2.3.1 二次函数与一元二次方程、不等式 学案(含答案)
一元二次方程、不等式(经典导学案及练习答案详解)

§1.5一元二次方程、不等式学习目标1.会从实际情景中抽象出一元二次不等式.2.结合二次函数图象,会判断一元二次方程的根的个数,以及解一元二次不等式.3.了解简单的分式、绝对值不等式的解法.知识梳理1.二次函数与一元二次方程、不等式的解的对应关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅2.分式不等式与整式不等式(1)f(x)g(x)>0(<0)⇔f(x)g(x)>0(<0);(2)f(x)g(x)≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.3.简单的绝对值不等式|x|>a(a>0)的解集为(-∞,-a)∪(a,+∞),|x|<a(a>0)的解集为(-a,a).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若方程ax2+bx+c=0无实数根,则不等式ax2+bx+c>0的解集为R.(×)(2)若不等式ax2+bx+c>0的解集为(x1,x2),则a<0.(√)(3)若ax 2+bx +c >0恒成立,则a >0且Δ<0.( × ) (4)不等式x -ax -b ≥0等价于(x -a )(x -b )≥0.( × )教材改编题1.若集合A ={x |x 2-9x >0},B ={x |x 2-2x -3<0},则A ∪B 等于( ) A .R B .{x |x >-1} C .{x |x <3或x >9} D .{x |x <-1或x >3} 答案 C解析 A ={x |x >9或x <0},B ={x |-1<x <3}, ∴A ∪B ={x |x <3或x >9}.2.若关于x 的不等式ax 2+bx +2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <13,则a +b =________. 答案 -14解析 依题意知⎩⎨⎧-b a =-12+13,2a =⎝⎛⎭⎫-12×13,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.3.一元二次不等式ax 2+ax -1<0对一切x ∈R 恒成立,则实数a 的取值范围是________. 答案 (-4,0)解析 依题意知⎩⎪⎨⎪⎧ a <0,Δ<0,即⎩⎪⎨⎪⎧a <0,a 2+4a <0,∴-4<a <0.题型一 一元二次不等式的解法 命题点1 不含参的不等式例1 (1)不等式-2x 2+x +3<0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -1<x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪ -32<x <1C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-1或x >32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-32或x >1 答案 C解析 -2x 2+x +3<0可化为2x 2-x -3>0, 即(x +1)(2x -3)>0, ∴x <-1或x >32.(2)(多选)已知集合M ={}x ||x -1|≤2,x ∈R ,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪5x +1≥1,x ∈R ,则( ) A .M ={}x |-1≤x ≤3 B .N ={}x |-1≤x ≤4 C .M ∪N ={}x |-1≤x ≤4 D .M ∩N ={}x |-1<x ≤3 答案 ACD解析 由题设可得M =[-1,3],N =(-1,4], 故A 正确,B 错误;M ∪N ={x |-1≤x ≤4},故C 正确; 而M ∩N ={x |-1<x ≤3},故D 正确. 命题点2 含参的不等式例2 解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解 原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解得1a <x <1;当a =1时,解集为∅; 当0<a <1时,解得1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1. 延伸探究 在本例中,把a >0改成a ∈R ,解不等式. 解 当a >0时,同例2,当a =0时,原不等式等价于-x +1<0,即x >1, 当a <0时,1a<1,原不等式可化为⎝⎛⎭⎫x -1a (x -1)>0, 解得x >1或x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a , 当a =1时,不等式的解集为∅,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1, 当a =0时,不等式的解集为{x |x >1},当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a或x >1. 教师备选解关于x 的不等式x 2-ax +1≤0. 解 由题意知,Δ=a 2-4, ①当a 2-4>0,即a >2或a <-2时,方程x 2-ax +1=0的两根为x =a ±a 2-42,∴原不等式的解为a -a 2-42≤x ≤a +a 2-42.②若Δ=a 2-4=0,则a =±2.当a =2时,原不等式可化为x 2-2x +1≤0, 即(x -1)2≤0,∴x =1;当a =-2时,原不等式可化为x 2+2x +1≤0, 即(x +1)2≤0,∴x =-1.③当Δ=a 2-4<0,即-2<a <2时, 原不等式的解集为∅.综上,当a >2或a <-2时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a -a 2-42≤x ≤a +a 2-42; 当a =2时,原不等式的解集为{1}; 当a =-2时,原不等式的解集为{-1}; 当-2<a <2时,原不等式的解集为∅.思维升华 对含参的不等式,应对参数进行分类讨论,常见的分类有 (1)根据二次项系数为正、负及零进行分类.(2)根据判别式Δ与0的关系判断根的个数. (3)有两个根时,有时还需根据两根的大小进行讨论.跟踪训练1 (1)(多选)已知关于x 的不等式ax 2+bx +c ≥0的解集为{x |x ≤-3或x ≥4},则下列说法正确的是( ) A .a >0B .不等式bx +c >0的解集为{x |x <-4}C .不等式cx 2-bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-14或x >13 D .a +b +c >0 答案 AC解析 关于x 的不等式ax 2+bx +c ≥0的解集为(-∞,-3]∪[4,+∞), 所以二次函数y =ax 2+bx +c 的开口方向向上,即a >0,故A 正确; 对于B ,方程ax 2+bx +c =0的两根分别为-3,4,由根与系数的关系得⎩⎨⎧-ba=-3+4,ca =-3×4,解得⎩⎪⎨⎪⎧b =-a ,c =-12a .bx +c >0⇔-ax -12a >0, 由于a >0,所以x <-12,所以不等式bx +c >0的解集为{}x |x <-12, 故B 不正确;对于C ,由B 的分析过程可知⎩⎪⎨⎪⎧b =-a ,c =-12a ,所以cx 2-bx +a <0⇔-12ax 2+ax +a <0⇔12x 2-x -1>0⇔x <-14或x >13,所以不等式cx 2-bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-14或x >13,故C 正确; 对于D ,a +b +c =a -a -12a =-12a <0,故D 不正确. (2)解关于x 的不等式(x -1)(ax -a +1)>0.解 ①当a =0时,原不等式可化为x -1>0,即x >1; 当a ≠0时,(x -1)(ax -a +1)=0的两根分别为1,1-1a .②当a >0时,1-1a<1,∴原不等式的解为x >1或x <1-1a .③当a <0时,1-1a >1,∴原不等式的解为1<x <1-1a.综上,当a =0时,原不等式的解集为{x |x >1};当a >0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <1-1a ; 当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1-1a . 题型二 一元二次不等式恒(能)成立问题 命题点1 在R 上恒成立问题例3 (2022·漳州模拟)对∀x ∈R ,不等式(a -2)x 2+2(a -2)x -4<0恒成立,则a 的取值范围是( ) A .-2<a ≤2 B .-2≤a ≤2 C .a <-2或a ≥2 D .a ≤-2或a ≥2答案 A解析 不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,当a -2=0,即a =2时,-4<0恒成立,满足题意;当a -2≠0时,要使不等式恒成立,需⎩⎪⎨⎪⎧ a -2<0,Δ<0,即有⎩⎪⎨⎪⎧a <2,4(a -2)2+16(a -2)<0,解得-2<a <2.综上可得,a 的取值范围为(-2,2]. 命题点2 在给定区间上恒成立问题例4 已知函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<5-m 恒成立,则实数m 的取值范围为________. 