二项分布(2)教学设计 教案

合集下载

高二【数学(人教B版)】二项分布与超几何分布(2)教学设计

高二【数学(人教B版)】二项分布与超几何分布(2)教学设计
(1)抽取的人中恰有1名女生的概率是多少?
(2)设抽取的人中女生有X名,写出X的分布列.
解析:(1)注意到从10名同学中随机抽取3人,共有 种不同的抽法,也就是说,样本空间中样本点的数量是 .另外,抽取的人中恰有1名女生,等价于抽取的时1名女生和2名男生,因此包含的样本点数为 ,因此所求概率为 .
(2)如果抽取的人中女生数为X,则X的取值范围是 ,

这里的X称为服从参数为N,n,M的超几何分布,记作 ,
6分
应用
举例
例1学校要从5名男教师和2名女教师中随机选出3你去支教,设抽取的人中女教师的人数为X,求 .
解 由题意知,X服从参数为7,3,2的超几何分布,即 ,
因此 .
小结:
1.解答此类问题的关键是先分析随机变量是否满足超几何分布.若满足,则直接利用公式解决;若不满足,则应借助相应概率公式求解.
课后
作业
书P79A组3,5,B组2,3,4
1、A-3市教育局决定在所管辖的 所中学中随机抽取 所进行教学质量检测,已知 所中学中农村中学有 所,设抽到的农村中学共有 所,指出 服从的分布,并求出 的值.
2、A-5袋中有 个白球、 个黑球,从中随机地连续抽取 次,每次取 球.
(1)若每次抽取后都放回,设取到黑球的个数为 ,求 的分布列;
(3)学校要从 名男教师和 名女生中随机选出 人去支教,设抽取的人中男教师的人数为
4、B-3从 名男生和 名女生中人选 人参加演讲比赛,用 表示所选中 人中女生的人数
(1)求 的分布列;
(2)求 .
5、B-4已知 ,且 ,求 的分布列.
一般地,当离散型随机变量 的取值范围是 ,如果对任意 ,概率 都是已知的,则称 的概率分布是已知的.离散型随机变量 的概率分布可以用如下形式的表格表示,这个表格称为 的概率分布或分布列.

新人教A版选修2-32.2二项分布及其应用教案二

新人教A版选修2-32.2二项分布及其应用教案二

新人教A版选修2-32.2二项分布及其应用教案二2. 2.1条件概率教学目标:知识与技能:通过对具体情景的分析,了解条件概率的定义。

过程与方法:掌握一些简单的条件概率的计算。

情感、态度与价值观:通过对实例的分析,会进行简单的应用。

教学重点:条件概率定义的理解教学难点:概率计算公式的应用授课类型:新授时安排:1课时教具:多媒体、实物投影仪教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。

教学过程:一、复习引入:探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.若抽到中奖奖券用“Y ”表示,没有抽到用“ ”,表示,那么三名同学的抽奖结果共有三种可能:Y , Y 和 Y.用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B 仅包含一个基本事件 Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为 .思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有 Y和 Y .而“最后一名同学抽到中奖奖券”包含的基本事件仍是 Y.由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽到中奖奖券”.已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件 A 一定会发生,导致可能出现的基本事件必然在事件 A 中,从而影响事件 B 发生的概率,使得 P ( B|A )≠P ( B ) .思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢?用表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即 ={}.既然已知事件A必然发生,那么只需在A={ Y , Y}的范围内考虑问题,即只有两个基本事件 Y 和 Y.在事件 A 发生的情况下事件B发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件 Y,因此其中n ( A)和 n ( AB)分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式,其中 n()表示中包含的基本事件个数.所以,因此,可以通过事件A和事件AB的概率来表示P(B| A ) .条件概率1.定义设A和B为两个事件,P(A)0,那么,在“A已发生”的条件下,B发生的条件概率(conditionalprobability ). 读作A 发生的条件下 B 发生的概率.定义为由这个定义可知,对任意两个事件A、B,若,则有并称上式微概率的乘法公式2.P(|B)的性质:(1)非负性:对任意的A f. ;(2)规范性:P( |B)=1;(3)可列可加性:如果是两个互斥事件,则更一般地,对任意的一列两两部相容的事件(I=1,2…),有P例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求:(l)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A,第2次抽到理科题为事件B,则第1次和第2次都抽到理科题为事件AB. (1)从5道题中不放回地依次抽取2道的事件数为n()= =20.根据分步乘法计数原理,n (A)= =12 .于是(2)因为 n (AB)= =6 ,所以(3)解法 1 由( 1 ) ( 2 )可得,在第 1 次抽到理科题的条件下,第 2 次抽到理科题的概解法2 因为 n (AB)=6 , n (A)=12 ,所以例2.一张储蓄卡的密码共位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过 2 次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解:设第i次按对密码为事件 (i=1,2) ,则表示不超过2次就按对密码.(1)因为事件与事件互斥,由概率的加法公式得(2)用B 表示最后一位按偶数的事件,则.课堂练习.1、抛掷一颗质地均匀的骰子所得的样本空间为S={1,2,3,4,5 ,6},令事件A={2,3,5},B={1,2,4,5,6},求P(A),P(B),P(AB),P(A︱B)。

