《集成电路基础学习知识原理与设计》重要资料内容情况总结
总结集成电路培训内容,重点描述最感兴趣、对自身工作指导性最强

总结集成电路培训内容,重点描述最感兴趣、对自身工作指导性最强
1. 基础知识:集成电路的定义、历史、发展进程、基本构成单元、常用工艺、材料及其特性、尺寸、制造流程
2. 设计流程:设计前的准备工作、电路设计原理、模拟/数字设计的基本流程、验证与仿真、版图设计、电性能分析等。
3. 工具使用:常见EDA工具的使用、设计规范、模拟与验证工具的使用、版图设计工具的使用、检查与修复工具的使用等。
4. 应用案例分析:将所学的知识应用到实际的集成电路设计中,分析不同应用场景下的实际设计案例,掌握实践经验和技巧。
对于自身工作指导性最强的内容,一般建议关注以下几个方面:
1. 设计流程和工具使用:集成电路设计需要遵循一定的流程,并使用专业的EDA工具进行设计、验证和仿真。
了解这些步骤和工具的使用,可以有效提高设计效率,降低出错率,并使自身工作更加规范和系统化。
2. 版图设计:版图设计是实现电路设计的最后一步,也是最为关键的一步。
需要注意的是,版图设计中一些微小的错误可能会导致整个电路失效,因此应重视版图设计中的各项规格和流程,以确保电路可以正常工作。
3. 应用案例分析:集成电路设计的应用场景非常广泛,因此了解不同应用场景的需求和设计要求,对于自身的工作指导性也是非常有帮助的。
通过分析实际的设计案例,可以更好地掌握设计技能和经验,提高自身的工作质量和效率。
集成电路基础知识

集成电路基础知识嘿,朋友们!今天咱来聊聊集成电路这个神奇的玩意儿。
集成电路啊,就像是一个超级迷你的城市,里面有着密密麻麻的各种“建筑”和“道路”。
这些“建筑”就是各种电子元件,比如晶体管啦、电阻啦、电容啦等等。
它们就像城市里的不同功能区,各自发挥着重要的作用。
你想想看,在这么一个小小的芯片里,竟然能装下那么多的东西,这是多么了不起啊!就好像把一个巨大的工厂压缩到了一个指甲盖大小的地方。
而且啊,它的工作效率还特别高,能快速地处理各种信息。
咱平时用的手机、电脑,里面都有集成电路呢。
要是没有它,那这些高科技玩意儿可就没法这么好用啦。
比如说手机吧,如果没有集成电路,那它可能就会变得又大又笨重,像个大砖头似的,携带起来多不方便呀!集成电路的发展也是非常迅速的哟!就像我们的生活一样,一直在进步。
从最早的那种又大又笨的集成电路,到现在越来越小、越来越强大的芯片,这中间经历了多少人的努力和创新啊!这就好像我们学习一样,要不断地努力,才能变得更优秀。
你知道吗,制作集成电路就像是在雕刻一件精美的艺术品。
工程师们要非常小心、非常仔细地把那些电子元件一个一个地放好,不能有一点差错。
这可不是随便谁都能做到的呀!这需要高超的技术和极大的耐心。
再说说集成电路的应用吧,那可真是无处不在啊!除了我们熟悉的电子产品,还有很多其他领域也都离不开它呢。
比如汽车呀、医疗设备呀等等。
它就像一个默默无闻的英雄,在背后为我们的生活提供着各种便利。
哎呀呀,集成电路真的是太重要啦!我们的生活已经离不开它了。
所以啊,我们要好好珍惜这些高科技带来的便利,也要感谢那些为集成电路发展做出贡献的人们。
总之,集成电路就是这么一个神奇又重要的东西。
它让我们的生活变得更加丰富多彩,让我们能享受到更多的便利和乐趣。
让我们一起为集成电路点赞吧!原创不易,请尊重原创,谢谢!。
集成电路原理与应用复习总结

Ui Ui I i I1 I
由
U U Ui U o 和 o 3 得 U 3 2U i R2 2 R1 R1 R2 Ui Ui R1 R
所以 I i
因此 Ri
Ui RR1 I i R R1
当 R R1 时, Ri , I I1 4. 几中常见的积分电路 ①反相积分器 ②同相积分器
第一章 集成运放的基础知识 1. 集成运放是一种高增益直接耦合放大器。 2. 跨导的计算 ①晶体管:������������ = ������������ ������ =
