零件加工的工艺路线
定位销轴零件加工工艺路线

定位销轴零件加工工艺路线目的:熟悉并掌握轴、轴上零件的结构形状及功用,工艺要求和装配关系。
了解轴及轴上零件的定位和固定方法。
熟悉轴承的类型、布置、安装及调整方法,以及润滑和密封方式。
内容:确认设计方案,展开轴的结构设计和滚动轴承女团设计。
绘制轴系结构加装草图,测绘轴和各零件的尺寸。
根据测绘的尺寸按一定比例绘制轴系结构装配图。
第一部分定位销轴零件加工工艺路线介绍一种组合型定位销的设计配制方法是当一物件(1)在另一物件(2)上进行定位联结时,先在一物件上加工出来圆孔,该圆孔可以从融合面方向先行加工,根据圆孔内径按销联结所建议的协调尺寸加工出来外套(3),外套内孔存有一段光孔和一段螺纹孔,光孔部分与内套(4)的外圆直径也按销联结所建议的协调尺寸加工;将内套装进外套中再一起放入一物件的圆孔中,此时若一物件和另一物件加装边线确认不好后,这时可以从内套的内孔中展开内套与另一物件的冲压,焊缝的大小可以根据实际须要确认,顺利完成精确定位;当要拆分时,利用螺纹孔便利地把外套取下。
再次定位时,把外套装入一物件,通过与其内套的协调顺利完成定位;为加装便利,在外套的压入端的外圆及内圆孔加工倒角。
定位销轴机械加工工艺实例轴类零件就是常用的典型零件之一。
按轴类零件结构形式相同,通常可以分成光轴、阶梯轴和异形轴三类;或分成实心轴、空心轴等。
它们在机器中用以车轴齿轮、拎轮等传动零件,以传达转矩或运动。
台阶轴的加工工艺较为典型,反映了轴类零件加工的大部分内容与基本规律。
下面就以定位销轴零件为例,介绍一般台阶轴的加工工艺。
1.零件图样分析机加工中,定位ф13h7的孔,定位订货公差因该为多少?是不是一个公式可以通用型?比如说14g9的孔能无法用公式算是出来?小弟初涉机加工,稀奇古怪这个最佳答案1、可以采用的协调为:φ13(h7/h6),这就是一个优先级别的高精度定位协调2、定位订货的偏差为:φ13h6(0/-0.011)3、关于偏差的具体数值,不需要计算,按国家标准选用即可4、关于公差的选择,详见《机械设计手册》机械工业出版社2021年12月版第一卷第5-224页图a-1图a-1所示为定位销轴零件。
典型零件机械加工工艺过程

典型零件机械加工工艺过程1轴类零件加工分析(1)轴类零件加工的工艺路线1)基本加工路线外圆加工的方法很多,基本加工路线可归纳为四条。
①粗车—半精车—精车对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线。
②粗车—半精车—粗磨—精磨对于黑色金属材料,精度要求高和表面粗糙度值要求较小、零件需要淬硬时,其后续工序只能用磨削而采用的加工路线。
③粗车—半精车—精车—金刚石车对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车。
④粗车—半精—粗磨—精磨—光整加工对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线。
2)典型加工工艺路线轴类零件的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法。
对普通精度的轴类零件加工,其典型的工艺路线如下:毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽、沟槽)—热处理—磨削—终检。
(1)轴类零件的预加工轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺。
