的泡排剂要求凝析油量在总液量中的比例不超过30%,其最大排水能力<100 m3/d,最大井深<3500m。

泡排的投入采出比在1:30以上,经济效益十分显著。

3 柱塞气举排水采气技术
柱塞气举是一种用于气井见水初期的排水采气工艺。

它是将柱塞作为气、液之间的机械截面,依靠气井原有的气体压力,以一种循环的方式使柱塞在油管内上、下移动,从而减少液体的回落,消除了气体穿透液体段塞的可能,提高了间歇气举举升效率。

柱塞的具体工作过程是:关井后柱塞在自身重力的作用下沉没到安装在生产管柱内的弹簧承接器顶部,关井期间柱塞下方的能量得以恢复,即油气聚集;开井后,在柱塞上下两段压差作用下,柱塞和其上方的液体被一同向上举升,液体举出井口后,柱塞下方的天然气得以释放,完成一个举升过程;柱塞到达井口或延时结束后,井口自动关闭,柱塞重新回落到弹簧承接器顶部,再重复上述步骤。

如果井筒内结蜡、结晶盐或垢物,则在柱塞上下往复运行过程中将会得到及时清除。

该工艺设备简单,全套设备中只有一个运动件——柱塞,柱塞作为设备中唯一的易损件,可在井口自动捕捉或极易手工捕捉,容易从一口井起出转向另一口井,不需立井架,检查、维修或更换都很方便。

另外,井下所有设备可用钢丝绳起出,不需起油管,作业比较简单,运行费用低。

该工艺适用于弱喷或间喷的小产水量气井,最大排水能力<50m3/d,气液比>700~1000m3/ m3,柱塞可下入深度(卡定器位置)<3000m,一般应用于深度2500m左右,对斜井或弯曲井受限。

柱塞在运行的同时还可消除蜡、水化物及砂等的沉积堵塞问题,而且柱塞每循环举升液量可在很大的范围内进行调整,从而达到了稳定产量和提高举升效率的目的。

4 气举排水采气技术
气举排水采气技术是通过气举阀,从地面将高压天然气注入停喷的井中,利用气体的能量举升井筒中的液体,使井恢复生产能力。

气举可分为连续气举和
间歇气举两种方式。

影响气举方式选择的因素有:井的产量、井底压力、产液指数、举升高度及注气压力等。

对井底压力和产能高的井,通常采用连续气举生产;对井底压力及产能较低的井,则采用间歇气举或活塞气举。

目前现场普遍采用连续气举的方式。

所谓连续气举,是将产层高压气或地面增压气连续地注入气举管内,给来自产层的井液充气,使气、液混相,以降低管柱内液柱的密度,提高举升能力。

当井底压力降至足以形成生产压差时,就造成类似于自喷排水的势头,在井内液柱被卸载后,井可望达到所需的产量指标。

连续气举方式主要有三种:开式气举、半闭式气举和闭式气举。

该工艺适用于水淹井的复产和大产水量井的助喷及气藏连续强排,工艺井不受井斜、井深和硫化氢限制及气液比影响,排水量大,最大排水能力可达到
600m3/d,单井增产效果显著。

可多次重复启动。

设备配套简单,管理方便,投资少,经济效益高。

目前现场最大举升高度可达到4000m。

其缺点是工艺井受注气压力对井底造成的回压影响,不能把气藏采至枯竭;需要高压气井或压缩机作高压气源;套管必须能承受注气高压;高压施工,对装置的安全可靠兴要求高。

5 机抽排水采气技术
机抽排水采气工艺是针对有一定产能,动液面较高,邻近无高压气源或采取气举法已不经济的水淹井,采用井下分离器、深井泵、抽油杆、脱节器、抽油机等配套机械设备,进行排水采气的生产工艺。

目前,井口密封和大气液比井的机抽排水还需进一步深入研究。

该工艺设计、安装和管理较方便,经济成本较低,不受气井采出程度影响,并能把气井采至枯竭。

该工艺适用于水淹井复产、间喷井和开发后期低压气水井的开采,由于受井斜、井深、硫化氢和气液比(泵易造成气锁)影响较大,目前最大泵挂深度3000m,最大排水能力<100 m3/d,最大允许气液比为800 m3/ m3。

由于气水井与油井性质差异较大,尚未完全解决配套问题。

以上各种工艺适合于不同的气藏开发阶段,其中适合于气藏自喷末期,气井具有自喷或间喷能力产水气井的工艺有优选管柱、泡排、柱塞气举排水采气工艺,适合于气井强排水或水淹气井复产的工艺有气举、机抽排水采气工艺。

在选择排水采气工艺时,要遵循以下原则:所选气井必须具有一定的产能,具有一定的可采储量;在工艺类型的选择上,优先选择不用动管柱的排水采气工艺,
然后再选择动管柱的排水采气工艺;优选出的排水采气工艺要能尽快排出气井井底积液,恢复气井产能;所选的排水采气工艺要从长远考虑,工艺的应用期要相对较长,尽量避免气井在短期内再次水淹;排水采气工艺的选择要从经济投入出发,尽量选用投资较低,作业较简单,易于管理的排水采气工艺。

排水采气工艺选择流程:
给定的一口产水气井,究竟选择何种排水采气方法,需要进行不同排水采气方式的比较。

排水采气方法对井的开采条件有一定的要求,如果不注意地质、开采和环境因素的敏感性,就会降低排水采气装置的效率和寿命。

因此,除了井的动态参数外,其他开采条件如产出流体性质、出砂、结垢等也是考虑的重要因素。

此外,设计排水采气装置时,还需要考虑电力供给、高压气源、井场环境等。

而最终考虑因素是经济投入。

排水采气的方法很多,各自存在其自身的优点与局限性。

在生产中要利用其优点,避免其缺点,针对不同的气井条件采用合适的排水采气方法。

组合排水采气工艺可以优势互补,扩大应用范围,是今后排水采气发展的一个方向。

目前的排水采气技术具有广阔的使用空间,潜力巨大,将在含水气田排水采气生产中大有作为。

但是这些工艺还远远不够,不能满足实际工作的需要,随着工艺及技术水平的提高,不断发展新的人工举升采气设备与技术,使得人工举升好、技术逐步向自动化、智能化发展。

气井生
产能力
自喷弱喷
水淹井深气液比连续
气举产液量机抽凝析油含量≥30%连续气举气举+泡排井深新井温度<120℃凝析油含量<30%柱塞气举凝析油
含量≥30%
优选
管柱泡沫排水井口增压泡沫排水>3000m
≤3000m 是否
是否
是否
>3000m ≤3000m ≤30m 3>30m 3是否≥800
<800。

相关文档
最新文档