DCFHDA活性氧检测方法

合集下载

活性氧检测试剂盒 说明书

活性氧检测试剂盒 说明书
北京索莱宝科技有限公司
活性氧检测试剂盒 Reactive oxygen species assay kit
货号:CA1410
规格:100-500T
产品内容:
10 mM DCFH-DA in DMSO 活性氧供体 说明书
0.1 ml 1 ml 1份
20 ºC 保存 20 ºC 保存
产品简介:
活性氧(Reactive oxygen species, ROS) 包括超氧自由基、过氧化氢、及其下游产物过氧化物和羟化
物(O2•−, H2O2, •OH, ONOO−, •NO)等,参与细胞生长增殖、发育分化、衰老和凋亡以及许多生理和病理过
程。采用 2,7-dichlorofluorescin diacetate (DCFH-DA)是迄今常用也是较灵敏的细胞内活性氧检探针。
DCFH-DA 没有荧光,进入细胞后被酯酶水解为 dichlorofluorescin (DCFH)。在活性氧存在时 DCFH 被氧化
3. PBS 洗涤细胞 2 次。 三、荧光检测
采用荧光显微镜、激光共聚焦显微镜图像检测照相,绿色荧光强度代表活性氧水平。也可进行微板荧 光分析仪(multiwell fluorescence plate reader)实时或每 10 分钟分时逐点检测荧光强弱。对于流式细 胞仪可将细胞用胰酶消化 PBS 洗涤后重悬检测。
1. 加入 DCFH-DA 于培养基,推荐初始工作浓度为 10 µM。对不同的细胞和处理,DCFH-DA 工作浓度可 为 100 nM~20 µM,需进行预实验确定合适的浓度。总体稀释倍数应在 1:500~1000 以上以避免 DMSO 对细胞 的影响。以 DMSO 作为溶剂对照。
2. 37 ºC 孵育细胞 30min~至几个小时,通常 30-60min 即可。孵育时间长短与细胞类型、刺激条件、 DCFH-DA 浓度有关。

dcfh-da活性氧检测原理

dcfh-da活性氧检测原理

dcfh-da活性氧检测原理活性氧(Reactive Oxygen Species,ROS)是指一类具有高度活跃的氧原子或氧化剂,主要包括超氧阴离子(O2•-)、氢过氧化物(HO2•)、过氧化氢(H2O2)、单线态氧(1O2)、羟基自由基(•OH)等物质。

在正常生理状态下,适量的活性氧能够参与细胞信号传导、炎症应答、免疫调节等重要生物学过程。

然而,当活性氧的生成和清除失衡时,会导致细胞内的氧化应激,引发细胞内氧化性损伤,从而诱发多种疾病,如心血管疾病、神经系统疾病和肿瘤等。

活性氧的检测技术主要分为直接检测法和间接检测法。

直接检测法主要通过对活性氧的特定物理或化学性质进行测定,如电子顺磁共振(EPR)、荧光探针和化学发光等。

间接检测法则是通过测定活性氧对其他物质的氧化反应来间接评价活性氧的水平,如酶活性测定法和抗氧化剂测定法等。

本文将主要介绍直接检测法中常用的电子顺磁共振法(EPR)和荧光探针法。

一、电子顺磁共振法(EPR):电子顺磁共振法利用电子磁共振技术来直接检测自由基和活性氧。

其原理是利用带有未成对电子的物质(即自由基)对外加磁场的电子自旋产生磁共振现象。

在EPR仪器中,样品通过微波辐射,引发由磁共振演变而形成的微弱信号。

通过测量这些信号的幅度、形状和宽度等参数,可以判断活性氧的种类和数量。

EPR法的优点在于其高灵敏度和高特异性,可以实现对各种活性氧物质的定量分析。

然而,EPR仪器操作相对复杂,且仪器成本较高,因此在实际应用中受到一定的限制。

二、荧光探针法:荧光探针法是一种通过测定荧光探针与活性氧的反应生成的荧光信号来间接检测活性氧水平的方法。

荧光探针是一类能够与活性氧发生反应的化合物,一般可分为特异性探针和非特异性探针。

特异性探针是指能够选择性地与活性氧发生化学反应,生成具有荧光特性的产物。

例如,二氟苯基三氟甲烷(DCFH-DA)作为一种常用的特异性探针,它通过氧自由基致氧化反应生成2',7'-二羟基荧光素(DCF),DCF会发出绿色荧光,并与活性氧的浓度呈正相关。