������������
������������
������������������ ������������
������ (
������������ ������������ ) ������������
2
解法一:用两级反相求和电路 ������ ������ = −5(������������2 + ������ ������4 ) − 5(−(������ ������1 + ������ ������3 )) ∴������1 = ������2 = ������3 = ������4 = 20������������ ������������1 = ������������2 = ������5 = 100������������ ������������1 = ������1 ∕∕ ������3 ∕∕ ������������1 ≈ 333.3������������ ������������2 = ������2 ∕∕ ������4 ∕∕ ������5 ∕∕ ������������2 ≈ 6.25������������ 接法二:两个同相求和电路和一个差动放大器 ������ ������ = 5[(������������1 + ������ ������3) − (������ ������2 + ������ ������4 )] ∴������1 = ������2 = ������3 = ������4 = ������������1 = ������������2 = ������6 = 100������������ ������5 = 20������Ω ������������ = 100������Ω, ������������ = 50������Ω 【例 2-3】试分析图 1 所示电路是什么电路,有何
集成电路基本知识

集成电路基本知识将许多电阻、二极管和三极管等元器件以电路的形式制作半导体硅片上,然后接出引脚并封装起来,就构成了集成电路。
一、集成电路的特点1、电路中多用晶体管,少用电感、电容和电阻,特别是大容量的电容器,因为制作这些元器件需要占用大面积硅片,导致成本提高。
2、集成电路内的各个电路之间多采用直接连接(即用导线直接将两个电路连接起来),少用电容连接,这样可以减少集成电路的面积,又能使它适用各种频率的电路。
3、集成电路内多采用对称电路(如差动电路),这样可以纠正制造工艺上的偏差。
4、集成电路一旦生产出来,内部的电路无法更改,不象分立元器件电路可以随时改动,所以当集成电路内的某个元器件损坏时只能更换整个集成电路。
5、集成电路一般不能单独使用,需要与分立元器件组合才能构成实用的电路。
对于集成电路,大多数电子技术人员只要知道它内部具有什么样功能的电路,即了解内部结构方框图和各脚功能就行了。
二、集成电路的种类集成电路的种类很多,其分类方式也很多,这里介绍几种主要分类方式:1、按集成电路所体现的功能来分,可分为模拟集成电路、数字集成电路、接口电路和特殊电路四类。
2、按有源器件类型不同,集成电路又可分为双极型、单极型及双极一单极混合型三种。
双极型集成电路内部主要采用二极管和三极管。
单极型集成电路内部主要采用MOS场效应管。
双极一单极混合型集成电路内部采用 MOS 和双极兼容工艺制成,因而兼有两者的优点。
3、按集成电路的集成度来分,可分为小规模集成电路(SSI),中规模集成电路(MSI),大规模集成电路(LSI) 和超大规模集成电路(VLSI)。
三、封装形式封装就是指把硅片上的电路管脚用导线接引到外部引脚处,以便与其它器件连接。
封装形式是指安装半导体集成电路芯片用的外壳。
四、引脚识别集成电路的引脚很多,少则几个,多则几百个,各个引脚功能又不一样,所以在使用时一定要对号入座,否则集成电路不工作甚至烧坏。
因此一定要知道集成电路引脚的识别方法。
集成电路基础知识概述

