高中数学第二章随机变量及其分布2.2.3独立重复试验与二项分布课件新人教A版选修2_3
合集下载
高中数学第二章随机变量及其分布全章素养整合课件新人教A版选修23

解析:(1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击 5 次只击 中一次或一次也没有击中,故该事件的概率为 P=C15×23×134+135, 所以所求的概率为 1-P=1-C15×23×134+135=223423.
(2)当 ξ=4 时,记事件为 A, P(A)=C13×23×132×23=247, 当 ξ=5 时,意味着前 4 次射击只击中一次或一次也未击中,记为事件 B. 则 P(B)=C14×23×133+134=19, 所以所求概率为 P(A∪B)=P(A)+P(B)=247+19=277.
解析:(1)记事件 A1 为“从甲箱中摸出的 1 个球是红球”, A2 为“从乙箱中摸出的 1 个球是红球”, B 为“顾客抽奖 1 次能获奖”, 则 B 表示“顾客抽奖 1 次没有获奖”. 由题意 A1 与 A2 相互独立,则 A 1 与 A 2 相互独立,且 B = A 1·A 2, 因为 P(A1)=140=25,P(A2)=150=12, 所以 P( B )=P( A 1·A 2)=1-25·1-12=130, 故所求事件的概率 P(B)=1-P( B )=1-130=170.
[例 2] 甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为 0.6. 本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影 响,求前三局比赛甲队领先的概率. [解析] 单局比赛甲队胜乙队的概率为 0.6,乙队胜甲队的概率为 1-0.6=0.4, 记“甲队胜三局”为事件 A,“甲队胜二局”为事件 B,则: P(A)=0.63=0.216; P(B)=C23×0.62×0.4=0.432, ∴前三局比赛甲队领先的概率为 P(A)+P(B)=0.648.
X1 5 6 7 8 P 0.4 a b 0.1 且 X1 的均值 E(X1)=6,求 a,b 的值;
(完整)2.2.3 独立重复试验与二项分布

C32
3 5
(1
3
5 )2
5
54 125
5
5
125
(4)刚好在第二、第三两次击中目标。
(1 3) 3 3 18 5 5 5 125
11 [普通高中课程数学选修课2-3堂] 练2.2习二项分布及其应用
1、每次试验的成功率为P(0<P<1),重复进行10次 试验,其中前七次未成功后三次成功的概率( C )
C
n n
pn
注: P( X k ) cnk pkqnk是( p q)n展开式中的第 k 1 项.
8 [普通高中课程数学选修2-3] 2.2 二项分布及其应用
二项分布与两点分布、超几何分布有什么区别和联系? 1.两点分布是特殊的二项分布 (1 p)
2.一个袋中放有 M 个红球,( N M )个白球,依次从袋中 取 n 个球,记下红球的个数 .
P(B0) P(A1 A2 A3) q3, P(B1) P(A1 A2 A3) P(A1A2 A3) P(A1 A2 A3) 3q2 p, P(B2) P(A1A2 A3) P(A1A2 A3) P(A1 A2 A3) 3qp2,
P(B3 ) P( A1A2 A3 ) p3.
所以,连续掷一枚图钉3次,仅出现1次针尖向上的概率是 3q2 p.
6 [普通高中课程数学选修2-3] 2.2 二项分布及其应用
思考?
上面我们利用掷1次图钉,针尖向上的概率为p,求 出了连续掷3次图钉,仅出现次1针尖向上的概率。类
似地,连续掷3次图钉,出现 k(0 k 3) 次针尖向
上的概率是多少?你能发现其中的规律吗?
(2)在10次射击中,至少8次击中目标的概率为:
【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)

( 互独事件 互独事件)
独立事件一定不互斥. 独立事件一定不互斥 互斥事件一定不独立. 互斥事件一定不独立 明确事件中的关键词, 明确事件中的关键词,如,“至少有一个发生”“至 至少有一个发生”“至 ”“ 多有一个发生” 恰有一个发生” 多有一个发生”,“恰有一个发生”,“都发 ”“都不发生 都不发生” 不都发生” 生”“都不发生”,“不都发生”。
此时称随机变量X服从二项分布,记作X~B(n,p), 此时称随机变量 服从二项分布,记作 服从二项分布 并称p为成功概率 为成功概率。 并称 为成功概率。
复习回顾
二项分布 3、
在一次试验中某事件发生的概率是p,那么在n次 在一次试验中某事件发生的概率是 ,那么在 次 独立重复试验中这个事件恰发生 恰发生ξ 显然 显然ξ 独立重复试验中这个事件恰发生ξ次,显然ξ是一个随机 变量. 变量. 于是得到随机变量ξ的概率分布如下: 于是得到随机变量 的概率分布如下: 的概率分布如下 ξ p
例 1 考虑恰有三个小孩的家庭 (假定生男生女为 考虑恰有三个小孩的家庭.