人教版高中锋选修2-3数学2.2二项分布及其应用教案(2)

人教版高中锋选修2-3数学2.2二项分布及其应用教案(2)

2.2.3独立重复实验与二项分布教学目标:知识与技能:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。

过程与方法:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。

情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

教学重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题 教学难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算 授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++13.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立14.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅二、讲解新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项 3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 01 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - …0q p C n n n 由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).三、讲解范例:例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)解:设X 为击中目标的次数,则X ~B (10, 0.8 ) .(1)在 10 次射击中,恰有 8 次击中目标的概率为P (X = 8 ) =88108100.8(10.8)0.30C -⨯⨯-≈.(2)在 10 次射击中,至少有 8 次击中目标的概率为P (X ≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )8810899109101010101010100.8(10.8)0.8(10.8)0.8(10.8)C C C ---⨯⨯-+⨯⨯-+⨯⨯-0.68≈.例2.(2000年高考题)某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量ξ~B (2,5%).所以,P (ξ=0)=02C (95%)2=0.9025,P (ξ=1)=12C (5%)(95%)=0.095,P (2=ξ)=22C (5%)2=0.0025.因此,次品数ξ的概率分布是 ξ 0 1 2 P 0.90250.095 0.0025 例3.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).解:依题意,随机变量ξ~B ⎪⎭⎫ ⎝⎛61,5.∴P (ξ=4)=6561445⋅⎪⎭⎫ ⎝⎛C =777625,P (ξ=5)=55C 561⎪⎭⎫ ⎝⎛=77761. ∴P (ξ>3)=P(ξ=4)+P (ξ=5)=388813 例4.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字): (1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈ 答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯- 450.80.80.4100.3280.74=+≈+≈ 答:5次预报中至少有4次准确的概率约为0.74.例5.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)0.37P P P =-+≈ 答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法例6.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75n nP P =-=-. 由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.823lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次例7.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,……,直到停9次 ∴从低层到顶层停不少于3次的概率3364455549999991111111()()()()()()()2222222P C C C C =++++ 3459990129999999911()()2()()22C C C C C C C ⎡⎤=+++=-++⎣⎦+991233(246)()2256=-= 设从低层到顶层停k 次,则其概率为k 9999111C ()()()222k k k C -=, ∴当4k =或5k =时,9k C 最大,即991()2k C 最大, 答:从低层到顶层停不少于3次的概率为233256,停4次或5次概率最大. 例8.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率. (2)按比赛规则甲获胜的概率.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. 记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”,记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=. (2)事件D =“按比赛规则甲获胜”,则D A B C =++,又因为事件A 、B 、C 彼此互斥, 故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 答:按比赛规则甲获胜的概率为12. 例9.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(2)若每穴种3粒,求恰好两粒发芽的概率.(lg 20.3010=)解:记事件A =“种一粒种子,发芽”,则()0.8P A =,()10.80.2P A =-=,(1)设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%.∵每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则00()(0)0.8(10.8)0.2n n n nP B P C ==-=. ∴()1()10.2n P B P B =-=-.由题意,令()98%P B >,所以0.20.02n<,两边取常用对数得, lg0.2lg0.02n <.即(lg 21)lg 22n -<-, ∴lg 22 1.6990 2.43lg 210.6990n ->=≈-,且n N ∈,所以取3n ≥. 答:每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.(2)∵每穴种3粒相当于3次独立重复试验,∴每穴种3粒,恰好两粒发芽的概率为2230.80.20.384P C =⨯⨯==,答:每穴种3粒,恰好两粒发芽的概率为0.384四、课堂练习:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p -2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )()A 33351A A - ()B 211232323355A A A A A A ⋅⋅+ ()C 331()5- ()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)6.一名篮球运动员投篮命中率为60%,在一次决赛中投10个球,则投中的球数不少于9个的概率为 .7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率为 .8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为31,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率10.(1)设在四次独立重复试验中,事件A 至少发生一次的概率为8081,试求在一次试验中事件A 发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为13,求在第n 次才击中目标的概率答案:1. C 2. D 3. A 4. A 5. 0.784 6. 0.0467. 23 8.(1)()323551240333243P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(2)()()5552211113243P B P B C ⎛⎫=-=-= ⎪⎝⎭ 9.⑴5550.90.59049C =; ⑵5550.10.00001C =;⑶()3325530.90.10.0729P C =⋅=; ⑷()()55450.91854P P P =+= 10.(1) 23P = (2) 112()33n P -=⋅ 五、小结 :1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的第三,每次试验都只有两种结果,即事件要么发生,要么不发生2.如果1次试验中某事件发生的概率是P ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为k n k k n n P P C k P --=)1()(对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n k -次中A 没有发生,即A 发生,由()P A P =,()1P A P =-所以上面的公式恰为n P P ])1[(+-展开式中的第1k +项,可见排列组合、二项式定理及概率间存在着密切的联系六、课后作业:课本58页 练习1、2、3、4第60页 习题 2. 2 B 组2、3 七、板书设计(略)八、课后记:教学反思:1. 理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。