答案 ⎝⎛⎭⎫-∞,67 解析 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法: 方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6, x ∈[1,3].当m >0时,g (x )在[1,3]上单调递增,所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上单调递减, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0在x ∈[1,3]上恒成立, 所以m <6x 2-x +1在x ∈[1,3]上恒成立.令y =6x 2-x +1,因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎝⎛⎭⎫-∞,67. 命题点3 给定参数范围的恒成立问题例5 (2022·宿迁模拟)若不等式x 2+px >4x +p -3,当0≤p ≤4时恒成立,则x 的取值范围是( ) A .[-1,3] B .(-∞,-1] C .[3,+∞)D .(-∞,-1)∪(3,+∞) 答案 D解析 不等式x 2+px >4x +p -3 可化为(x -1)p +x 2-4x +3>0,由已知可得[(x -1)p +x 2-4x +3]min >0(0≤p ≤4), 令f (p )=(x -1)p +x 2-4x +3(0≤p ≤4),可得⎩⎪⎨⎪⎧f (0)=x 2-4x +3>0,f (4)=4(x -1)+x 2-4x +3>0,∴x <-1或x >3.教师备选函数f (x )=x 2+ax +3.若当x ∈[-2,2]时,f (x )≥a 恒成立,则实数a 的取值范围是________. 若当a ∈[4,6]时,f (x )≥0恒成立,则实数x 的取值范围是________________. 答案 [-7,2](-∞,-3-6]∪[-3+6,+∞)解析 若x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立, 令g (x )=x 2+ax +3-a ,则有①Δ≤0或②⎩⎪⎨⎪⎧Δ>0,-a2<-2,g (-2)=7-3a ≥0.或③⎩⎪⎨⎪⎧Δ>0,-a2>2,g (2)=7+a ≥0,解①得-6≤a ≤2,解②得a ∈∅, 解③得-7≤a <-6.综上可得,满足条件的实数a 的取值范围是[-7,2]. 令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞). 思维升华 恒成立问题求参数的范围的解题策略(1)弄清楚自变量、参数.一般情况下,求谁的范围,谁就是参数.(2)一元二次不等式在R 上恒成立,可用判别式Δ,一元二次不等式在给定区间上恒成立,不能用判别式Δ,一般分离参数求最值或分类讨论.跟踪训练2 (1)已知关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围是( )A .{a |-1≤a ≤4}B .{a |-1<a <4}C .{a |a ≥4或a ≤-1}D .{a |-4≤a ≤1}答案 A解析 因为关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,即x 2-4x +a 2-3a ≤0在R 上有解,只需y =x 2-4x +a 2-3a 的图象与x 轴有公共点, 所以Δ=(-4)2-4×(a 2-3a )≥0, 即a 2-3a -4≤0,所以(a -4)(a +1)≤0, 解得-1≤a ≤4,所以实数a 的取值范围是{a |-1≤a ≤4}.(2)当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是( ) A .(-∞,4] B .(-∞,-5) C .(-∞,-5] D .(-5,-4)答案 C解析 令f (x )=x 2+mx +4, ∴当x ∈(1,2)时,f (x )<0恒成立,∴⎩⎪⎨⎪⎧f (1)≤0,f (2)≤0, 即⎩⎪⎨⎪⎧1+m +4≤0,4+2m +4≤0, 解得m ≤-5.课时精练1.不等式9-12x ≤-4x 2的解集为( ) A .RB .∅C.⎩⎨⎧⎭⎬⎫x ⎪⎪x =32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠32 答案 C解析 原不等式可化为4x 2-12x +9≤0, 即(2x -3)2≤0, ∴2x -3=0,∴x =32,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x =32. 2.(2022·揭阳质检)已知p :|2x -3|<1,q :x (x -3)<0,则p 是q 的( ) A .充要条件 B .充分不必要条件C .既不充分也不必要条件D .必要不充分条件 答案 B解析 ∵p :|2x -3|<1,则-1<2x -3<1, 可得p :1<x <2,又∵q :x (x -3)<0,由x (x -3)<0,可得q :0<x <3, 可得p 是q 的充分不必要条件.3.(2022·南通模拟)不等式(m +1)x 2-mx +m -1<0的解集为∅,则m 的取值范围是( ) A .m <-1 B .m ≥233C .m ≤-233D .m ≥233或m ≤-233答案 B解析 ∵不等式(m +1)x 2-mx +m -1<0的解集为∅, ∴不等式(m +1)x 2-mx +m -1≥0恒成立.①当m +1=0,即m =-1时,不等式化为x -2≥0, 解得x ≥2,不是对任意x ∈R 恒成立,舍去; ②当m +1≠0,即m ≠-1时,对任意x ∈R , 要使(m +1)x 2-mx +m -1≥0,只需m +1>0且Δ=(-m )2-4(m +1)(m -1)≤0, 解得m ≥233.综上,实数m 的取值范围是m ≥233.4.(2022·合肥模拟)不等式x 2+ax +4≥0对一切x ∈[1,3]恒成立,则a 的最小值是( ) A .-5 B .-133 C .-4 D .-3答案 C解析 ∵x ∈[1,3]时,x 2+ax +4≥0恒成立, 则a ≥-⎝⎛⎭⎫x +4x 恒成立, 又x ∈[1,3]时,x +4x ≥24=4,当且仅当x =2时取等号.∴-⎝⎛⎭⎫x +4x ≤-4, ∴a ≥-4.故a 的最小值为-4.5.(多选)满足关于x 的不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,则满足条件的一组有序实数对(a ,b )的值可以是( )A .(-2,-1)B .(-3,-6)C .(2,4)D.⎝⎛⎭⎫-3,-32 答案 AD解析 不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2, ∴方程(ax -b )(x -2)=0的实数根为12和2, 且⎩⎪⎨⎪⎧ a <0,b a =12,即a =2b <0,故选AD. 6.(多选)(2022·湖南长郡中学月考)已知不等式x 2+ax +b >0(a >0)的解集是{x |x ≠d },则下列四个结论中正确的是( )A .a 2=4bB .a 2+1b≥4 C .若不等式x 2+ax -b <0的解集为(x 1,x 2),则x 1x 2>0D .若不等式x 2+ax +b <c 的解集为(x 1,x 2),且|x 1-x 2|=4,则c =4答案 ABD解析 由题意,知Δ=a 2-4b =0,所以a 2=4b ,所以A 正确;对于B ,a 2+1b =a 2+4a 2≥2a 2·4a 2=4,当且仅当a 2=4a 2,即a =2时等号成立, 所以B 正确;对于C ,由根与系数的关系,知x 1x 2=-b =-a 24<0,所以C 错误; 对于D ,由根与系数的关系,知x 1+x 2=-a ,x 1x 2=b -c =a 24-c , 则|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =a 2-4⎝⎛⎭⎫a 24-c =2c =4, 解得c =4,所以D 正确.7.不等式3x -1>1的解集为________.答案 (1,4)解析 ∵3x -1>1, ∴3x -1-1>0,即4-x x -1>0, 即1<x <4.∴原不等式的解集为(1,4).8.一元二次方程kx 2-kx +1=0有一正一负根,则实数k 的取值范围是________. 答案 (-∞,0)解析 kx 2-kx +1=0有一正一负根,∴⎩⎪⎨⎪⎧ Δ=k 2-4k >0,1k<0,解得k <0. 9.已知关于x 的不等式-x 2+ax +b >0.(1)若该不等式的解集为(-4,2),求a ,b 的值;(2)若b =a +1,求此不等式的解集.解 (1)根据题意得⎩⎪⎨⎪⎧2-4=a ,2×(-4)=-b , 解得a =-2,b =8.(2)当b =a +1时,-x 2+ax +b >0⇔x 2-ax -(a +1)<0,即[x -(a +1)](x +1)<0.当a +1=-1,即a =-2时,原不等式的解集为∅;当a +1<-1,即a <-2时,原不等式的解集为(a +1,-1);当a +1>-1,即a >-2时,原不等式的解集为(-1,a +1).综上,当a <-2时,不等式的解集为(a +1,-1);当a =-2时,不等式的解集为∅; 当a >-2时,不等式的解集为(-1,a +1).10.若二次函数f (x )=ax 2+bx +c (a ≠0),满足f (x +2)-f (x )=16x 且f (0)=2.