活性氧(ROS)测定试剂盒说明书

活性氧(ROS)测定试剂盒说明书
3、荧光检测: ①、将上述收集好的细胞沉淀用 PBS 重悬,并用于检测;
②、波长设置:最佳激发波长 500(50015nm),最佳发射波长 525 (53020 nm)。也可按照 FITC 荧光检
测条件检测。 ③、结果以荧光度值表示。
四、细胞样本操作步骤:(可用激光共聚焦显微镜观察,也可用于流式细胞仪、荧光酶标仪、荧光分光度 计测定)
二、试剂组成及保存: 1、0.1ml 10mM DCFH-DA in DMSO,20℃保存。 2、1ml 活性氧供氢体,4-8℃保存。
三、组织样本操作步骤:(可用激光共聚焦显微镜观察,也可用于流式细胞仪、荧光酶标仪、荧光分光度 计测定)
1、单细胞悬液制备: 方法 1、采用单细胞悬液制备仪制备单细胞悬液。 方法 2、酶消化法: 方法 3、机械法(网搓法):
本试剂盒仅用于科研实验
1、直接将探针加入培养液中: ①、直接将 DCFH-DA 探针加入无血清培养基中:一般按照 1 :1000 用无血清培养液稀释 CFH-DA。加入的体积以能充分盖住细胞为宜, 通常对于 6 孔板的一个孔加入稀释好的 DCFH-DA 不少于 1ml。 ②、取一份不加探针,只加入培养基的细胞设为阴性对照管。阳性对照管:取一份已加入探针的细胞,同 时加入活性氧供氢体诱导细胞,推荐该试剂的工作浓度为 20~100µM。 ③、37℃孵育细胞 30min~几小时,通常为 30~60min 即可,孵育时间长短与细胞类型、刺激条件、DCFH-DA 浓度有关。一般阳性对照在刺激细胞 30 分钟左右,即可观察到明显的绿色荧光。 ④、吸去培养液,利用无血清培养液或者 0.01MPBS 反复吹打,肉眼观察瓶底由半透明(细胞单层连接成 片)转为透明,细胞层几乎全部吹打到 PBS 中。 ⑤、将细胞悬液全部收集到 1.5ml 离心管中。用无血清培养液或者 PBS 洗涤 2 次,以充分去除未进入细 胞内的 DCFH-DA。1000rpm/min,5min,吸净上清后加入 PBS 重新悬浮细胞进行测定。

DCFHDA活性氧的检测

DCFHDA活性氧的检测

产品号 BB-4101 BB-4102 BB-4201 BB-4202 BB-4203 BB-4204 BB-4131 BB-4133 BB-4122
产品 细胞周期检测试剂盒 JC-1 线粒体膜电位试剂盒 Caspase 3 活性检测试剂盒 Caspase 8 活性检测试剂盒 Caspase 9 活性检测试剂盒 Caspase 10 活性检测试剂盒 细胞凋亡形态学检测试剂盒 Rhodamine 123 染色试剂盒 AO/EB 双染试剂盒
产品简介: 活性氧(Reactive oxygen species, ROS) 包括超氧自由基、过氧化氢、及其下游产物过氧
化物和羟化物等,参与细胞生长增殖、发育分化、衰老和凋亡以及许多生理和病理过程。 贝博活性氧检测试剂盒是一种利用荧光探针 DCFH-DA 进行活性氧检测的试剂盒。
DCFH-DA 本身没有荧光,可以自由穿过细胞膜,进入细胞内后,可以被细胞内的酯酶水解 生成 DCFH。而 DCFH 不能通透细胞膜,从而使探针很容易被标记到细胞内。在活性氧存 在的条件下,DCFH 被氧化生成荧光物质 DCF,绿色荧光强度与细胞内活性氧水平成正比, 检测 DCF 的荧光就可以知道细胞内活性氧的水平。