教案教学设计中职数学拓展模块322二项分布

教案教学设计中职数学拓展模块322二项分布

教案教学设计中职数学拓展模块322二项分布教学目标:1.了解二项分布的概念和性质。

2.掌握二项分布的计算方法。

3.能够应用二项分布解决实际问题。

教学重点:1.二项分布的概念和性质。

2.二项分布的计算方法。

教学难点:1.二项分布计算方法的运用。

2.将二项分布应用于实际问题的解决。

教学准备:1.教师准备课件、教学工具等教学材料。

2.学生准备笔记本和计算器。

教学过程:Step1:导入新课教师可通过给学生出示一道实际问题,引发学生对于二项分布的兴趣。

例如:学校的男生人数占全校总人数的40%,如果从全校学生中随机抽取10人,预计有多少男生?通过让学生思考该问题,引入二项分布的概念。

Step2:概念讲解教师通过课件等教学工具,向学生讲解二项分布的概念和性质,包括以下内容:1.二项分布的定义:试验n次,每次试验结果只有两个可能的结果,而且每次试验结果的概率相等,称这个随机试验服从n次二项分布。

2.二项分布的性质:总体的名称、符号、分布函数等。

3.二项分布的期望和方差:期望和方差的公式。

Step3:例题讲解教师通过课件等教学工具,给学生展示二项分布的计算方法,并通过例题进行讲解。

例如:其中一种药物检测准确率为90%,如果将这种药物应用于100人,预计有多少人检测结果是准确的?通过例子的讲解,让学生掌握二项分布的计算方法。

Step4:练习与讨论教师通过课件等教学工具,给学生展示一系列练习题,让学生进行练习,并让学生交流解题过程和思路。

例如:从100个学生中随机抽取20人,求恰好有15人是男生的概率是多少?通过练习题让学生掌握二项分布的应用技巧。

Step5:拓展应用教师通过课件等教学工具,给学生展示一些二项分布在实际问题中的应用,例如:快递公司在春节期间预计有30%的快递会员购买春节礼物,如果从100个会员中随机抽取10个会员,求购买春节礼物的会员数的概率是多少?通过实际应用问题的讨论,让学生了解二项分布在实际问题中的应用场景。

二项分布教案设计

二项分布教案设计

《二项分布》教学设计一、教学目标: 1.知识与技能(1)理解n 次独立重复试验模型;理解二项分布的概念;(2)能利用n 次独立重复试验模型及二项分布解决一些简单的实际问题。