(1)求函数f (x )的解析式;(2)若存在x ∈[1,2],使不等式f (x )>2x +m 成立,求实数m 的取值范围.解 (1)由f (0)=2,得c =2,所以f (x )=ax 2+bx +2(a ≠0),由f (x +2)-f (x )=[a (x +2)2+b (x +2)+2]-(ax 2+bx +2)=4ax +4a +2b ,又f (x +2)-f (x )=16x ,得4ax +4a +2b =16x ,所以⎩⎪⎨⎪⎧4a =16,4a +2b =0,故a =4,b =-8, 所以f (x )=4x 2-8x +2.(2)因为存在x ∈[1,2],使不等式f (x )>2x +m 成立,即存在x ∈[1,2],使不等式m <4x 2-10x +2成立,令g (x )=4x 2-10x +2,x ∈[1,2],故g (x )max =g (2)=-2,所以m <-2,即m 的取值范围为(-∞,-2).11.(多选)已知函数f (x )=4ax 2+4x -1,∀x ∈(-1,1),f (x )<0恒成立,则实数a 的取值可能是( )A .0B .-1C .-2D .-3答案 CD解析 因为f (x )=4ax 2+4x -1,所以f (0)=-1<0成立.当x ∈(-1,0)∪(0,1)时,由f (x )<0可得4ax 2<-4x +1,所以4a <⎝⎛⎭⎫1x 2-4x min ,当x ∈(-1,0)∪(0,1)时,1x∈(-∞,-1)∪(1,+∞), 所以1x 2-4x =⎝⎛⎭⎫1x-22-4≥-4, 当且仅当x =12时,等号成立, 所以4a <-4,解得a <-1.12.(2022·南京质检)函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为________. 答案 3解析 依题意得,一元二次不等式-x 2+2x +c >0,即x 2-2x -c <0的解集为(m ,m +4),所以m ,m +4是方程x 2-2x -c =0的两个根,所以⎩⎪⎨⎪⎧m +m +4=2,m (m +4)=-c ,解得m =-1,c =3. 13.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.答案 [-4,3]解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.14.若不等式x 2+ax -2>0在[1,5]上有解,则a 的取值范围是________.答案 ⎝⎛⎭⎫-235,+∞ 解析 对于方程x 2+ax -2=0,∵Δ=a 2+8>0,∴方程x 2+ax -2=0有两个不相等的实数根,又∵两根之积为负,∴必有一正根一负根,设f (x )=x 2+ax -2,于是不等式x 2+ax -2>0在[1,5]上有解的充要条件是f (5)>0,即5a +23>0,解得a >-235. 故a 的取值范围是⎝⎛⎭⎫-235,+∞.15.(2022·湖南多校联考)若关于x 的不等式x 2-(2a +1)x +2a <0恰有两个整数解,则a 的取值范围是( )A.⎩⎨⎧⎭⎬⎫a ⎪⎪ 32<a ≤2 B.⎩⎨⎧⎭⎬⎫a ⎪⎪-1<a ≤-12 C.⎩⎨⎧⎭⎬⎫a ⎪⎪-1<a ≤-12或32≤a <2 D.⎩⎨⎧⎭⎬⎫a ⎪⎪ -1≤a <-12或32<a ≤2 答案 D解析 令x 2-(2a +1)x +2a =0,解得x =1或x =2a .当2a >1,即a >12时, 不等式x 2-(2a +1)x +2a <0的解集为{x |1<x <2a },则3<2a ≤4,解得32<a ≤2; 当2a =1,即a =12时, 不等式x 2-(2a +1)x +2a <0无解,所以a =12不符合题意; 当2a <1,即a <12时,不等式x 2-(2a +1)x +2a <0的解集为{x |2a <x <1}, 则-2≤2a <-1,解得-1≤a <-12. 综上,a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪-1≤a <-12或32<a ≤2. 16.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)若不等式组⎩⎪⎨⎪⎧f (x )>0,f (x +k )<0的正整数解只有一个,求实数k 的取值范围; (2)若对于任意x ∈[-1,1],不等式t ·f (x )≤2恒成立,求t 的取值范围. 解 (1)因为不等式f (x )<0的解集是(0,5),所以0,5是一元二次方程2x 2+bx +c =0的两个实数根,可得⎩⎨⎧ 0+5=-b 2,0×5=c 2, 解得⎩⎪⎨⎪⎧b =-10,c =0. 所以f (x )=2x 2-10x .不等式组⎩⎪⎨⎪⎧ f (x )>0,f (x +k )<0, 即⎩⎪⎨⎪⎧2x 2-10x >0,2(x 2+2kx +k 2)-10(x +k )<0, 解得⎩⎪⎨⎪⎧x <0或x >5,-k <x <5-k , 因为不等式组的正整数解只有一个,可得该正整数解为6,可得6<5-k ≤7,解得-2≤k <-1,所以k 的取值范围是[-2,-1).(2)tf (x )≤2,即t (2x 2-10x )≤2,即tx 2-5tx -1≤0,当t =0时显然成立,当t >0时,有⎩⎪⎨⎪⎧ t ·1-5t ·(-1)-1≤0,t ·1-5t ·1-1≤0, 即⎩⎪⎨⎪⎧t +5t -1≤0,t -5t -1≤0, 解得-14≤t ≤16, 所以0<t ≤16; 当t <0时,函数y =tx 2-5tx -1在[-1,1]上单调递增, 所以只要其最大值满足条件即可,所以t -5t -1≤0,解得t ≥-14, 即-14≤t <0, 综上,t 的取值范围是⎣⎡⎦⎤-14,16.。
高一数学必修一 教案 2.3 二次函数与一元二次方程、不等式

2.3 二次函数与一元二次方程、不等式第1课时二次函数与一元二次方程、不等式学习目标 1.从函数观点看一元二次方程.了解函数的零点与方程根的关系.2.从函数观点看一元二次不等式.经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c 的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x≠-b2aRax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅预习小测自我检验1.下面所给关于x的几个不等式:①3x+4<0;②x2+mx-1>0;③ax2+4x-7>0;④x2<0.其中一定为一元二次不等式的有________.(填序号) 答案 ②④解析 一定是一元二次不等式的为②④. 2.不等式x (2-x )>0的解集为________. 答案 {x |0<x <2}解析 原不等式可化为x (x -2)<0,∴0<x <2. 3.不等式4x 2-9<0的解集是________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <32 解析 原不等式可化为x 2<94,即-32<x <32.4.已知一元二次不等式ax 2+2x -1<0的解集为R ,则a 的取值范围是________. 答案 {a |a <-1} 解析 由题意知⎩⎪⎨⎪⎧a <0,Δ<0,∴⎩⎪⎨⎪⎧a <0,4+4a <0,∴a <-1.一、解不含参数的一元二次不等式 例1 解下列不等式: (1)-x 2+5x -6>0; (2)3x 2+5x -2≥0; (3)x 2-4x +5>0.解 (1)不等式可化为x 2-5x +6<0.因为Δ=(-5)2-4×1×6=1>0,所以方程x 2-5x +6=0有两个实数根:x 1=2,x 2=3. 由二次函数y =x 2-5x +6的图象(如图①),得原不等式的解集为{x |2<x <3}.(2)因为Δ=25-4×3×(-2)=49>0,所以方程3x 2+5x -2=0的两实根为x 1=-2,x 2=13.由二次函数y =3x 2+5x -2的图象(图②),得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-2或x ≥13. (3)方程x 2-4x +5=0无实数解,函数y =x 2-4x +5的图象是开口向上的抛物线,与x 轴无交点(如图③).观察图象可得,不等式的解集为R .反思感悟 解一元二次不等式的一般步骤第一步:把一元二次不等式化为标准形式(二次项系数为正,右边为0的形式);第二步:求Δ=b 2-4ac ;第三步:若Δ<0,根据二次函数图象直接写出解集;若Δ≥0,求出对应方程的根写出解集. 跟踪训练1 解下列不等式: (1)4x 2-4x +1>0; (2)-x 2+6x -10>0.解 (1)∵方程4x 2-4x +1=0有两个相等的实根x 1=x 2=12.作出函数y =4x 2-4x +1的图象如图.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠12.(2)原不等式可化为x 2-6x +10<0, ∵Δ=36-40=-4<0, ∴方程x 2-6x +10=0无实根, ∴原不等式的解集为∅.二、三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围. 解 (1)因为y >0的解集为{x |-3<x <2},所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根,所以⎩⎪⎨⎪⎧-3+2=-b -8a,-3×2=-a -aba,解得⎩⎪⎨⎪⎧a =-3,b =5,所以y =-3x 2-3x +18.