校直毛坯在制造、运输和保管过程中,常会发生弯曲变形,为保证加工余量的均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校值,(2)轴类零件加工的定位基准和装夹1)以工件的中心孔定位在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。
中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。
当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面。
2)以外圆和中心孔作为定位基准(一夹一顶)用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。
零件工艺路线的制定

零件工艺路线的制定
§1 粗基准的选择 §2 精基准的选择 §3 工件的定位及装夹 §4 工艺路线的制定
§1 粗基准的选择
在机械制造中加工零件和装配机器所采用的各种基准,总称为工艺基准。 按其功用的不同,可分为定位基准,测量基准及装配基准三种。
以毛坯上未经加工过表面做基准,这种定位基准称为粗基准。粗基准 的选择原则如下:
一、 各表面不需要全部加工时,应以不加工的面做粗基准。
二、 所有表面都要加工的工件,应以加工余量较小的表面作为 粗基准。
三、 尽量选择光洁、平整和幅度大的表面做粗基准。
四、 粗基准只能使用一次,尽量避免重复使用。因粗基准的表面粗糙度 值大,精度又低,不能保证两次装夹的位置相同。
§2 精基准的选择
以已加工表面作为定位基准,称为精基准。精基准选择的原则如下:
(二) 最终热处理
最终热处理包括淬火、渗碳淬火和渗氮处理等。
1.淬火 目的是提高材料的硬度、强度和耐磨性。用于中碳结构钢和工具钢,当工件淬
火后,表面硬度高,除磨削外,一般不能进行切削加工,因此淬火一般安排在半精 加工之后,磨削加工之前。
2.渗碳淬火 低碳钢(15钢、15Cr、20钢、20Cr)经渗碳后,表层碳的质量分数增加到0.85
来找正工件在机床上的位置,然后将工件夹紧。
如上图所示为在车床上加工法兰盘时,用直接找正法进行装夹的情况, 先用划针检查法兰盘的端面1和外圆2,使之分别与主轴旋转中心垂直和同心。 若位置不正,则可用木锤或铜锤敲正,找正之后将法兰盘夹紧。
直接找正装夹的精度完全取决于工人的经验、技术水平及所用的工具, 此外,找正工件所费时间很长,有时甚至比用于加工的时间还多,因此这种 方法一般只适用于单件小批生产中形状简单的零件。
常见汽车级机床用零件机加热处理工艺路线

一、齿轮1.渗碳及碳氮共渗齿轮的工艺流程毛坯成型→预备热处理→切削加工→渗碳(碳、氮共渗)、淬火及回火→(喷丸)→精加工2.感应加热和火焰加热淬火齿轮用钢及制造工艺流程配料→锻造→正火→粗加工→精加工→感应或火焰加热淬火→回火→珩磨或直接使用→调质→3.高频预热和随后的高频淬火工艺流程锻坯→正火→粗车→高频预热→精车(内孔、端面、外圆)滚齿、剃齿→高频淬火→回火→珩齿二、滚动轴承1.套圈工艺流程棒料→锻制→正火→球化退火车削加工→去应力退火→淬火→冷处理→低温回火→粗棒料→钢管退火磨→补加回火→精磨→成品2.滚动体工艺流程(1)冷冲及半热冲钢球钢丝或条钢退火→冷冲或半热冲→低温退火→锉削加工→软磨→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品(2)热冲及模锻钢球棒料→热冲或模锻→球化退火→锉削加工→软磨→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品(3)滚子滚针钢丝或条钢(退火)→冷冲、冷轧或车削→淬火→冷处理→低温回火→粗磨→附加回火→精磨→成品三、弹簧1.