集成电路基础知识概述集成电路(Integrated Circuit,简称IC)是指将多个电子元件(如晶体管、电阻、电容等)以一种特定的方式集成在单一的半导体芯片上的电路。
IC的出现和发展对现代电子技术的发展起到了重要的推动作用。
本文将对集成电路的基础知识进行概述,介绍其定义、分类、制造工艺和应用领域。
一、集成电路的定义集成电路是指将多个电子元件集成在单一芯片上,实现特定功能的电路。
它可以分为模拟集成电路和数字集成电路两大类。
模拟集成电路处理连续信号,数字集成电路处理离散信号。
集成电路的核心是晶体管,其作为开关元件存在于集成电路中,通过控制晶体管的导通与截止实现电路的功能。
二、集成电路的分类1. 按集成度分类根据集成度的不同,集成电路可以分为小规模集成电路(Small Scale Integration,SSI)、中规模集成电路(Medium Scale Integration,MSI)、大规模集成电路(Large Scale Integration,LSI)和超大规模集成电路(Very Large Scale Integration,VLSI)等几种。
随着技术的发展,集成度不断提高,芯片上可容纳的元件数量也不断增加。
2. 按构成元件分类按照集成电路中所使用的主要元件类型,可以将集成电路分为晶体管-电阻-电容(Transistor-Resistor-Capacitor,TRC)型集成电路、金属-氧化物-半导体 (Metal-Oxide-Semiconductor,MOS)型集成电路、双极性晶体管 (Bipolar Junction Transistor,BJT)型集成电路等。
不同类型的集成电路适用于不同的应用场景。
三、集成电路的制造工艺集成电路的制造工艺主要包括晶圆制备、掩膜生成、光刻、腐蚀、离子注入、金属蒸镀、电火花、封装测试等步骤。
其中,晶圆制备过程是整个制造工艺的基础,它包括晶体生长、切片和研磨抛光等步骤。
集成电路总结(附重点知识点参考答案)

1.集成电路重点知识复习点1.芯片制作过程中主要的工艺有哪些?主要的三项工艺:薄膜制备工艺、光刻/图形转移工艺、掺杂工艺薄膜制备工艺:在晶圆表面生长或淀积数层材质不同,厚度不同的膜层,如器件工作区的外延层,绝缘介质层,金属层等。
该工艺通过常用方法有:外延生长,氧化,淀积。
图形转移工艺:包括掩膜版的制作,涂光刻胶,曝光(光刻),显影,烘干,刻蚀。
电路结构以图形的形式制作在光刻掩膜版上。
然后通过图形转换工艺转移精确转移到硅晶片上。
掺杂工艺:包括扩散工艺和离子注入工艺。
各种杂质按照设计要求掺杂到晶圆上,形成晶体管的源漏端以及欧姆接触等。
2.PN结形成的过程是什么?在纯净的本增半导体中少量掺杂施主杂质,如磷,取代硅原子,就形成了N型半导体。
参与导电的主要是带负电的电子,电子为多数载流子,又称多子。
空穴为少数载流子,又称少子。
在纯净的本增半导体中少量掺杂受主杂质,如硼,取代硅原子,就形成了P型半导体。
因为参与导电的主要是带正电的空穴,空穴为多子。
当P型半导体和N型半导体放在一起之后,多子和少子从浓度高的区域向浓度低的区域扩散,P区留下的不能移动的负离子和N区留下的不能移动的正离子在半导体交界面形成了一个很薄的空间电荷区,又称耗尽层。
这就是PN结。
PN结有内电场,由N区指向P区,内电场阻止多子的扩散运动,促使少子的漂移运动。
最终PN结达到动态平衡。
PN结具有单向导电性,当外加正向电压(P区接正电压)时,PN结处于导通状态,结电阻很小。
当外加负向电压(N区接正电压)时,PN结处于截止状态,结电阻很大。
当反向电压加到一定程度,PN结会击穿二损坏。
3.典型的N阱CMOS的剖面图是什么?4.MOS器件的工作区域有哪些?每个区域中的载流子是如何运作的?以NMOS为例:截止区:Vgate加较小的正电压,外加电场使得正电荷积聚在栅极,同时,空穴被排斥到更为底层的主体的衬底区;当空穴被排斥,在栅极下端的主体的P区表面,只留下带负电的不可移动的离子,耗尽区在栅极下方形成;Vgate进一步加大,更多衬底的少子被吸引到表面,当Vgs=VT时,表面将产生足够的电子,使得主体表面形成一层很薄的N型区,此N型区域中,电子的浓度大于空穴的浓度。