(2)因为a =-3<0,所以二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,所以c ≤-2512.所以当c ≤-2512时,-3x 2+5x +c ≤0的解集为R .反思感悟 三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:特别提醒:由于忽视二次项系数的符号和不等号的开口易写错不等式的解集形式. 跟踪训练2 已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.解 (1)由题意知,不等式对应的方程ax 2+5x +c =0的两个实数根为13和12,由根与系数的关系,得⎩⎪⎨⎪⎧-5a =13+12,c a =12×13,解得a =-6,c =-1.(2)由a =-6,c =-1知不等式ax 2+(ac +2)x +2c ≥0可化为-6x 2+8x -2≥0,即3x 2-4x +1≤0,解得13≤x ≤1,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x ≤1. 三、含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.解 (1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}. (2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a.①当a <-12时,解不等式得-1a<x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 反思感悟 解含参数的一元二次不等式的步骤特别提醒:对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算. 跟踪训练3 (1)当a =12时,求关于x 的不等式x 2-⎝ ⎛⎭⎪⎫a +1a x +1≤0的解集;(2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎪⎫a +1a x +1≤0的解集.解 (1)当a =12时,有x 2-52x +1≤0,即2x 2-5x +2≤0,解得12≤x ≤2,故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤2. (2)x 2-⎝⎛⎭⎪⎫a +1a x +1≤0⇔⎝ ⎛⎭⎪⎫x -1a (x -a )≤0,①当0<a <1时,a <1a ,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a; ②当a =1时,a =1a=1,不等式的解集为{1};③当a >1时,a >1a,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1a≤x ≤a. 综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a ; 当a =1时,不等式的解集为{1};当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a≤x ≤a.1.不等式9x 2+6x +1≤0的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-13 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13≤x ≤13 C .∅ D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =-13 答案 D解析 原不等式可化为(3x +1)2≤0, ∴3x +1=0,∴x =-13.2.如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a等于( ) A .-81 B .81 C .-64 D .64 答案 B解析 不等式x 2<ax +b 可化为x 2-ax -b <0, 其解集是{x |1<x <3},那么,由根与系数的关系得⎩⎪⎨⎪⎧1+3=a ,1×3=-b ,解得a =4,b =-3;所以b a=(-3)4=81.故选B. 3.不等式x 2-2x >0的解集是( ) A .{x |x ≥2或x ≤0} B .{x |x >2或x <0} C .{x |0≤x ≤2} D .{x |0<x <2}答案 B解析 解x 2-2x >0,即x (x -2)>0, 得x >2或x <0,故选B.4.不等式x 2-3x -10<0的解集是________. 答案 {x |-2<x <5}解析 由于x 2-3x -10=0的两根为-2,5,故x 2-3x -10<0的解集为{x |-2<x <5}.5.若方程x 2+(m -3)x +m =0有实数解,则m 的取值范围是________________. 答案 {m |m ≥9或m ≤1}解析 由方程x 2+(m -3)x +m =0有实数解, ∴Δ=(m -3)2-4m ≥0, 即m 2-10m +9≥0, ∴(m -9)(m -1)≥0, ∴m ≥9或m ≤1.1.知识清单:解一元二次不等式的常见方法 (1)图象法:①化不等式为标准形式:ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0);②求方程ax 2+bx +c =0(a >0)的根,并画出对应函数y =ax 2+bx +c 图象的简图; ③由图象得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解. 2.方法归纳:数形结合,分类讨论.3.常见误区:当二次项系数小于0时,需两边同乘-1,化为正的.1.(2019·全国Ⅰ)已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2} D .{x |2<x <3}答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C.2.若0<m <1,则不等式(x -m )⎝⎛⎭⎪⎫x -1m <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <m B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1m 或x <m C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >m 或x <1m D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m 答案 D解析 ∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m ,故选D. 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3} D .{x |-3<x <2}答案 C解析 由题意知-2+3=-ba ,-2×3=c a, ∴b =-a ,c =-6a ,∴不等式ax 2+bx +c >0可化为ax 2-ax -6a >0, 又a <0,∴x 2-x -6<0,∴(x -3)(x +2)<0, ∴-2<x <3,故选C.4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( ) A .5 B .-5 C .-25 D .10 答案 B解析 由题意知-1,3为方程5x 2-bx +c =0的两根, ∴-1+3=b 5,-3=c5,∴b =10,c =-15,∴b +c =-5.故选B.5.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2} C .{m |m <-2或m >2} D .{m |-2<m <2}答案 B解析 ∵x 2+mx +1≥0的解集为R , ∴Δ=m 2-4≤0,∴-2≤m ≤2,故选B. 6.不等式x 2-4x +4≤0的解集是________. 答案 {2}解析 原不等式可化为(x -2)2≤0,∴x =2. 7.不等式x 2+3x -4<0的解集为________. 答案 {x |-4<x <1}解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为{x |-4<x <1}.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m<x <2,则m 的取值范围是________. 答案 {m |m <0}解析 ∵不等式(mx -1)(x -2)>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <2,∴方程(mx -1)(x -2)=0的两个实数根为1m和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值范围是m <0.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集. 解 (1)由x 2-2x -3<0,得-1<x <3, ∴A ={x |-1<x <3}. 由x 2+x -6<0,得-3<x <2,∴B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.(2)由题意,得⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.