板簧的工艺流程切割→弯制主片卷耳→加热→弯曲→余热淬火→回火→喷丸→检查→装配→试验验收2.热卷螺旋弹簧工艺流程下料→锻尖→加热→卷簧及校正→淬火→回火→喷丸→磨端面→试验验收3.冷卷螺旋弹簧工艺流程下料→锻尖→加热→卷簧及校正→去应力回火→淬火→回火→喷丸→磨端面→试验验收四、汽车、拖拉机零件的热处理1.铸铁活塞环的工艺流程(1)单体铸造→机加工→消除应力退火→半精加工→表面处理→精加工→成品(2)简体铸造→机加工→热定型→内外圆加工→表面处理→精加工→成品2.活塞销的工艺流程棒料→粗车外圆→渗碳→钻内孔→淬火、回火→精加工→成品棒料→退火→冷挤压→渗碳→淬火、回火→精加工→成品热轧管→粗车外圆→渗碳→淬火、回火→精加工→成品冷拔管→下料→渗碳→淬火、回火→精加工→成品3.连杆的工艺流程锻造→调质→酸洗→硬度和表面检验→探伤→校正→精压→机加工→成品4.渗碳钢气门挺杆的工艺流程棒料→热镦→机加工成型→渗碳→淬火、回火→精加工→磷化→成品5.合金铸铁气门挺杆的工艺流程合金铸铁整体铸造(间接端部冷激)→机械加工→淬火、回火→精加工→表面处理→成品合金铸铁整体铸造(端部冷激)→机械加工→消除应力退火→精加工→表面处理→成品钢制杆体→堆焊端部(冷激)→回火→精加工→成品钢制杆体→对焊→热处理→精加工→表面处理→成品6.马氏体型耐热钢排气阀的工艺流程马氏体耐热钢棒料→锻造成型→调质→校直→机加工→尾部淬火→抛光→成品7.半马氏体半奥氏体型耐热钢(Gr13Ni7Si2)排气阀的工艺流程棒料→顶锻→精压→热处理→精加工→成品8.奥氏体耐热钢排气阀的工艺流程棒料→顶锻→精压→阀面和尾部堆焊耐热合金→热处理→杆部滚压或软氮化→精加工→成品9.半轴调质的工艺流程合金结构钢棒料→锻造成形→正火或退火→机械加工→调质→校直→精加工→成品10.半轴的表面淬火的工艺流程棒料→锻造成形→预先热处理→校直→机械加工→表面淬火→校直→精加工→成品11.柱塞副和喷油嘴偶件的工艺流程热扎退火棒料→自动机加工成型→热处理→精加工→时效→成品12.拖拉机履带板(1)40SiMn2履带板的热处理热轧成形→下料→机加工→热处理→成品(2)ZGMn13履带板的热处理铸造成型→热处理→成品五、金属切削机床零件的热处理1.机床导轨(1)MM7125平面磨床立柱镶钢导轨锻造→正火→机加工→消除应力退火→机加工→淬火→回火→磨(2)M9025工具曲线磨床镶钢导轨锻造→退火→机加工→淬火→回火→磨(3)S788轴承磨床镶钢导轨机加工→消除应力退火→机加工→渗碳→淬火→回火→磨→时效(4)MZ208轴承磨床镶钢导轨锻造→退火→机加工→消除应力退火→机加工→淬火→冰冷处理→回火→磨→时效2.机床主轴(1)CA6104车窗主轴(45钢)下料→粗加工→正火→机加工→高频淬火→回火→磨(2)T68、T611镗床的镗杆及MGB132磨床的主轴(35CrMoAlA钢)下料→粗车→调质→精车→消除应力处理→粗磨→渗氮→粗磨(3)SGC630精密丝杠车床主轴(12CrNi3A)锻造→正火→机加工→渗碳→正火→校直→消除应力→机加工→头部淬火→颈部淬火→回火→磨→时效(4)X62W万能升降台铣床主轴(球墨铸铁QT60-2)铸造→机加工→淬火→回火(5)M1040无心磨床主轴(球墨铸铁QT60-2)铸造→机加工→正火→机加工3.