集成电路原理及应用的内容

集成电路原理及应用的内容1. 概述集成电路(Integrated Circuit,IC)是将大量电子器件(电阻、电容、晶体管等)以及其它元器件(电感、变压器等)集成到同一块或几块半导体晶片上的电路。
本文将介绍集成电路的原理及应用。
2. 集成电路的分类根据集成电路的规模和复杂度,可以将集成电路分为以下几类:2.1 数字集成电路•逻辑门电路:包括与门、或门、非门、异或门等,用于数字信号的逻辑运算。
•存储器:用来存储大量的二进制数据,包括RAM、ROM、Flash等。
•处理器:包括微处理器、信号处理器等,用于运算和控制。
2.2 模拟集成电路•放大器:包括运放和功率放大器,用于信号放大和增强。
•滤波器:用于信号滤波和频率选择。
•电源管理电路:包括稳压器、开关电源等,用于电源管理和电压稳定。
2.3 混合集成电路混合集成电路将数字电路和模拟电路集成在一起,既可以进行数字信号的处理,又可以进行模拟信号的放大和滤波等。
3. 集成电路的原理集成电路的原理基于半导体器件的特性和电路设计的原理,下面是集成电路的原理要点:3.1 半导体器件•晶体管:包括NPN型晶体管和PNP型晶体管,用于放大和开关等。
•二极管:包括正向导通二极管和反向截止二极管,用于整流和保护等。
•MOSFET:场效应管,用于功率放大和开关等。
3.2 电路设计•逻辑设计:采用布尔代数和逻辑门的原理进行设计,实现数字信号的处理与控制。
•放大器设计:采用电路理论和反馈控制原理,实现模拟信号的放大和增强。
•滤波器设计:采用频率响应和滤波器特性的原理,实现信号的滤波和频率选择。
4. 集成电路的应用集成电路广泛应用于各个领域,下面是集成电路常见的应用场景:4.1 通信领域•数字通信系统:集成电路用于数字信号的调制、解调和处理。
•无线通信系统:集成电路用于无线射频信号的放大、滤波和解调等。
•数据通信系统:集成电路用于数据传输和处理,包括网络交换和路由器等。
4.2 汽车电子•车载娱乐系统:集成电路用于音频、视频处理和控制。
集成电路基础知识入门

集成电路基础知识入门一、什么是集成电路集成电路(Integrated Circuit,简称IC)是将电子元器件、电子电路和电子设备等制造工艺加以综合集成在一块半导体晶片上的技术。
集成电路的问世,使得电子器件的体积大大减小,性能和功能得到了极大的提升。
集成电路分为模拟集成电路和数字集成电路两种,分别用于处理模拟信号和数字信号。
二、集成电路的基本组成集成电路由晶体管、电阻、电容等元器件组成,通过不同的电路连接方式实现特定的功能。
其中,晶体管是集成电路的核心元件,它可以实现放大、开关等功能。
电阻用于限制电流的流动,电容用于储存和释放电荷。
通过将这些元器件按照特定的方式连接在一起,形成了各种不同的集成电路。
三、集成电路的分类根据集成电路的功能和应用场景的不同,可以将集成电路分为模拟集成电路和数字集成电路。
模拟集成电路主要用于处理模拟信号,如音频信号、视频信号等。
数字集成电路主要用于处理数字信号,如计算机中的逻辑电路、存储电路等。
此外,还有混合集成电路,可以同时处理模拟信号和数字信号。
四、集成电路的制造工艺集成电路的制造工艺主要分为N型和P型两种。
N型工艺是以硅晶片为基础,通过掺杂磷或砷等杂质,形成N型半导体材料。
P型工艺是以硅晶片为基础,通过掺杂硼等杂质,形成P型半导体材料。
通过这两种材料的组合和加工,形成了复杂的电路结构。
五、集成电路的发展历程集成电路的发展经历了多个阶段。
最早期的集成电路是小规模集成电路,只能集成几个晶体管和几个电阻电容等元器件。
后来发展到中、大规模集成电路,可以集成数十个到数千个元器件。
现在的集成电路已经发展到超大规模和超大规模以上集成电路,可以集成上亿个晶体管和其他元器件。