∴-x 2+x -2<0,∴x 2-x +2>0, ∵Δ=1-8=-7<0,∴不等式x 2-x +2>0的解集为R .10.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0; (2)b 为何值时,ax 2+bx +3≥0的解集为R?解 (1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎪⎨⎪⎧1-a <0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0, 解得x <-1或x >32.∴所求不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0, 若此不等式解集为R ,则Δ=b 2-4×3×3≤0,∴-6≤b ≤6.11.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1. 其中解集为R 的是( ) A .① B .② C .③ D .④ 答案 C解析 ①显然不可能;②中Δ=(-25)2-4×5>0,解集不为R ; ③中Δ=62-4×10<0.满足条件;④中不等式可化为2x 2-3x +3<0,所对应的二次函数开口向上,显然不可能.故选C.12.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .{x |0<x <2} B .{x |-2<x <1} C .{x |x <-2或x >1} D .{x |-1<x <2}答案 B解析 根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1), 又x ⊙(x -2)<0,则(x +2)(x -1)<0, 故不等式的解集是{x |-2<x <1}.13.若关于x 的方程(a -2)x 2-2(a -2)x +1=0无实数解,则a 的取值范围是________. 答案 2≤a <3解析 若a -2=0,即a =2时,原方程为1=0不合题意, ∴a =2满足条件,若a -2≠0,则Δ=4(a -2)2-4(a -2)<0, 解得2<a <3,综上有a 的取值范围是2≤a <3.14.已知不等式x 2-2x +5≥a 2-3a 对∀x ∈R 恒成立,则a 的取值范围为________. 答案 {a |-1≤a ≤4}解析 x 2-2x +5=(x -1)2+4≥a 2-3a 恒成立, ∴a 2-3a ≤4,即a 2-3a -4≤0, ∴(a -4)(a +1)≤0,∴-1≤a ≤4.15.在R 上定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a -1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________. 答案 32解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54, 所以-54≥a 2-a -2,解得-12≤a ≤32. 16.已知不等式ax 2+2ax +1≥0对任意x ∈R 恒成立,解关于x 的不等式x 2-x -a 2+a <0.解 ∵ax 2+2ax +1≥0对任意x ∈R 恒成立.当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧ a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上,0≤a ≤1.由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0.∵0≤a ≤1,∴①当1-a >a ,即0≤a <12时,a <x <1-a ; ②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解; ③当1-a <a ,即12<a ≤1时,1-a <x <a . 综上,当0≤a <12时,原不等式的解集为{x |a <x <1-a };当a =12时,原不等式的解集为∅;当12<a ≤1时,原不等式的解集为{x |1-a <x <a }.。
二次函数与一元二次方程,不等式教案

二次函数与一元二次方程,不等式教案
一、教学内容:
二次函数与一元二次方程及不等式的概念、特征及应用
二、教学目标:
1、掌握二次函数的定义及一般式形式;
2、掌握一元二次方程的定义及解法;
3、掌握不等式的定义及解法;
4、能够应用一元二次方程和不等式解决实际问题;
三、教学重点:
1、引出二次函数的概念,掌握一般式形式;
2、了解一元二次方程的定义,熟练掌握解题步骤;
3、理解不等式的定义和解题步骤;
4、熟练运用一元二次方程和不等式解决实际问题;
四、教学过程:
Step1. 问题引入
1. 用图像说明二次函数的特点
2. 提出求抛物线顶点坐标的问题,引出一元二次方程 Step2. 探究解题思路
1. 引入一元二次方程的概念,介绍其一般式形式和解法
2. 通过案例让学生掌握解一元二次方程的步骤
Step3. 深入学习
1. 引入不等式的概念,介绍其定义及解答
2. 通过案例让学生熟练掌握不等式的解法
Step4. 应用与练习
1. 通过实际问题让学生熟练掌握二次函数与一元二次方程、不等式的概念,特征及应用
2. 通过实际问题让学生熟练掌握求解一元二次方程、不等式的步骤
Step5. 总结
1. 总结一元二次方程及不等式的定义、特征及求解步骤
2. 总结二次函数的定义及特征。
高考数学专题《二次函数与一元二次方程、不等式》习题含答案解析

专题2.3 二次函数与一元二次方程、不等式1.(浙江高考真题)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0【答案】A 【解析】由已知得f (x )的图象的对称轴为x =2且f (x )先减后增,可得选项. 【详解】由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-2ba=2,∴4a +b =0, 又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0, 故选:A.2.(2021·全国高三专题练习(文))已知函数42()f x x x =-,则错误的是( )A .()f x 的图象关于y 轴对称B .方程()0f x =的解的个数为2C .()f x 在(1,)+∞上单调递增D .()f x 的最小值为14-【答案】B 【解析】结合函数的奇偶性求出函数的对称轴,判断A ,令()0f x =,求出方程的解的个数,判断B ,令2t x =,2211()()24g t t t t =-=--,从而判断C ,D 即可.【详解】42()f x x x =-定义域为R ,显然关于原点对称,又()()4242()f x x x x x -=---=-()f x =,所以()y f x =是偶函数,关于y 轴对称,故选项A 正确. 令()0f x =即2(1)(1)0x x x +-=,解得:0x =,1,1-,函数()f x 有3个零点,故B 错误;练基础令2t x =,2211()()24g t t t t =-=--,1x >时, 函数2t x =,2()g t t t =-都为递增函数,故()f x 在(1,)+∞递增,故C 正确;由12t =时,()g t 取得最小值14-,故()f x 的最小值是14-,故D 正确.故选:B .3.(2021·北京高三其他模拟)设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系. 【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件. 故选:A.4.(2021·全国高三月考)已知函数2()f x x bx c =-++,则“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C 【解析】根据二次函数的图象与性质,求得(())02bf f >,反之若()0f t =有两个正根12t t <,当12max ()t t f x <<,得到方程(())0f f x =恰有四个不同实数解,结合充分条件、必要条件的判定方法,即可求解. 【详解】由2()f x x bx c =-++表示开口向下的抛物线,对称轴的方程为2b x =,要使得方程()0f x =有两个不同实数,只需()02bf >,要使得方程(())0f f x =恰有两个不同实数解,设两解分别为12,x x ,且12x x <, 则满足1max 2()x f x x <<,因为12(,)x x x ∈时,()0f x >,所以(())02b f f >,所以必要性成立; 反之,设()02b t f =>,即()0f t >,当()0f t =有两个正根,且满足12t t <,若12max ()t t f x <<, 此时方程(())0f f x =恰有四个不同实数解,所以充分性不成立.所以“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的必要不充分条件. 故选:C.5.(2021·全国高三专题练习)若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是___________. 【答案】1<a ≤2. 【解析】在同一个坐标系中画出两个函数的图象,结合图形,列出不等式组,求得结果. 【详解】如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象.