-2-
咨询邮箱:bestbio@
电话:021-33921235
本产品仅供科学研究使用!请勿用于临床、诊断、食品、化妆品检测等用途!
产品说明书
检测: 对于原位标记探针的样品可以用激光共聚焦显微镜直接观察,或收集细胞后用荧光分光 光度计、荧光酶标仪或流式细胞仪检测。对于收集细胞后标记探针的样品可以用荧光分光光 度计、荧光酶标仪或流式细胞仪检测,用激光共聚焦显微镜直接观察也可以。 使用 488nm 激发波长,525nm 发射波长,实时或逐时间点检测刺激前后荧光的强弱。DCF 的荧光光谱和 FITC 非常相似,可以用 FITC 的参数设置检测 DCF。

活性氧的检测方法

活性氧的检测方法

活性氧检测试剂盒(Reactive oxygen species assay kit)是一种利用荧光探针DCFH-DA进行活性氧检测的试剂盒。

DCFH-DA本身没有荧光,可以自由穿过细胞膜,进入细胞内后,可以被细胞内的酯酶水解生成DCFH。

而DCFH不能通透细胞膜,从而使探针很容易被装载到细胞内。

细胞内的活性氧可以氧化无荧光的DCFH生成有荧光的DCF。

检测DCF 的荧光就可以知道细胞内活性氧的水平。

本试剂盒提供了活性氧阳性对照试剂Rosup以便于活性氧的检测。

Rosup是一种混合物(compound mixture),浓度为50mg/ml。

一、注意事项1、探针装载后,一定要洗净残余的未进入细胞内的探针,否则会导致背景较高。

2、探针装载完毕并洗净残余探针后,可以进行激发波长的扫描和发射波长的扫描,以确认探针的装载情况是否良好。

3、尽量缩短探针装载后到测定所用的时间(刺激时间除外),以减少各种可能的误差。

4、为了您的安全和健康,请穿实验服并戴一次性手套操作。

二、使用说明1、装载探针对于刺激时间较短(通常为2小时以内)的细胞,先装载探针,后用活性氧阳性对照及自己感兴趣的药物刺激细胞。

对于细胞刺激时间较长(通常为6小时以上)的细胞,先用活性氧阳性对照及自己感兴趣的药物刺激细胞,后装载探针。

原位装载探针:本方法仅适用于贴壁培养细胞。

按照1:1000用无血清培养液稀释DCFH- DA,使终浓度为10微摩尔/升。

去除细胞培养液,加入适当体积稀释好的DCFH-DA。

加入的体积以能充分盖住细胞为宜,通常对于六孔板的一个孔加入稀释好的DCFH-DA的体积为1毫升。

37℃细胞培养箱内孵育20分钟。

用无血清细胞培养液洗涤细胞三次,以充分去除未进入细胞内的DCFH-DA。

通常活性氧阳性对照在刺激细胞20-30分钟后可以显著提高活性氧水平。

收集细胞后装载探针:按照1:1000用无血清培养液稀释DCFH-DA,使终浓度为10微摩尔/升。

活性氧检测试验方案

活性氧检测试验方案

活性氧检测试验方案活性氧检测是一种用于评估物质或生物体中产生的活性氧(ROS)水平的方法。

ROS是一类极具活性的氧化物质,可在正常细胞代谢中产生,并参与多种生理过程。

然而,当ROS的产生超过细胞的抗氧化能力时,就会导致氧化应激,对细胞和组织造成损害,并与一系列疾病的发生和发展相关。

为了测量活性氧的水平,可以使用一系列的试剂和方法。

以下是一个可能的活性氧检测实验方案:实验材料:1.活体组织样本(例如细胞培养物、小鼠肝脏组织等)2.PBS缓冲液3.DCFDA(二氟荧光二乙酸盐)染料溶液4.活性氧产生剂(例如H2O2)5.抗氧化剂(例如维生素C)6.血红素(免疫染色用)实验步骤:1.准备工作:a.将DCFDA溶液按照说明书的要求稀释到适当的浓度。