丝杠(1)7级或7级精度一下的一般丝杠(45钢)下料→正火或调质→校直→消除应力处理→机加工(2)6级或6级以上精密不淬硬丝杠(T10或T12钢)球化退火→机加工→消除应力处理→机加工→时效→精加工(3)中大型精密淬硬丝杠(CrWMn)锻造→球化退火→机加工→消除应力→机加工→消除应力→机加工→淬火、回火→冰冷处理→回火→探伤→机加工→时效→精加工→时效→精加工(4)中小型精密淬硬丝杠(9Mn2V)锻造→球化退火→机加工→消除应力→机加工→淬硬淬火→回火→冰冷处理→回火、探伤→机加工→时效→精加工→时效→精加工(5)滚珠丝杠(GCr15,GCr15SiMn)4.弹簧卡头(1)卧式多轴自动车床夹料卡头(9SiCr)锻造→退火→机加工→淬火→回火→机加工→磨开口→胀大定型(2)卧式多轴自动车床送料卡头(T8A钢)锻造→退火→机加工→淬火→回火→磨(3)仪表机床小型专用卡头(60Si2)退火→机加工→淬火→回火→磨(4)磨阀辨机床专用卡头(65Mn)锻造→正火→高温→回火→机加工→淬火→回火→机加工5.摩擦片(1)X62W万能升降台铣床摩擦片(A3)机加工→渗碳→淬火→回火→机加工→回火(2)DLMO电磁离合器摩擦片(65Mn)冲片→淬火→回火→磨(3)电磁离合器摩擦片(6SiMnV)锻造→退火→切片→淬火→回火→磨6.FW250万能分度头主轴(45)锻造→正火→机加工→淬火→回火→机加工7.万能分度头蜗杆(20Cr)正火→机加工→渗碳→机加工→淬火→回火→机加工8.三爪卡盘卡爪(45)正火→机加工→淬火→回火→高频淬火→回火→法蓝→磨加工9.三爪卡盘丝(45)锻造→正火→机加工→淬火→回火→法蓝→磨六、活塞1.20CrMnMo钢制活塞的热处理锻造→正火→检验→机加工→渗碳→检验→正火→淬火→清洗→回火→检验→喷砂→磨削2.钒钢活塞的热处理下料→锻造→检验→预先淬火→球化退火→检验→机加工→淬火→回火→检验→磨削七、凿岩机钎尾锻造→退火→检验→渗碳→检验→淬火→回火→清洗→检验→磨削。
机械零件结构工艺性分析与工艺路线的拟定

机械零件结构工艺性分析与工艺路线的拟定机械制造是工业生产中的重要方向,而机械零件是机械结构中的组成部分,其质量直接关系到机械产品的使用寿命和性能。
机械零件的制造需要涉及到材料、加工、组装等多个方面,其中结构工艺性分析与工艺路线的拟定是制造过程中的关键环节。
一、机械零件结构工艺性分析机械零件的结构设计应基于产品性能要求和零件本身的加工工艺能力,因此结构工艺性分析是设计和制造过程中的重要环节。
结构工艺性分析需要考虑以下几个方面:1.工艺性分析工艺性分析包括材料性能、加工难易程度、加工方法等因素的分析,对零件的加工难度和生产效率进行评估。
必须考虑每个零件的各个部分,包括设计尺寸和要求,加工难度,工艺可行性,设备的可用性等因素。
2.可靠性分析可靠性分析是对零件在制造过程中是否容易产生质量问题进行评估。
其目的在于找出可能导致零件质量不稳定的因素并加以消除。
3.生产装备和工作环境分析包括零件加工的设备、工作环境、人员技能水平等因素的分析。
二、机械零件工艺路线的拟定一个完整的加工流程应包括以下几个步骤:1.准备工作确定加工顺序、确定加工所使用的原材料、制作加工工装夹具等。
2.机床安装、调整和试运行保证机床和工具的精度和准确性,有利于提高加工质量和生产效率。
3.工艺试样制作进行工序试样制作和取样检测以确认加工参数,保障每个加工工序的质量。
4.批量生产在确定、检查和校验加工参数的基础上,进行批量生产。
在工艺路线的制定过程中,应注意以下几个方面:1.考虑零件的作用,尽量缩短生产周期,提高生产效率,优化生产成本。
2.结合机床的加工能力和机械刀具的切削性能,制定符合实际生产需要的加工路线。
3.严格按照零件要求和质量标准,制定生产计划和加工参数,保证零件的加工精度。