由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则1log 21aa >⎧⎨⎩,解得1<a ≤2.故答案为:1<a ≤2.6.(2020·山东省微山县第一中学高一月考)若不等式220ax x a ++<对任意x ∈R 恒成立,则实数a 的取值范围是_________.【答案】(,1)-∞- 【解析】∵不等式220ax x a ++<对任意x ∈R 恒成立, ∴函数22y ax x a =++的图象始终在x 轴下方,∴2440a a <⎧⎨∆=-<⎩,解得1a <-, 故答案为:(,1)-∞-.7.(2021·全国高三专题练习)已知当()0,x ∈+∞时,不等式9x -m ·3x +m +1>0恒成立,则实数m 的取值范围是________.【答案】(,2-∞+ 【解析】先换元3x =t ,()1,t ∈+∞,使f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,再利用二次函数图象特征列限定条件,计算求得结果即可. 【详解】令3x =t ,当()0,x ∈+∞时,()1,t ∈+∞,则f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,即函数在()1,t ∈+∞的图象在x 轴的上方,而判别式()()224144m m m m ∆=--+=--,故2440m m ∆=--<或()0121110m f m m ∆≥⎧⎪⎪≤⎨⎪=-++≥⎪⎩,解得2m <+故答案为:(,2-∞+.8.(2021·浙江高一期末)已知函数2()1(0)f x ax x a =-+≠,若任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,则实数a 的取值范围是___________.【答案】[)1,+∞ 【解析】本题首先可令12x x >,将()()12121f x f x x x ->-转化为()()1122f x x f x x ->-,然后令()()g x f x x =-,通过函数单调性的定义得出函数()g x 在[1,)+∞上是增函数,最后分为0a =、0a ≠两种情况进行讨论,结合二次函数性质即可得出结果. 【详解】因为任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,所以令12x x >,()()12121f x f x x x ->-即()()1212f x f x x x ->-,()()1122f x x f x x ->-,令()()221g x f x x ax x =-=-+,则函数()g x 在[1,)+∞上是增函数, 若0a =,则()21g x x =-+,显然不成立;若0a ≠,则0212a a>⎧⎪-⎨-≤⎪⎩,解得1a ≥,综合所述,实数a 的取值范围是[)1,+∞, 故答案为:[)1,+∞.9.(2021·四川成都市·高三三模(理))已知函数21,0()2,0x x f x x x x --≤⎧=⎨-+>⎩,若()()12f x f x =,且12x x ≠,则12x x -的最大值为________. 【答案】134【解析】由()()12f x f x =得,212221x x x =--,把12x x -转化为212212231x x x x x x -=-=-++,利用二次函数求最值. 【详解】()y f x =的图像如图示:不妨令12x x <,由图像可知,10x ≤,20x >由()()22121221221221f x f x x x x x x x =⇒--=-+⇒=--,由212212231x x x x x x -=-=-++ 当232x =时,12max134x x -=. 故答案为:134. 10.(2021·浙江高一期末)已知函数2()24f x kx x k =-+.(Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围; (Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围. 【答案】(Ⅰ)1(,]4-∞;(Ⅱ)1[,)2+∞ 【解析】(Ⅰ)由题意讨论0k =,0k >与0k <三种情况,求出函数的对称轴,结合区间,列不等式求解;(Ⅱ)利用参变分离法得24k x x≥+在[2,4]上恒成立,令4()f x x x =+,根据单调性,求解出最值,即可得k 的取值范围. 【详解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1x k,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x=+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞1.(2020·山东省高三二模)已知函数()()21f x x m x m =+--,若()()0f f x 恒成立,则实数m 的范围是( )A .3,3⎡--+⎣B .1,3⎡--+⎣C .[]3,1- D .3⎡⎤-+⎣⎦【答案】A 【解析】()()()()211f x x m x m x m x =+--=-+,(1)1m >-,()()0ff x ≥恒成立等价于()f x m ≥或()1f x ≤-恒成立,即()()21f x x m x m m =+--≥或()()211f x x m x m =+--≤-(不合题意,舍去)恒成立;即01m ∆≤⎧⎨>-⎩,解得(1,3m ∈--+, (2)1m =-恒成立,符合题意; (3)1m <-,()()0ff x ≥恒成立等价于()f x m ≤(不合题意,舍去)或()1f x ≥-恒成立,等价于1m ∆≤⎧⎨<-⎩,解得[)3,1m ∈--. 综上所述,3,3m ⎡∈--+⎣,故选:A.2.(2021·浙江高三二模)已知()22f x x x =-,对任意的1x ,[]20,3x ∈.方程练提升()()()()12f x f x f x f x m -+-=在[]0,3上有解,则m 的取值范围是( )A .[]0,3B .[]0,4C .{}3D .{}4【答案】D 【解析】对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上有解,不妨取取()11f x =-,()23f x =,方程有解m 只能取4,则排除其他答案.【详解】2()(1)1f x x =--,[0,3]x ∈,则min ()1f x =-,max ()3f x =.要对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上都有解, 取()11f x =-,()23f x =,此时,任意[0,3]x ∈,都有()()()()124m f x f x f x f x =-+-=, 其他m 的取值,方程均无解,则m 的取值范围是{}4. 故选:D.3.(2020·浙江省高三二模)已知函数()321,020a x x f x x ax x ⎧-≤⎪=⎨-+->⎪⎩的图象经过三个象限,则实数a 的取值范围是________. 【答案】2a <或3a >. 【解析】当0x ≤时,3()||11f x a x =-≤-,此时函数图象经过第三象限,当02x <<时,2()(1)2f x x a x =-++,此时函数图象恒经过第一象限,当2[(1)]40a =--->且10a +>,即3a >时,函数图像经过第一、四象限,当2x ≥时,2()(1)2f x x a x =---,此时函数图象恒经过第一象限,当(2)0f <,即2a >时,函数图像经过第一、四象限, 综上所述:2a <或3a >.4.(2020·陕西省西安中学高三其他(理))记{},max ,,,m m nm n n m n ≥⎧=⎨<⎩函数{}22()max 44(1),ln (1)f x x ax a x a =-+--<有且只有一个零点,则实数a 的取值范围是_________.【答案】12a < 【解析】令()()2244(1)0g x x ax a x =-+-->,因为1a <,则()2(1)651(5)0ln1g a a a a =-+-=---<=,所以(1)ln10f ==,即1是函数()f x 的零点, 因为函数()g x 的对称轴为122a x =<, 所以根据题意,若函数()f x 有且只有一个零点,则二次函数()g x 没有零点,22(4)16(1)0a a ∆=--<,解得12a <. 故答案为:12a <5.(2021·浙江高三专题练习)已知函数()21,()2f x x x a b a b R =+-+∈,若[1,1]x ∈-时,()1f x ≤,则12a b +的最大值是___________. 【答案】12- 【解析】根据函数()21,()2f x x x a b a b R =+-+∈,分1a >,1a <-和11a -≤≤三种情况讨论,分别求得其最大值,即可求解. 【详解】由题意,函数()21,()2f x x x a b a b R =+-+∈, 当1a >时,()211,[1,1]22f x x x a b x =-++∈-,因为() 1f x ≤,可得(1)11()14f f -≤⎧⎪⎨≥-⎪⎩,所以1122115216a b a b ⎧+≤-⎪⎪⎨⎪+≥-⎪⎩,所以15111622a b -≤+≤-; 当1a <-时,()211,[1,1]22f x x x a b x =+-+∈-,因为()1f x ≤,可得()max 11(1)1122f x f a b ==+-+≤, 所以1122b a ≤-,所以113222a b a +=-≤-;当11a -≤≤时,()21,[1,1]2f x x x a b x =+-+∈-,由()1f x ≤知,()max (1)1112f f x a b =+--+=, 因为11a -≤≤,所以10a --≤,所以()max (1)1112f f x a b =+--+=,所以1122a b +≤-,综上可得,12a b +的最大值是12-.