b.用PBS缓冲液洗涤和预处理样本,去除可能影响实验结果的其他物质。

2.观察基础水平:a.取一小部分样本,不加任何试剂,放入显微镜观察台下。

b.使用适当的增强型荧光显微镜观察样本的荧光强度和分布。

3.活性氧产生实验:a.取适量的样本放入显微镜观察台下。

b.添加一定浓度的活性氧产生剂(例如H2O2),混匀。

c.立即在显微镜观察荧光信号的变化。

d.记录荧光信号的强度和分布。

4.抗氧化剂实验:a.取适量的样本放入显微镜观察台下。

b.添加一定浓度的抗氧化剂(例如维生素C),混匀。

c.立即在显微镜观察荧光信号的变化。

d.记录荧光信号的强度和分布。

5.数据分析:a.使用图像分析软件测量荧光信号的平均强度和荧光染色的面积。

b.对每个样本的数据进行统计分析,如平均值、标准误差等。

c.使用统计学方法(如t检验或方差分析)比较不同处理组之间的差异。

总结:通过以上步骤,可以获得活性氧的水平,评估其在不同条件(如活性氧产生剂和抗氧化剂的存在与否)下的变化。

这个实验方案可以用于研究活性氧在细胞和组织中的作用,以及评估抗氧化剂的功效。

dcfh-da荧光探针分子式

dcfh-da荧光探针分子式

dcfh-da荧光探针分子式全文共四篇示例,供读者参考第一篇示例:DCFH-DA荧光探针是一种常用于细胞活性氧(ROS)检测的荧光探针。

ROS是细胞内的一类活性氧化物质,在细胞内参与了氧化还原反应,同时也是一种细胞内信号分子,与细胞的生理功能和疾病发生密切相关。

DCFH-DA(2',7'-二氯二羟荧光素acethoxymethyl 酯)是一种无色、无味的脂溶性荧光探针,在细胞内可以被酯酶水解释放出荧光素荧光团。

DCFH-DA与ROS的检测原理基于氧自由基可在酶的催化下将非荧光物质氧化为荧光物质,因此该荧光探针能够在细胞内检测活性氧的水平。

DCFH-DA荧光探针的合成方法比较简单,通常是通过将2',7'-二氯荧光素(DCFH)与乙酰氧甲基化试剂(acethoxymethyl)在碳酸氢钠缓冲溶液中反应合成,再通过减压蒸馏或硅胶柱层析纯化得到目标产物。

DCFH-DA的荧光特性主要是在考察细胞内氧气活性时的上,其最大吸收波长在485 nm,最大发射波长为529 nm,发射光比较稳定,可以通过荧光显微镜或流式细胞仪进行检测。

DCFH-DA荧光探针已经广泛应用于心血管疾病、神经退行性疾病等病理生理过程的研究中。

在心血管疾病中,ROS的水平与动脉粥样硬化、高血压等心血管疾病的发生发展相关。

研究人员通过DCFH-DA 荧光探针检测活性氧的水平,探索ROS与心血管疾病的关联,并希望通过抑制ROS的积累来减缓或治疗心血管疾病。

在神经退行性疾病中,如帕金森病和阿尔茨海默病,也发现ROS的水平升高。

科学家通过DCFH-DA荧光探针的应用,研究神经细胞中ROS的释放和清除机制,探索神经退行性疾病的发病机制。

第二篇示例:DCFH-DA是一种常用的荧光探针分子,通常应用于生物学研究领域。

它是一种非极性脂溶性分子,由于其能够在活细胞内被内切酯酶水解成为高度荧光的荧光染料,因此DCFH-DA广泛用于检测活细胞中的ROS(活性氧种)水平。

活性氧的检测方法

活性氧的检测方法

活性氧的检测方法活性氧(reactive oxygen species,ROS)是指一类具有高度活性的氧气衍生物,包括超氧阴离子(superoxide anion,O2·-)、过氧化氢(hydrogen peroxide,H2O2)、羟基自由基(hydroxyl radical,·OH)等。

它们在正常生物体内起到重要的信号传导和正常生理功能的调节作用,但当其产生过量或生物体的抗氧化防御系统受损时,可引发氧化应激反应,导致蛋白质、脂质、DNA等生物分子的氧化损伤,从而参与多种疾病的发生和发展过程。

由于活性氧的生成和清除速度都非常快,直接测量活性氧的浓度和活性是非常困难的,因此科学家们开发了多种间接检测方法。

以下是几种常见的活性氧检测方法。

1. 过氧化物酶法(oxidative enzyme assay)该方法通过利用特定的过氧化物酶(例如超氧化物歧化酶、谷胱甘肽过氧化物酶等)将活性氧转化为可测量的反应物质。