结论机械零件的制造是一个生产过程,需要通过结构工艺性分析和工艺路线的拟定来保障生产质量和效率。
在设计和制造过程中,需要考虑到多个因素,如材料、加工、装备和工作环境等。
零件加工工艺路线的拟订

零件加工工艺路线的拟订工艺路线是指产品或零部件在生产过程中,由毛坯准备到成品包装入库,经过企业各有关部门或工序的先后顺序。
拟订零件的加工工艺路线时,应着重考虑零件经过哪几个加工阶段,采用什么加工方法,热处理工序如何穿插,是采取工序集中还是工序分散等方面的问题,以便拟订最佳方案。
一、加工阶段的划分通常可将机械加工工艺过程划分为四个加工阶段:1. 粗加工阶段。
这一阶段的主要任务是切除各加工表面上的大部分加工余量,主要问题是如何获得高的生产率。
2. 半精加工阶段。
这一阶段是介于粗加工和精加工之间的切削加工过程,主要为工件的重要表面的精加工做准备,如达到必要的加工精度和留一定的精加工余量,同时完成一些次要表面的终加工。
3. 精加工阶段。
这一阶段是使工件的各主要表面达到图样规定的质量要求。
4. 光整加工或超精加工阶段。
这是对要求特别高的工件采取的加工方法。
其主要目的是提高表面尺寸精度、获得较低的表面粗糙度及使表面强化,一般不用以纠正表面几何形状误差和相对位置误差。
二、加工顺序的确定机械加工工艺过程由一个或若干个顺序排列的工序组成,毛坯依次通过这些工序逐步变为机器零件,而每一个工序又可以细分为若干个安装、工位、工步和走刀。
1.工序集中工序集中就是将工件的加工集中在少数几道工序内完成,即在每道工序中,尽可能多加工几个表面。
工序集中到极限程度时,一个工件的所有表面均在一道工序内完成。
工序集中的特点:(1)在一次装夹中可以完成工件多个表面的加工,这样比较容易保证这些表面的相互位置精度,同时也减少了工件的装夹次数和辅助时间,减少了工件在机床间转运工作量,有利于缩短生产周期。
(2)易于采用多刀、多刃、多轴机床、组合机床、数控机床和加工中心等高效工艺装备,从而缩短基本时间。
(3)缩短了工艺路线,减少对机床、夹具和操作工人及车间生产面积的需求,简化生产计划和生产管理工作。
(4)由于采用专用设备和高效工艺装备,使投资增大,设备调整和维修复杂生产准备工作量增大。
机械加工工艺路线

机械加工工艺路线机械加工工艺规程的制定,大体可分为两个步骤。
首先是拟定零件加工的工艺路线,然后再确定每一道工序的工序尺寸、所用设备和工艺装备以及切削规范、工时定额等。
这两个步骤是互相联系的,应进行综合分析。
工艺路线的拟定是制定工艺过程的总体布局,主要任务是选择各个表面的加工方法,确定各个表面的加工顺序,以及整个工艺过程中工序数目的多少等。
拟定工艺路线的一般原则1、先加工基准面零件在加工过程中,作为定位基准的表面应首先加工出来,以便尽快为后续工序的加工提供精基准。
称为“基准先行”。
2、划分加工阶段加工质量要求高的表面,都划分加工阶段,一般可分为粗加工、半精加工和精加工三个阶段。
主要是为了保证加工质量;有利于合理使用设备;便于安排热处理工序;以及便于时发现毛坯缺陷等。
3、先孔后面[1] 对于箱体、支架和连杆等零件应先加工平面后加工孔。
这样就可以以平面定位加工孔,保证平面和孔的位置精度,而且对平面上的孔的加工带来方便。
4、主要表面的光整加工(如研磨、珩磨、精磨等),应放在工艺路线最后阶段进行,以免光整加工的表面,由于工序间的转运和安装而受到损伤。
上述为工序安排的一般情况。
有些具体情况可按下列原则处理。
(1)、为了保证加工精度,粗、精加工最好分开进行。