等可能) 等可能)
(1)若已知某一家有一个是女孩,求这家另两个是男孩的概率 )若已知某一家有一个是女孩, (2)若已知某一家第一个是女孩,求这家另两个是男孩的概率 )若已知某一家第一个是女孩,
(女、女、女); (女、女、男); (女、男、女);(女、男、男); ( 男、女、女) ; ( 男、女、男) ; ( 男、男、女) ; ( 男、男、男) ;
B
A
复习回顾
1、事件的相互独立性 、 为两个事件, 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 , 为两个事件 则称事 与事件B相互独立 件A与事件 相互独立。 与事件 相互独立。 即事件A( 对事件B( 即事件 (或B)是否发生 对事件 (或A)发生的 )是否发生,对事件 ) 概率没有影响,这样两个事件叫做相互独立事件。 概率没有影响,
独立事件一定不互斥. 独立事件一定不互斥 互斥事件一定不独立. 互斥事件一定不独立 明确事件中的关键词, 明确事件中的关键词,如,“至少有一个发生”“至 至少有一个发生”“至 ”“ 多有一个发生” 恰有一个发生” 多有一个发生”,“恰有一个发生”,“都发 ”“都不发生 都不发生” 不都发生” 生”“都不发生”,“不都发生”。
此时称随机变量X服从二项分布,记作X~B(n,p), 此时称随机变量 服从二项分布,记作 服从二项分布 并称p为成功概率 为成功概率。 并称 为成功概率。
复习回顾
二项分布 3、
在一次试验中某事件发生的概率是p,那么在n次 在一次试验中某事件发生的概率是 ,那么在 次 独立重复试验中这个事件恰发生 恰发生ξ 显然 显然ξ 独立重复试验中这个事件恰发生ξ次,显然ξ是一个随机 变量. 变量. 于是得到随机变量ξ的概率分布如下: 于是得到随机变量 的概率分布如下: 的概率分布如下 ξ p
例 1 考虑恰有三个小孩的家庭 (假定生男生女为 考虑恰有三个小孩的家庭.
等可能) 等可能)
(1)若已知某一家有一个是女孩,求这家另两个是男孩的概率 )若已知某一家有一个是女孩, (2)若已知某一家第一个是女孩,求这家另两个是男孩的概率 )若已知某一家第一个是女孩,
(女、女、女); (女、女、男); (女、男、女);(女、男、男); ( 男、女、女) ; ( 男、女、男) ; ( 男、男、女) ; ( 男、男、男) ;
B
A
复习回顾
1、事件的相互独立性 、 为两个事件, 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 , 为两个事件 则称事 与事件B相互独立 件A与事件 相互独立。 与事件 相互独立。 即事件A( 对事件B( 即事件 (或B)是否发生 对事件 (或A)发生的 )是否发生,对事件 ) 概率没有影响,这样两个事件叫做相互独立事件。 概率没有影响,
【高中数学】随机变量及其分布课件2022-2023学年高二下学期数学人教A版2019选择性必修第三册

解:设事件A “甲袋中取到红球”,B “从乙袋中取到红球”.
则从甲乙两袋中取到的都是红球即为事件AB
其中P(A) 1 ,P(B) 1 ; 又事件A、B相互独立
2 所以P(AB)
2 P(A)P(B)
1
1
1
.
22 4
[规律总结]
规律总结:一般地,若事件A、B相互独立,则积事件AB的概率满足 P(AB) P(A)P(B).
A. 1
B. 7
C. 11
D. 1
2
36
48
6
[提炼升华]
条件概率与全概率公式
随机变量
离散型随机变量 连续型随机变量
条件概率公式
P(B |
A)
P(AB) P(A)
概率的乘法公式 P(AB) P(A)P(B | A)
全概率公式
n
P(B) P(A i)P(B | Ai). i 1
贝叶斯公式 分布列
由条件概率的定义知,对任意两个事件A与B,若P(A) 0, 则P(AB) P(A)P(B | A).我们称上式为概率的乘法公式.
当且仅当事件 A与B相互独立时,有 P(B | A) P(B),此时P(AB) P(A)P(B).
[典型例题]
例:甲袋中装有3个红球和3个白球,乙袋中装有2个红球和2个白球. 问题3:从甲袋中任取一球放 入乙袋中,再从乙袋中 任取一球,则两次 取到的都是红球的概率 是多少?