六、集成电路的应用领域集成电路广泛应用于各个领域,如通信、计算机、消费电子、汽车电子、医疗设备等。
在通信领域,集成电路被用于手机、无线通信设备等;在计算机领域,集成电路被用于中央处理器、内存等;在消费电子领域,集成电路被用于电视、音响等;在汽车电子领域,集成电路被用于车载娱乐系统、车身控制系统等;在医疗设备领域,集成电路被用于医疗监测设备、医用影像设备等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成电路原理与设计重点内容总结第一章绪论摩尔定律:(P4)集成度大约是每18个月翻一番或者集成度每三年4倍的增长规律就是世界上公认的摩尔定律。
集成度提高原因:一是特征尺寸不断缩小,大约每三年缩小一2倍;二是芯片面积不断增大,大约每三年增大1.5倍;三是器件和电路结构的不断改进。
等比例缩小定律:(种类优缺点)(P7-8)1. 恒定电场等比例缩小规律(简称CE定律)a. 器件的所有尺寸都等比例缩小K倍,电源电压也要缩小K倍,衬底掺杂浓度增大K倍,保证器件内部的电场不变。
b. 集成度提高忆倍,速度提高K倍,功耗降低K2倍。
c. 改变电源电压标准,使用不方便。
阈值电压降低,增加了泄漏功耗。
2. 恒定电压等比例缩小规律(简称CV定律)a. 保持电源电压和阈值电压不变,器件的所有几何尺寸都缩小K倍,衬底掺杂浓度增加忆倍。
b. 集成度提高忆倍,速度提高K2倍。
c. 功耗增大K倍。
内部电场强度增大,载流子漂移速度饱和,限制器件驱动电流的增加。
3. 准恒定电场等比例缩小规则(QCE)器件尺寸将缩小K倍,衬底掺杂浓度增加K(1< <K)倍,而电源电压则只变为原来的/K倍。
是CV和CE的折中。
需要高性能取接近于K,需要低功耗取接近于1。
写出电路的网表:A BJT AMPVCC 1 0 6Q1 2 3 0 MQRC 1 2 680RB 2 3 20KRL 5 0 1KC1 4 3 10UC2 2 5 10UVI 4 0 AC 1.MODEL MQ NPN IS=1E-14+BF=80 RB=50 VAF=100.OP.END其中.MODEL为模型语句,用来定义BJT晶体管Q1的类型和参数。
常用器件的端口电极符号器件名称端口付号缩与Q (双极型晶体管) C (集电极),B (基极),E (发射极),S (衬底)M (MO场效应管) D (漏极),G (栅极),S (源极),B (衬底)J (结型场效应管) D (漏极),G (栅极),S (源极)B (砷化镓场效应管) D (漏极),G (栅极),S (源极)电路分析类型.OP直流工作点分析.TRAN瞬态分析• DC直流扫描分析• FOUR傅里叶分析•TF传输函数计算.MC豕特卡罗分析•SENS灵敏度分析•STEP参数扫描分析.AC交流小信号分析•WCASE最坏情况分析• NOISE噪声分析•TEMP温度设置第二章集成电路制作工艺集成电路加工过程中的薄膜:(P15)热氧化膜、电介质层、外延层、多晶硅、金属薄膜。
光刻胶中正胶和负胶的区别:(P16)负胶:曝光的光刻胶发生聚合反应,变得坚固,不易去掉。
正胶:在曝光时被光照的光刻胶发生分解反应,在显影时很容易被去掉,而没有被曝光的光刻胶显影后仍然保留。
因此对同样的掩膜版,用负胶和正胶在硅片上得到是图形刚好相反。
N阱和P阱CMOS吉构制作过程:(P21-25)N阱:1、衬底硅片的选择MOS集成电路都选择<100>晶向的硅片,因为这种硅界面态密度低,缺陷少,迁移率高,有利于提高器件性能。
2、制作n阱首先,对原始硅片进行热氧化,形成初始氧化层作为阱区注入的掩蔽层。
然后,根据n阱的版图进行光刻和刻蚀,在氧化层上开出n阱区窗口。
通过注磷在窗口下形成n阱,注入后要进行高温退火,又叫阱区推进,一方面使杂质激活,另一方面使注入杂质达到一定的深度分布。
3、场区氧化首先,在硅片上用热生长方法形成一薄层SiO2作为缓冲层,它的作用是减少硅和氮化硅之间的应力。