测量该反应物质的生成速率或浓度变化,可以间接反映出活性氧的产生量或含量。

2. 化学荧光探针法(chemical fluorescence probe)该方法使用特定的化学荧光探针,探针分子结构中含有特异性的活性氧敏感团或特异的活性氧响应元件。

当探针与活性氧反应时,荧光强度变化或荧光发射峰位移动,可以通过荧光光谱或荧光显微镜等技术手段来测定活性氧的产生量或含量。

3. 化学显色法(chemical colorimetric assay)该方法基于活性氧与一些特定的化学物质(如戊二醛、硫代巴比妥酸钠等)反应生成产物,这些产物具有特定的吸收光谱,可以通过比色法来测定活性氧的产生量或含量。

该方法简便易行,仪器设备要求低,适用于较低灵敏度的活性氧检测。

4. 高效液相色谱法(high-performance liquid chromatography该方法通过高效液相色谱技术将待测样品中的活性氧产生物(如羟基自由基产生物3,4-二羟基苯乙酮酸)分离和检测,根据活性氧产生物的峰面积或峰高变化来测定活性氧的产生量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DCFHDA活性氧检测方法
DCFH-DA(2',7'-二氯荧光二乙酸)是一种常用于检测细胞内活性氧的荧光探针。

DCFH-DA最初作为一种检测脂质过氧化和活性氧产生的荧光探针而被引入。

在细胞内,DCFH-DA可以被酯酶水解成DCFH(2',7'-二氯荧光二酚),而DCFH与活性氧反应生成Dichlorofluorescein(DCF)产生强烈的绿色荧光。

DCFH-DA检测法被广泛应用于反应氧化应激和自由基生成的过程。

DCFH-DA检测法实际上是一种间接测定活性氧的方法。

原理基于DCFH-DA能够通过酯酶水解成DCFH,而DCFH可以直接或通过活性氧来氧化生成DCF。

因此,DCF的荧光强度与细胞内的活性氧水平成正相关。

DCFH-DA检测法常用于检测细胞或组织中的过氧化氢(H2O2)、羟自由基(•OH)、超氧阴离子(O2•-)等活性氧物种。

DCFH-DA检测法的步骤如下:
1.细胞准备:将需要检测活性氧的细胞培养在合适的培养基中,保证细胞的活力和完整性。

2.DCFH-DA处理:将培养的细胞离心,去除培养基,并用含有适当浓度的DCFH-DA的PBS缓冲液重新悬浮细胞。

DCFH-DA可在一定浓度下直接添加到细胞培养基中,也可在细胞中预处理一段时间。

3.洗涤:DCFH-DA可渗透细胞膜进入细胞内,在细胞酯酶的作用下,水解成DCFH。

洗涤细胞是必要的,以去除外源DCFH-DA和水解后生成的DCFH。

4.活性氧诱导:将细胞暴露在产生活性氧的刺激剂中,如过氧化氢、
辐射、药物等。

较为常用的是使用刺激物H2O2,细胞可暴露在适当浓度
的H2O2中一段时间。

5.荧光显微镜观察:在刺激剂作用一定时间后,将细胞离心,取得细
胞沉淀。

用PBS洗涤,使得测量时背景荧光最小。

6.荧光检测:将洗涤好的细胞沉淀悬浮于含PBS的离心管中,通过流
式细胞术或荧光显微镜测量活性氧生成后的荧光信号。

DCFH-DA检测方法的优势在于具有响应迅速、敏感度高、操作简单等
特点。

同时,DCFH-DA受活性氧物种特异性影响较小,可以检测多种活性
氧物种。

然而,该方法也存在一些局限性,如DCFH-DA的自氧化、荧光淬
灭等现象,以及其对细胞内酯酶的依赖性等。

总结起来,DCFH-DA活性氧检测方法是一种应用广泛的活性氧检测方法,通过DCFH-DA与活性氧的反应生成荧光信号实现对细胞内活性氧水平
的测定。

该方法操作简单、敏感度高,但也存在一些特殊情况下的局限性。

相关文档
最新文档