P(Ai
|
B)
P(A i)P(B | P(B)
A
) i
P(A
i)P(B
|
A
)
i
n
.
P(A
k)P(B
|
A
)
2.2.3独立重复试验与二项分布

X ~ B(n, p) 其中p为成功概率.
小结
一、独立重复试验的概念
二、n次独立重复试验的概率公式及结构特点
P(X
k)
C
k n
pk (1
p)nk , k
0,1, 2, ..., n
三、二项分布
X 0 1… k … n
p … … Cn0 p0qn Cn1 p1qn1
Cnk pk qnk
Cnn pnq0
探究:
姚明每次罚球命中的概率为p,罚不中的概率是 q=1-p .在连续3次罚球中姚明恰好命中1次的概率是 多少?那么恰好命中0次、2次、3次的概率是多少? 你能给出一个统一的公式吗?
二、n次独立重复试验的概率公式及结构特点
如果在1次试验中,事件A出现的概率为p, 则在 n次试验中,A恰好出现 k 次的概率为:
次试验中事件A发生的概率是p,那么事件A恰好发生k次
的概率是为
P(X
k)
C
k n
pk (1
p)nk , k
0,1, 2, ..., n
于是得到随机变量X的概率分布如下:(q=1-p)
X
0
1…
k
…
n
p
… … Cn0 p0qn Cn1 p1qn1
Cnk pk qnk
Cnn pnq0
此时我们称随机变量X服从二项分布,记作
至少一人解出的概率为:
解1:(直接法) P(x 1) P(x 1) P(x 2) P(x 3) 0.936 解2:(间接法) P(x 1) 1 P(x 0) 1 0.43 0.936
因为 0.936 0.9,所以臭皮匠胜出的可能性较大
三、二项分布
在n次独立重复试验中,设事件A发生的次数是X,且在每
小结
一、独立重复试验的概念
二、n次独立重复试验的概率公式及结构特点
P(X
k)
C
k n
pk (1
p)nk , k
0,1, 2, ..., n
三、二项分布
X 0 1… k … n
p … … Cn0 p0qn Cn1 p1qn1
Cnk pk qnk
Cnn pnq0
探究:
姚明每次罚球命中的概率为p,罚不中的概率是 q=1-p .在连续3次罚球中姚明恰好命中1次的概率是 多少?那么恰好命中0次、2次、3次的概率是多少? 你能给出一个统一的公式吗?
二、n次独立重复试验的概率公式及结构特点
如果在1次试验中,事件A出现的概率为p, 则在 n次试验中,A恰好出现 k 次的概率为:
次试验中事件A发生的概率是p,那么事件A恰好发生k次
的概率是为
P(X
k)
C
k n
pk (1
p)nk , k
0,1, 2, ..., n
于是得到随机变量X的概率分布如下:(q=1-p)
X
0
1…
k
…
n
p
… … Cn0 p0qn Cn1 p1qn1
Cnk pk qnk
Cnn pnq0
此时我们称随机变量X服从二项分布,记作
至少一人解出的概率为:
解1:(直接法) P(x 1) P(x 1) P(x 2) P(x 3) 0.936 解2:(间接法) P(x 1) 1 P(x 0) 1 0.43 0.936
因为 0.936 0.9,所以臭皮匠胜出的可能性较大
三、二项分布
在n次独立重复试验中,设事件A发生的次数是X,且在每
2014-2015学年高中数学(人教版选修2-3)配套课件第二章 2.2.3 独立重复试验与二项分布

4 96 A.C4 B.0.84 1000.8 ×0.2
)
栏 目 链 接
C.0.84×0.2 96 D.0.24×0.296
解析:由题意可知中靶的概率为 0.8,故打 100 发子
4 96 弹有 4 发中靶的概率为 C4 1000.8 ×0.2 .故选 A.
答案:A
自 测 自 评
3.在 4 次独立试验中,事件 A 出现的概率相同,若事件 65 A 至少发生 1 次的概率是 ,则事件 A 在一次试验中发生的 81 概率是( A ) 1 2 5 2 A. B. C. D. 3 5 6 3
33 32 216 3 P=C5× ×1- = . 5
栏 目 链 接
5
625
(3)该射手射击了 5 次,其中恰有 3 次连续击中目标,而 其他两次没有击中目标,应用排列组合知识,把 3 次连续击
1 中目标看成一个整体可得共有 C3 种情况.