故答案为:12-6.(2021·浙江高三期末)已知函数()()21sin sin ,22bf x x x a a b R =+-+∈,若对于任意x ∈R ,均有()1f x ≤,则+a b 的最大值是___________.【答案】1- 【解析】首先讨论1a ≥、1a ≤-时()f x 的最值情况,由不等式恒成立求+a b 的范围,再讨论11a -<<并结合()f x 的单调情况求+a b 的范围,最后取它们的并集即可知+a b 的最大值. 【详解】当sin a x ≥时,211()(sin )4216a b f x x +=-+-, 当sin a x <时,211()(sin )4216b a f x x -=++-,令sin [1,1]t x =∈-,则()()2211,4216{11(),()4216a b t a t g t b a t a t +⎛⎫-+-≥ ⎪⎝⎭=-++-<∴当1a ≥时,14t =有min 1()216a b g t +=-;1t =-有max 3()22a b g t +=+; 由x ∈R 有()1f x ≤,有131121622a b a b ++-≤-<+≤,故1518a b -≤+≤-; 当1a ≤-时,14t =-有min 1()216b a g t -=-;1t =有max 3()22b a g t -=+; 由x ∈R 有()1f x ≤,有131121622b a b a ---≤-<+≤,故1518b a -≤-≤-,即3a b +≤-; 当11a -<<时,()2211(),(1)4216{11,(1)4216a b t t a g t b a t a t +-+--<<=-⎛⎫++-≤< ⎪⎝⎭, ∴1(1,)4a ∈--:()g t 在(1,)a -上递减,1[,)4a -上递减,1[,1]4-上递增; 11[,]44a ∈-:()g t 在(1,)a -上递减,[,1)a 上递增;1(,1)4a ∈:()g t 在1(1,]4-上递减,1[,)4a 上递增,[,1)a 上递增;∴综上,()g t 在(1,1)-上先减后增,则(1)1(1)1g g ≤⎧⎨-≤⎩,可得1a b +≤-∴1a b +≤-恒成立,即+a b 的最大值是-1. 故答案为:1-.7.(2020·武汉外国语学校(武汉实验外国语学校)高一期中)已知函数2()3(,)f x ax bx a b R =++∈,且()0f x ≤的解集为[1,3].(1)求()f x 的解析式;(2)设()()41xh x f x x =+-,在定义域范围内若对于任意的12x x ,,使得()()12h x h x M -≤恒成立,求M 的最小值.【答案】(1)2()43f x x x =-+;(2)2. 【解析】(1)代入方程的根,求得参数值.(2)使不等式恒成立,根据函数单调性求得函数的最值,从而求得参数的值. 【详解】 解:(1)由题意(1)30(3)9330f a b f a b =++=⎧⎨=++=⎩解得14a b =⎧⎨=-⎩2()43f x x x ∴=-+(2)由题意max ()()min M h x h x -2(),2xh x x R x =∈+ 当0()0x h x ==当10()2x h x x x≠=+, 令2()g x x x=+,当0,()22x g x>,当x =当0,()x g x <≤-x =()(,)g x ∴∈-∞-⋃+∞(),00,(0)44h x x ⎡⎫⎛∈-⋃≠⎪ ⎢⎪⎣⎭⎝⎦综上,()44h x ⎡∈-⎢⎣⎦2442M⎛∴--= ⎝⎭min 2M ∴=8.(2021·浙江高一期末)设函数()()2,f x x ax b a b R =-+∈. (1)若()f x 在区间[]0,1上的最大值为b ,求a 的取值范围; (2)若()f x 在区间[]1,2上有零点,求2244a b b +-的最小值. 【答案】(1)[)1,+∞;(2)45. 【解析】(1)对实数a 的取值进行分类讨论,分析函数()f x 在区间[]0,1上的单调性,求得()max f x ,再由()max f x b =可求得实数a 的取值范围;(2)设函数()f x 的两个零点为1x 、2x ,由韦达定理化简()22222221222222241414144a x x x x x x b b x +-=+⎛⎫=+-- ⎪++⎝⎭,设()22224124g x x =⎛⎫+- ⎪⎝⎭,由[]21,2x ∈结合不等式的基本性质求出()2g x 的最小值,即为所求. 【详解】(1)二次函数()2f x x ax b =-+的图象开口向上,对称轴为直线2a x =. ①当02a≤时,即当0a ≤时,函数()f x 在区间[]0,1上单调递增,则()()max 11f x f a b ==-+; ②当012a <<时,即当02a <<时,函数()f x 在0,2a ⎡⎫⎪⎢⎣⎭上单调递减,在,12a ⎛⎤⎥⎝⎦上单调递增, ()0f b =,()11f a b =-+,所以,(){}max 1,01max ,1,12a b a f x b a b b a -+<<⎧=-+=⎨≤<⎩;③当12a≥时,即当2a ≥时,函数()f x 在区间[]0,1上单调递减,则()()max 0f x f b ==.综上所述,()max 1,1,1a b a f x b a -+<⎧=⎨≥⎩.所以,当()f x 在区间[]0,1上的最大值为b ,实数a 的取值范围是[)1,+∞; (2)设函数()f x 的两个零点为1x 、2x ,由韦达定理可得1212x x ax x b+=⎧⎨=⎩,所以,()()22222222222212121211221212122444424142a b b x x x x x x x x x x x x x x x x x +-=++-=-++=+-+()222222222212222222241414141x x x x x x x x x x ⎛⎫=+-+-≥- ⎪+++⎝⎭, 设()242222222222422222444144141124x x g x x x x x x x =-===++⎛⎫++- ⎪⎝⎭, 由212x ≤≤可得221114x ≤≤,所以,()2222445124g x x =≥⎛⎫+- ⎪⎝⎭.此时,21x =,由212241x x x =+可得115x =. 所以,当115x =,21x =时,2244a b b +-取最小值45. 9.(2020·全国高一单元测试)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.【答案】(Ⅰ)g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)m ≤﹣52或m ≥52.【解析】(Ⅰ)令u =3x ∈[1,3],得到f (x )=h (u )=u 2﹣3au +a 2,分类讨论即可求出, (Ⅱ)先求出g (a )min =g (32)=﹣54,再根据题意可得﹣m 2+tm ≤﹣54,利用函数的单调性即可求出.【详解】解:(Ⅰ)令u =3x ∈[1,3],则f (x )=h (u )=u 2﹣3au +a 2. 当32a≤2,即a ≤43时,g (a )=h (u )min =h (3)=a 2﹣9a +9; 当322a>,即a >43时,g (a )=h (u )min =h (1)=a 2﹣3a +1; 故g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)当a≤43时,g (a )=a 2﹣9a +9,g (a )min =g (43)=﹣119;当a 43>时,g (a )=a 2﹣3a +1,g (a )min =g (32)=﹣54;因此g (a )min =g (32)=﹣54;对于任意任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立等价于﹣m 2+tm ≤﹣54. 令h (t )=mt ﹣m 2,由于h (t )是关于t 的一次函数,故对于任意t ∈[﹣2,2]都有h (t )≤﹣54等价于5(2)45(2)4h h ⎧-≤-⎪⎪⎨⎪≤-⎪⎩,即2248504850m m m m ⎧+-≥⎨--≥⎩, 解得m ≤﹣52或m ≥52. 10.(2021·全国高一课时练习)已知函数()22(0)f x ax ax b a =-+>,在区间[]0,3上有最大值16,最小值0.设()()f xg x x=. (1)求()g x 的解析式;(2)若不等式()22log log 0g x k x -⋅≥在[]4,16上恒成立,求实数k 的取值范围;【答案】(1)()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠;(2)(,1]-∞. 【解析】(1)由二次函数的性质知()f x 在0,1上为减函数,在()1,3上为增函数,结合其区间的最值,列方程组求,a b ,即可写出()g x 解析式; (2)由题设得222184()4log log k x x≤-+在[]4,16x ∈上恒成立,即k 只需小于等于右边函数式的最小值即可. 【详解】(1)∵()2(1)f x a x b a =-+-(0a >),即()f x 在0,1上为减函数,在()1,3上为增函数.