然后淀积氮化硅,它的作用是作为场区氧化的掩蔽膜,一方面因为氧或水汽通过氮化硅层的扩散速度极慢,这就有效地阻止了氧到达硅表面;另一方面氮化硅本身的氧化速度极慢,只相当于硅氧化速度的1/25。
通过光刻和刻蚀去掉场区的氮化硅和缓冲的二氧化硅。
接下来进行热氧化,由于有源区有氮化硅保护,不会被氧化,只在场区通过氧和硅起反应生成二氧化硅。
4、制作硅栅目前MOS晶体管大多采用高掺杂的多晶硅作为栅电极,简称硅栅。
硅栅工艺实现了栅和源、漏区自对准,减少了栅-源和栅-漏的覆盖长度,从而减小了寄生电容。
硅栅工艺也叫自对准工艺。
5、形成源、漏区6、形成金属互连线P阱:鸟嘴效应:(P23)在场区氧化过程中,氧也会通过氮化硅边缘向有源区侵蚀,在有源区边缘形成氧化层,伸进有源区的这部分氧化层被形象地称为鸟嘴,它使实际的有源区面积比版图设计的面积缩小。
闩锁效应:(P27)闩锁效应是CMOS集成电路存在一种寄生电路的效应,它会导致V DD和Ms短路,使得晶片损毁。
在CMOS1片中,在电源和地线之间由于寄生的PNP和NPN双极型BJT相互影响而产生的低阻抗通路,它的存在会使电源和地之间产生大电流,从而破坏芯片或者引起系统错误。
如图所示,如果外界噪声或其他干扰使V out高于V3D或低于0,则引起寄生双极型晶体管Q3或Q4导通,而Q3或Q4导通又为Q和Q2提供了基极电流,并通过R W或金使Q或Q2的发射结正偏,导致Q或Q导通。
由于Q和Q交叉耦合形成正反馈回路,一旦其中有一个晶体管导通,电流将在Q和Q 之间循环放大。
若Q和Q的电流增益乘积大于1,将使电流不断加大,最终导致电源和地之间形成极大的电流,并使电源和地之间锁定在一个很低的电压(V on+V:ES),这就是闩锁效应。
一旦发生闩锁效应可能造成电路永久性破坏,可以采取以下主要措施防止闩锁效应:(1)减小阱区和衬底的寄生电阻R W和F S,这样可以减小寄生双极晶体管发射结的正向偏压,防止Q和Q2导通。
在版图设计中合理安排n阱接VDD和p型衬底接地的引线孔,减小寄生双极晶体管基极到阱或衬底引出端的距离。
(2)降低寄生双极晶体管的增益。
(3)使衬底加反向偏压。
(4)加保护环,保护环起到削弱寄生NPN晶体管和寄生PNP晶体管之间的耦合作用。
(5)用外延衬底。
(6)采用SOICMO技术是消除闩锁效应的最有效途径。
CMOS反向器:构成:CMOS 反相器的电路构成,是由一个增强型n沟MOS管作为输入管和由一个增强型p沟MOS管作为负载管,且两栅极短接作为输入端,两漏极短接作为输出端,N管源极接地,P管源极接电源电压V DD,这就构成了两管功能上的互补。
工作原理:如图所示的CMO反相器电路结构示意图分析其工作过程如下:V= “ 0” 时:V GS=0,V GSP=-V DDp管导通,n管截止V O=“ 1 ” =V)DV= “1” 时:V GS=V,V GS=0n管导通,p管截止V O=“ 0 ” ( =0V)即卩:V DH-V OL=V)D最大逻辑摆幅,且输出摆幅与p、n管W/L无关(无比电路)直流电压传输特性:瞬态特性:直流噪声容限: 开门电平:关门电平:上升时间:下降时间:传输延迟时间、负载电容、最高频率。
允许的输出从高向低转换的传输延迟时间:从输入信号上升边的50%^输出信号下降边的50%所经过的延迟时间。
t pHL输出从低向高转换的传输延迟时间:从输入信号下降边的50%^输出信号上升边的50%所经过的延迟时间。
t pLH电路的平均传输延迟时间t p =t pHL +t pLH2第四章数字集成电路的基本单元电路CMOS反相器的设计:(P230-231 )设计一个CMOS反相器,要求驱动1pF负载电容时上升时间和下降时间不超过0.5ns。
采用0.6um 工艺,V D D=5V,V TN=0.8V , V TP=-0.9V ,V DD1K N U n C oX 120 10 6 A/V2, K P U p C ox 60 10 6 A/V2。