故所求概率为
ቤተ መጻሕፍቲ ባይዱ
32 1 33 · 1- = P=C3·
5
5
324 . 3 125
栏 目 链 接
点评:解决此类问题的关键是正确设出独立重复试验中 的事件 A,接着分析随机变量是否满足独立重复试验概型的
k n-k 条件,若是,利用公式 P(ξ=k)=Ck p (1 - p ) 计算便可. n
变 式 迁 移 1.某市公租房的房源位于A,B,C三个片区,设 每位申请人只申请其中一个片区的房源,且申请其中 任一个片区的房源是等可能的.该市的4位申请人中恰
各次之间 重复地 ________地进行的一种试验,也叫贝努里试验. 相互独立
特点:每一次试验的结果只有
______________________________,且任何一次试验中发
)
栏 目 链 接
C.0.84×0.2 96 D.0.24×0.296
解析:由题意可知中靶的概率为 0.8,故打 100 发子
4 96 弹有 4 发中靶的概率为 C4 1000.8 ×0.2 .故选 A.
答案:A
自 测 自 评
3.在 4 次独立试验中,事件 A 出现的概率相同,若事件 65 A 至少发生 1 次的概率是 ,则事件 A 在一次试验中发生的 81 概率是( A ) 1 2 5 2 A. B. C. D. 3 5 6 3
33 32 216 3 P=C5× ×1- = . 5
栏 目 链 接
5
625
(3)该射手射击了 5 次,其中恰有 3 次连续击中目标,而 其他两次没有击中目标,应用排列组合知识,把 3 次连续击
1 中目标看成一个整体可得共有 C3 种情况.
故所求概率为
ቤተ መጻሕፍቲ ባይዱ
32 1 33 · 1- = P=C3·
5
5
324 . 3 125
栏 目 链 接
点评:解决此类问题的关键是正确设出独立重复试验中 的事件 A,接着分析随机变量是否满足独立重复试验概型的
k n-k 条件,若是,利用公式 P(ξ=k)=Ck p (1 - p ) 计算便可. n
变 式 迁 移 1.某市公租房的房源位于A,B,C三个片区,设 每位申请人只申请其中一个片区的房源,且申请其中 任一个片区的房源是等可能的.该市的4位申请人中恰
各次之间 重复地 ________地进行的一种试验,也叫贝努里试验. 相互独立
特点:每一次试验的结果只有
______________________________,且任何一次试验中发
二项分布-高二数学同步精讲课件(人教A版2019选择性必修第三册)

7.4.1 二项分布
复习引入
前面我们学习了离散型随机变量的有关知识,本节将利用这些知识研究两类重
要的概率模型——二项分布和超几何分布.
在实际问题中,有许多随机试验与掷硬币试验具有相同的特征,它们只包含两
个可能结果.例如,检验一件产品结果为合格或不合格,飞碟射击时中靶或脱靶,医
学检验结果为阳性或阴性等.我们把只包含两个可能结果的试验叫做伯努利试验.
互平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙
作为通道,前面挡有一块玻璃.将小球从顶端放入,小球下落的
过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落
入底部的格子中.格子从左到右分别编号为0,1,2,…,10,用
表示小球最后落入格子的号码,求的分布列.
解:设 =“向右下落”,则ҧ =“向左下落”,且
斥,每个结果都是3个相互独立事件的积.由概率的加法公式和乘法公式得:
新知探索
( = 0) = (1 2 3 ) = 0.23 ,
( = 1) = (1 2 3 ) + (1 2 3 ) + (1 2 3 ) = 3 × 0.8 × 0.22 ,
( = 2) = (1 2 3 ) + (1 2 3 ) + (1 2 3 ) = 3 × 0.82 × 0.2,
( = 3) = 2 . 均值和方差分别为
() = 0 × (1 − )2 +1 × 2(1 − ) + 2 × 2 = 2.
() = 02 × (1 − )2 +12 × 2(1 − ) + 22 × 2 − (2)2 = 2(1 − ).
新知探索
一般地,可以证明:如果~(,),那么() = ,() = (1 − ).
复习引入
前面我们学习了离散型随机变量的有关知识,本节将利用这些知识研究两类重
要的概率模型——二项分布和超几何分布.
在实际问题中,有许多随机试验与掷硬币试验具有相同的特征,它们只包含两
个可能结果.例如,检验一件产品结果为合格或不合格,飞碟射击时中靶或脱靶,医
学检验结果为阳性或阴性等.我们把只包含两个可能结果的试验叫做伯努利试验.
互平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙
作为通道,前面挡有一块玻璃.将小球从顶端放入,小球下落的
过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落
入底部的格子中.格子从左到右分别编号为0,1,2,…,10,用
表示小球最后落入格子的号码,求的分布列.