因为粗加工时,切削量大,工件所受切削力、夹紧力大,发热量多,以及加工表面有较显著的加工硬化现象,工件内部存在着较大的内应力,如果粗、粗加工连续进行,则精加工后的零件精度会因为应力的重新分布而很快丧失。
对于某些加工精度要求高的零件。
在粗加工之后和精加工之前,还应安排低温退火或时效处理工序来消除内应力。
(2)、合理地选用设备。
粗加工主要是切掉大部分加工余量,并不要求有较高的加工精度,所以粗加工应在功率较大、精度不太高的机床上进行,精加工工序则要求用较高精度的机床加工。
粗、精加工分别在不同的机床上加工,既能充分发挥设备能力,又能延长精密机床的使用寿命。
(3)、在机械加工工艺路线中,常安排有热处理工序。
配合件的数控加工工艺路线

配合件的数控加工工艺路线引言在机械加工领域,配合件的数控加工工艺路线是指对配合件进行数控机床加工的一系列步骤和工艺过程。
配合件的加工工艺路线的制定对于提高生产效率和产品质量具有重要意义。
本文将介绍配合件的数控加工工艺路线的基本要素和流程,并提供一些实例进行说明。
配合件数控加工工艺的基本要素零件的材料配合件的加工工艺路线首先需要确定配合件的材料。
在选择材料时,需要考虑到配合件的使用环境、负荷要求、耐磨性等因素,以确定最合适的材料。
零件的CAD设计在加工配合件之前,需要进行CAD设计,绘制出零件的三维模型。
CAD设计可以帮助确定零件的几何形状和尺寸,以及加工工艺的具体要求。
加工工艺的确定根据零件的几何形状和材料特性,确定适合的加工工艺。
加工工艺包括切削工艺、铣削工艺、钻削工艺等。
通过选择合适的工艺,可以提高加工效率和降低成本。
数控编程根据零件的CAD模型,编写数控程序。
数控程序规定了数控机床上刀具的运动轨迹和速度,以实现对零件的精确加工。
编写数控程序需要考虑加工工艺、切削参数等因素。
数控机床的设置将编写好的数控程序加载到数控机床上,并根据零件的尺寸和形状进行机床的设置。
机床的设置包括刀具安装、工件夹紧、坐标系的建立等步骤。
机床的正确设置可以确保零件的加工质量和精度。
加工过程控制与质量检验在加工过程中,需要进行加工过程的控制与质量检验。
控制加工过程的关键是实时监测刀具的状态和加工参数,并及时调整切削条件。
质量检验可以通过测量零件的尺寸、形状等参数,并与设计要求进行比较,以确保加工质量。
表面处理根据零件的使用要求,进行表面处理。
表面处理是提高零件表面光洁度、耐磨性等性能的关键步骤。
常见的表面处理方法包括研磨、抛光、镀层等。
配合件数控加工工艺的流程示例下面以一个简单的配合件为例,介绍配合件数控加工工艺的流程。
1.确定配合件的材料,假设为不锈钢材料。
2.进行配合件的CAD设计,绘制出几何形状和尺寸。
3.根据配合件的几何形状和材料特性,选择合适的加工工艺,如铣削工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零件加工的工艺路线
零件加工的工艺路线一般包括以下步骤:
1. 设计:根据需求和要求,设计出产品的3D模型。
2. 材料选择:根据产品的要求,选择适合的材料。
3. 切割:将材料按照尺寸要求切割成所需的形状。
4. 成型:通过冲压、铸造、锻造等方式给材料加工成所需的形状。
5. 精密加工:采用车削、铣削、钻孔等机械加工方法,将成型的零件进行细致加工。
6. 表面处理:对零件进行磨光、喷漆、电镀等处理,提高表面的光洁度和耐腐蚀性。
7. 装配:将不同加工好的零件按照设计要求进行组装。
8. 检验:对装配好的产品进行检验,确保产品质量满足要求。
9. 包装和出货:对产品进行包装,并将其出货给客户。
需要注意的是,不同的零件加工具体工艺路线可能会有所不同,取决于产品的类型、要求和加工方式等因素。