t r t fRP0.1P [ 2(1 P )[N0.1N [F^71ln(竺二]2(1 P ) 0.11 1.92 Nln( N )] 2(1 N ) 0.1解:由t r因为t r 又根据 V TP0.18 代入 t r VDD1.78 P0.5ns ,所以C L K P V DD '[P0.1 p[F^7 P0.28 nsC L1pF ,由于外pn 结电容,得到K P7.14 10 4A /V 22K P同理可得,2K NK NL pW N6.9umW P14.28um2 7.14 104 60 10 6 4i2 6.9 10 120 10 60.6um ,则得23.811.5CMOS! NMO 反相器性能比较:(P236-237)如果把CMO 反相器中的PMOST 作为负载元件,则 CMO 反相器和几种NMO 阪相器的性 能差别主要是负载元件的性能差别引起的。
从直流特性看,由于NMO 反相器中的负载元件是常导通的,因此输出低电平决定于电路的分压比,是有比反相器,达不到最大逻辑摆幅,而且有较大的静态功耗。
CMOS 反相器中的PMO 管是作为开关器件,在输出高电平时只有 PMOSI 通,在输出低电平时只有 NMOSI通,因此是无比电路,可以获得最大的逻辑摆幅, 而且不存在直流导通电流,有利于减小静态功耗。
从瞬态特性看,由于 NMO 反相器是有比反相器,为了保证低电平合格,要求参数K r >l , 从而使负载元件提供的充电电流很小, 造成电路的上升时间远大于下降时间, 成为限制速度 的主要因素。
CMO 阪相器可以采用对称设计,负载特性和驱动管特性是对称的,使t r =t f ,从而有利于提高速度。
NMO 反相器转变区增益有限,噪声容限小。
CMO 反相器可以采用对称设计,从而可以获得最大的直流噪声容限。
CMOS!路相对NMO 电路有很多优点,特别是CMOSI 路低功耗的优点对提高集成密度非 常有利。
CMOS电路的静态功耗非常小,只有泄漏电流引起的静态功耗,因而极大减小的芯 片的维持功耗,更加符合发展便携式设备的需求。
另外,CMOS 电路有全电源电压的逻辑摆幅,可以在低电压下工作,因而更适合于深亚微米技术发展的要求。
PN取L N设计一个CMO或非门:(P243-244)0.5ns,已设计一个两输入或非门,要求在最坏情况下输出上升时间和下降时间不大于知,Q=1pF , V DC =5V, V TN =0.8V , V TP =-0.9V , 采用 0.6um 工艺,有 K N = 120 X 10-6 A/V 2 ,K p = 60 X 10-6 A/V 2。
根据等效反相器分析,或非门上升时间 CL [ P 0.1K peff V DD [(1 P)2V 3D =5V,a p = -V TP /V DD = 0.18,可得到 K peff = 7.14t r ^ln(1^)] 2(1 p ) 0.1 根据 t r 0.5ns , O=1pF , X 10-4 A/V 2 或非门的下降时间 t f [N 0.1 2 K peff V DD (1 N ) C L―1—in(1.9 2 N )] 2(1 N )0.1V )D =5V,a N = V TN /V DD = 0-16,可得到 K Neff = 6.90 X 10-4 A/V 2 由于或非门中2个PMOS 管串联对负载电容充电,因此要求K pi = K p2 = 2K peff = 14.28 X 10-4 A/V 2考虑最坏情况下只有一个 NMO 管导通对负载电容放电,要满足下降时间要求,则有 K N 1 = K N 2 = K Neff = 6.90 X 10-4 A/V 2 L N = L P = 0.6 □ m W p1 = W p2 = 28.56 a m W N 1 = W N 2 = 6.9 a m 根据 t f 0-5ns , C L =1pF ,取 则有 如果是设计一个两输入与非门,则在同样性能要求和同样参数下,得到 W p1 = W p 2 = 14.28 a m , W M 1 = W N 2 = 6.9 a m 。