解:设 =“向右下落”,则ҧ =“向左下落”,且
斥,每个结果都是3个相互独立事件的积.由概率的加法公式和乘法公式得:
新知探索
( = 0) = (1 2 3 ) = 0.23 ,
( = 1) = (1 2 3 ) + (1 2 3 ) + (1 2 3 ) = 3 × 0.8 × 0.22 ,
( = 2) = (1 2 3 ) + (1 2 3 ) + (1 2 3 ) = 3 × 0.82 × 0.2,
( = 3) = 2 . 均值和方差分别为
() = 0 × (1 − )2 +1 × 2(1 − ) + 2 × 2 = 2.
() = 02 × (1 − )2 +12 × 2(1 − ) + 22 × 2 − (2)2 = 2(1 − ).
新知探索
一般地,可以证明:如果~(,),那么() = ,() = (1 − ).
二项分布(教学课件)高二数学(人教A版2019选择性必修第三册)

(1) 没有鸡感染病毒的概率;(2) 恰好有1只鸡感染病毒的概率.
解:设5只接种疫苗的鸡中感染病毒的只数为X , P( X 0) 0.85 0.32768.
(2)恰好有1只鸡感染病毒的概率为
P(X
1)
C
1 5
0.2 0.84
0.4096.
解:由题意知,X服从二项分布,即X ~ B(4,0.5).
(1) X的分布列为
P(X
k)
C
k 4
0.54 ,k
0,1,2,3,4.
(2) E( X ) 4 0.5 2,
D( X ) 4 0.5(1 0.5) 1.
2.鸡接种一种疫苗后,有80%不会感染某种病毒.如果5只鸡接种了疫 苗,求:
(1)当n=1时,X分布列为 P(X=0)=1-p,P(X=1)=p,则有
E(X)=p,D(X)=p(1-p). (2)当n=2时,X分布列为 P(X=0)=(1-p)2, P(X=1)=2p(1-p), P(X=2)=p2.
E(X)=0×(1-p)2+1×2p(1-p)+2p2 =2p. D(X)= 02×(1-p)2+12×2p(1-p)+22×p2-(2p)2=2p(1-p).
因为p2>p1, 所以采用5局3胜制对甲更有利.
例3 甲、乙两选手进行象棋比赛, 如果每局比赛甲获胜的概 率为0.6, 乙获胜的概率为0.4, 那么采用3局2胜制还是采用 5局3胜制对甲更有利? 解法2:采用3局2胜制, 不妨设赛满3局, 用X表示3局比赛中 甲获胜的局数, 则X~B(3, 0.6). 甲最终获胜的概率为 p1 = P(X=2)+P(X=3)= C32×0.62×0.4+C33 ×0.63= 0.648. 采用5局3胜制, 不妨设赛满5局, 用X表示5局比赛中甲获胜 的局数, 则X~B(5, 0.6). 甲最终获胜的概率为
解:设5只接种疫苗的鸡中感染病毒的只数为X , P( X 0) 0.85 0.32768.
(2)恰好有1只鸡感染病毒的概率为
P(X
1)
C
1 5
0.2 0.84
0.4096.
解:由题意知,X服从二项分布,即X ~ B(4,0.5).
(1) X的分布列为
P(X
k)
C
k 4
0.54 ,k
0,1,2,3,4.
(2) E( X ) 4 0.5 2,
D( X ) 4 0.5(1 0.5) 1.
2.鸡接种一种疫苗后,有80%不会感染某种病毒.如果5只鸡接种了疫 苗,求:
(1)当n=1时,X分布列为 P(X=0)=1-p,P(X=1)=p,则有
E(X)=p,D(X)=p(1-p). (2)当n=2时,X分布列为 P(X=0)=(1-p)2, P(X=1)=2p(1-p), P(X=2)=p2.
E(X)=0×(1-p)2+1×2p(1-p)+2p2 =2p. D(X)= 02×(1-p)2+12×2p(1-p)+22×p2-(2p)2=2p(1-p).
因为p2>p1, 所以采用5局3胜制对甲更有利.
例3 甲、乙两选手进行象棋比赛, 如果每局比赛甲获胜的概 率为0.6, 乙获胜的概率为0.4, 那么采用3局2胜制还是采用 5局3胜制对甲更有利? 解法2:采用3局2胜制, 不妨设赛满3局, 用X表示3局比赛中 甲获胜的局数, 则X~B(3, 0.6). 甲最终获胜的概率为 p1 = P(X=2)+P(X=3)= C32×0.62×0.4+C33 ×0.63= 0.648. 采用5局3胜制, 不妨设赛满5局, 用X表示5局比赛中甲获胜 的局数, 则X~B(5, 0.6). 甲最终获胜的概率为