2.过程与方法在具体问题的解决过程中,领会二项分布需要满足的条件,培养运用概率模型解决实际问题的能力。

3.在利用二项分布解决一些简单的实际问题过程中,深化对某些随机现象的认识,进一步体会数学在日常生活中的广泛运用。

二、教学重点和难点:重点:理解n 次独立重复试验模型;理解二项分布的概念; 难点:利用二项分布解决一些简单的实际问题。

三、 教学方法:自主探究,合作交流和启发式相结合四、教学过程:(一)复习回顾:超几何分布 离散型随机分布常见类型: (1)超几何分布:N 件产品中,有M 件次品,从中任取n 件,用X 表示取出的n 件产品中次品的件数,那么:(2)二项分布(二)新课引入:为非负整数k CC C k X P MNkn MN k M ,)(--==3,实例1:某射击运动员进行了4次射击,假设每次射击击中的目标概率都为4(四)例题讲解例1 【二项分布的判断】下列随机变量X 服从二项分布吗?如果服从二项分布,其参数各是什么?(1)掷 5 枚相同的骰子,X 为出现“1”点的骰子数;【学生回答】X~B(5,1/6)(2)n 个新生儿,X 为男婴的个数;【学生回答】X~B(n,1/2)(3)某产品的合格品率为p,X 为n 个产品中的次品数;【学生回答】X~B(n,1- p)(4)袋中有除了颜色不同其他都相同的白球2个,红球3个,有放回的连续取4次,每次取一个,X 为4次中取到红球的总数.【学生回答】X~B(4,3/5)【注】始终从二项分布满足的三点特征去判断。

例2 【区分超几何分布和二项分布】100件产品中有3件不合格,每次取一件,抽取3次,X 表示不合格产品的件数,在下列情形下分别求X 分布列.(1)不放回抽取【学生回答】超几何分布,N=100,M=3,n=3(2)有放回抽取【学生回答】二项分布,n=3,p=0.03【教师提问】由此例题可知,超几何分布和二项分布的主要区别是什么? 【学生回答】前者是不放回抽取,后者是有放回抽取。

北师大版选修2《二项分布》教案及教学反思

北师大版选修2《二项分布》教案及教学反思

北师大版选修2《二项分布》教案及教学反思作为高中数学必修的一部分,概率论是学生们接触的一个重要课程,而在概率论的学习中,二项分布作为其中的一个重要的分布,是同学们必须掌握的概率分布之一。

为此,在教学过程中,我准备了一份《二项分布》的教案,并就教学中的一些问题进行了反思与总结。

教学目标通过学习《二项分布》这一课程,学生能够理解并熟练掌握二项分布的概念和基本性质,能够灵活地运用二项分布进行概率计算,能够将所学知识应用到生活实际问题中,从而提高他们的数学素养。

教学内容和过程教学内容1.二项分布的概念和基本性质2.二项分布的公式及其应用3.二项分布与其它概率分布的联系和区别教学过程第一部分:引入1.引出二项分布所描述的实际情境,如掷硬币、抽取球等,并简单解决相应的问题。

2.导入二项分布的概念和意义,引出概率分布的概念以及个别、间断变量和连续变量的区别第二部分:讲解1.介绍二项分布的基本定义和性质,如自变量、概率函数等。

2.示范如何推导二项分布的公式,以及如何求解相关问题,如最大值、最小值、期望等。

3.讲解二项分布与其它概率分布的比较,如伯努利分布、泊松分布等。

第三部分:练习1.教师示范通过样例计算,学生负责跟随一起完成。

2.自主试题,贴合实际问题,突出二项分布的应用。

第四部分:总结1.进行课堂回顾,梳理并确定知识点。

2.教师自评、学生互评,收集意见和建议。

教学反思教学优点1.教学过程中与实际问题紧密结合,使学生能够准确理解二项分布的概念和意义。

2.教师示范计算,学生跟随完成,学生在计算过程中不会出现错误,掌握的知识比较全面。

3.自主试题突出了二项分布的应用,学生能够更好地将所学的知识应用到实际问题中去。

教学不足1.教学内容相对比较单一,学生在练习和运用上有待完善。

2.缺少互动环节,学生在互相交流和讨论方面表现不足。

教学改进1.在试题设计和分组上再进一步思考,让学生在更多的实际问题中进行二项分布的应用。

2.适当增加互动环节,让学生在互相交流和讨论的过程中互相促进、取长补短。

二项式分布说课稿 2

二项式分布说课稿 2

二项分布说稿课一、教材分析1.地位和作用本节内容是高中数学选修2-3第二章第三节的内容。

通过前面的学习,学生已经掌握了有关概率的基础知识等可能事件概率、互斥事件概率、互斥事件概率、条件概率、相互独立事件概率的求法以及分布列的有关内容。

二项分布是继超几何分布后的又一应用广泛的概率模型,是对前面所学知识的综合应用。

2.教学目标在了解条件概率和相互独立事件概念的前提下,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题,同时,渗透由特殊到一般,由具体到抽象、观察分析、类比、归纳的数学思想方法。

3.教学重点及难点教学重点:独立重复试验,二项分布的理解及应用二项分布模型解决一些简单的实际问题。

教学难点:二项分布模型的构建二、教法分析1.通过学生熟悉的生活问题,创设情境;2.鼓励学生全体参与,正确形式概念;3.以板演为主,以多媒体为辅的教学手段。

三、教学过程本节课我设计为五个环节:1.创设情景,激发求知2.自主探究,合作学习3.信息交流,提示规律4.运用规律,解决问题5.提炼方法,反思小结可以循环使用,多媒体辅助贯穿整个教学过程。

(一)创设情景,激发求知1.投掷一枚相同的硬币5次,每次正面向上的概率为0.5。

2.某同学玩射击气球游戏,每次射击击破气球的概率为0.7,现有气球10个。

3.某篮球队员罚球命中率为0.8,罚球6次。

4.口袋内装有5个白球,3个黑球,不放回地抽取5个球问题1.上面这些试验有什么共同的特点?设计意图:利用学生求知好奇心理,以一个个人人皆知的试验为切入点,便于激发学生学习本节课的主题和重点,有利于知识的迁移,使学生明确知识的实际应用性。

了解数学来源于实际。

①包含了n个相同的试验。

②每次试验相互独立。

③每次试验只有两个可能的结果。

“成功”或“失败”。

④每次出现“成功”的概率P 相同,“失败”的概率也相同,为1-P 。

⑤试验“成功”或“失败”可以计数,即试验结果对应于一个离散型随机变量。

高中数学 2.4《二项分布》教案2 苏教版选修2-3

高中数学 2.4《二项分布》教案2 苏教版选修2-3

2.4二项分布(2)教学目标(1)进一步理解n 次独立重复试验的模型及二项分布的特点; (2)会解决互斥事件、独立重复试验综合应用的问题。

教学重点,难点互斥事件、独立重复试验综合应用问题. 教学过程一.复习回顾1.n 次独立重复试验。

(1)独立重复试验满足的条件 第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。

(2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k kn k nC p p --。

2.二项分布若随机变量X 的分布列为()P X k ==k k n kn C p q -,其中0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)XB n p 。

二.数学运用 1.例题例1: 某射手进行射击训练,假设每次射击击中目标的概率为0.6,且各次射击的结果互不影响。

(1)求射手在3次射击中,至少有两次连续击中目标的概率;(2)求射手第3次击中目标时,恰好射击了4次的概率;(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列。

解:(1)记“射手射击1次,击中目标”为事件A ,则在3次射击中至少有两次连续击中目标的概率231()()()20.60.40.60.504P P A A A P A A A P A A A =++=⨯⨯+=。

(2)22230.60.40.60.2592P C =⨯⨯⨯=。

(3)由题意“k ξ=”的概率为:223233*11()0.60.40.60.60.4(3,)k k k k P k C C k k N ξ----==⨯⨯⨯=⨯⨯≥∈所以,ξ的分布列为:例2:一名学生骑自行车上学,从他到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13。

(1)设X 为这名学生在途中遇到的红灯次数,求X 的分布列;(2)设η为这名学生在首次停车前经过的路口数,求η的分布列;(3)求这名学生在途中至少遇到一次红灯的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项分布(二)
【教学目标】
知识目标:
理解二项分布的概念,会计算服从二项分布的随机变量的概率. 能力目标:
学生的数学计算技能和数学思维能力得到提高.
【教学重点】
二项分布的概念.
【教学难点】
服从二项分布的随机变量的概率的计算.
【教学设计】
二项分布是以伯努利实验为背景的重要分布.在实际问题中,如果n 次试验相互独立,且各次实验是重复试验,事件A 在每次实验中发生的概率都是(01)p p <<,那么,事件A 发生的次数ξ是一个离散型随机变量,服从参数为n 和p 的二项分布.二项分布中的各个概率值,
依次是二项式[(1)]n p p -+的展开式中的各项.第1k +项1k T +为()(1)k k
n k n n
P k C p p -=-.这是计算服从二项分布的随机变量的概率的重要公式.例2和例3都是应用上述公式的基本训练题.解决这类问题的关键是判断随机变量服从二项分布,并确定事件发生的概率p 与独立重复实验的次数n 这两个参数,然后利用公式进行计算.在产品抽样检验中,如果抽样是有放回的,那么抽n 件检验,就相当于作n 次独立重复试验,因此在有放回的抽样检验中抽出的n 件产品中所含次品件数的概率分布是二项分布.当产品的数量相当大,而且抽取产品数目有很小的条件下,一般地,可以将不放回抽取近似地看作是有放回的抽取,应用二项分布得到结果.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
的概率分布叫做
35B ⎪⎝⎭
,.3次所取到的球恰好有
(3,0.6)B 3
3(3)0.6C =⋅
的概率分布叫做【教师教学后记】。

相关文档
最新文档