又在[]0,3上有最大值16,最小值0,∴(1)0f b a =-=,(3)316f a b =+=,解得4a b ==, ∴()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠; (2)∵()22log log 0g x k x -≥∴22214log 8log log x k x x ⎛⎫+-≥ ⎪⎝⎭,由[]4,16x ∈,则[]2log 2,4x ∈, ∴222221814()44(1)log log log k x x x ≤-+=-,设21log t x =,11,42t ⎡⎤∈⎢⎥⎣⎦, ∴()24(1)h t t =-在11,42⎡⎤⎢⎥⎣⎦上为减函数,当12t =时,()h t 最小值为1,∴1k ≤,即(,1]k ∈-∞.1.(浙江省高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关练真题【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .2.(2018·浙江高考真题)已知λ∈R,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】 (1,4) (1,3]∪(4,+∞) 【解析】由题意得{x ≥2x −4<0 或{x <2x 2−4x +3<0 ,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f(x)=x −4>0,此时f(x)=x 2−4x +3=0,x =1,3,即在(−∞,λ)上有两个零点;当λ≤4时,f(x)=x −4=0,x =4,由f(x)=x 2−4x +3在(−∞,λ)上只能有一个零点得1<λ≤3.综上,λ的取值范围为(1,3]∪(4,+∞).3.(北京高考真题)已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_____.【答案】1[,1]2【解析】试题分析:22222(1)221,[0,1]x y x x x x x +=+-=-+∈,所以当01x =或时,取最大值1;当12x =时,取最小值12.因此22x y +的取值范围为1[,1]2.4.(2018·天津高考真题(理))已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是______________.【答案】(48),【解析】分析:由题意分类讨论0x ≤和0x >两种情况,然后绘制函数图像,数形结合即可求得最终结果. 详解:分类讨论:当0x ≤时,方程()f x ax =即22x ax a ax ++=, 整理可得:()21x a x =-+,很明显1x =-不是方程的实数解,则21x a x =-+,当0x >时,方程()f x ax =即222x ax a ax -+-=, 整理可得:()22x a x =-,很明显2x =不是方程的实数解,则22x a x =-,令()22,01,02x x x g x x x x ⎧-≤⎪⎪+=⎨⎪>⎪-⎩, 其中211211x x x x ⎛⎫-=-++- ⎪++⎝⎭,242422x x x x =-++-- 原问题等价于函数()g x 与函数y a =有两个不同的交点,求a 的取值范围. 结合对勾函数和函数图象平移的规律绘制函数()g x 的图象, 同时绘制函数y a =的图象如图所示,考查临界条件, 结合0a >观察可得,实数a 的取值范围是()4,8.5.(2020·江苏省高考真题)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; 【答案】(1)()2h x x =; 【解析】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立. 令0x =,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =. 故()2h x x =.6.(浙江省高考真题(文))设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b时,求函数()f x 在[1,1]-上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>;(2)[3,9--【解析】 (1)当214a b时,2()()12a f x x =++,故其对称轴为2a x =-. 当2a ≤-时,2()(1)24a g a f a ==++.当22a -<≤时,()()12a g a f =-=.当2a >时,2()(1)24a g a f a =-=-+.综上,222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>(2)设,s t 为方程()0f x =的解,且11t -≤≤,则{s t ast b+=-=.由于021b a ≤-≤,因此212(11)22t ts t t t --≤≤-≤≤++. 当01t ≤≤时,222222t t t b t t --≤≤++, 由于222032t t --≤≤+和212932t t t --≤≤-+所以293b -≤≤-当10t -≤≤时,222222t t t b t t --≤≤++, 由于22202t t --≤<+和2302t t t --≤<+,所以30b -≤<.综上可知,b 的取值范围是[3,9--.。
2.3二次函数与一元二次方程、不等式 2.3.1二次函数与一元二次方程、不等式 教案

2.3二次函数与一元二次方程、不等式【素养目标】1.理解一元二次方程与二次函数的关系.(数学抽象)2.掌握图象法解一元二次不等式.(直观想象)3.会从实际情境中抽象出一元二次不等式模型.(数学抽象)4.会解可化为一元二次不等式(组)的简单分式不等式.(数学运算)5.会用分类讨论思想解含参数的一元二次不等式.(逻辑推理)6.会解一元二次不等式中的恒成立问题.(数学运算)【学法解读】在从函数观点看一元二次方程和一元二次不等式的学习中,可以先以讨论具体的一元二次函数变化情况为情境,使学生发现一元二次函数与一元二次方程的关系,引出一元二次不等式的概念;然后进一步探索一般的一元二次函数与一元二次方程、一元二次不等式的关系,归纳总结出用一元二次函数解一元二次不等式的程序.2.3.1 二次函数与一元二次方程、不等式一、必备知识·探新知基础知识知识点1:一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________________.一元二次不等式的一般形式是:_________________________或_________________________.知识点2:二次函数与一元二次方程、不等式的解的对应关系思考2:如何用图解法解一元二次不等式?提示:图解法解一元二次不等式的一般步骤:(1)将原不等式化为标准形式ax2+bx+c>0或ax2+bx+c<0(a>0);(2)求Δ=b2-4ac;(3)若Δ<0,根据二次函数的图象直接写出解集;(4)若Δ≥0,求出对应方程的根,画出对应二次函数的图象,写出解集.基础自测1.判断正误(对的打“√”,错的打“×”)(1)mx2-5x<0是一元二次不等式.()(2)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0的解集为R.()(3)设二次方程f(x)=0的两解为x1,x2,且x1<x2,则一元二次不等式f(x)>0的解集不可能为{x|x1<x<x2}.()(4)不等式ax2+bx+c≤0(a≠0)或ax2+bx+c≥0(a≠0)的解集为空集,则方程ax2+bx+c=0无实根.()[解析](1)当m=0时,是一元一次不等式;当m≠0时,它是一元二次不等式.(2)若方程ax2+bx+c=0(a<0)没有实根.则不等式ax2+bx+c>0的解集为∅.(3)当二次项系数小于0时,不等式f(x)>0的解集为{x|x1<x<x2}.(4)当Δ<0时,一元二次不等式的解集为空集,此时方程无实根.2.不等式2x≤x2+1的解集为()A.∅B.RC.{x|x≠1} D.{x|x>1或x<-1}[解析]将不等式2x≤x2+1化为x2-2x+1≥0,∴(x-1)2≥0,∴解集为R,故选B.3.不等式(2x-5)(x+3)<0的解集为_____________________.二、关键能力·攻重难题型探究题型一解一元二次不等式例题1:解下列不等式.(1)2x2-3x-2>0;(2)x2-4x+4>0;(3)-x2+2x-3<0;(4)-3x2+5x-2>0.[分析]根据三个二次之间的关系求解即可.[归纳提升]解一元二次不等式的步骤(1)对不等式变形,使不等号一端二次项系数大于0,另一端为0,即化为ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)的形式.(2)计算相应的判别式.(3)当Δ≥0时,求出相应的一元二次方程的根.(4)根据对应的二次函数的图象,写出不等式的解集.【对点练习】❶不等式6x2+x-2≤0的解集为______________________.题型二三个“二次”的关系例题2:已知不等式ax2-bx+2<0的解集为{x|1<x<2},求a,b的值.[分析]给出了一元二次不等式的解集,则可知a的符号和方程ax2-bx+2=0的两根,由根与系数的关系可求a,b的值.【对点练习】❷若不等式ax2+bx+c≤0的解集为{x|x≤-3或x≥4},求不等式bx2+2ax-c-3b≥0的解集.题型三解含有参数的一元二次不等式例题3:解关于x的不等式2x2+ax+2>0.[分析]二次项系数为2,Δ=a2-16不是一个完全平方式,故不能确定根的个数,因此需对判别式Δ的符号进行讨论,确定根的个数.②当a=4时,Δ=0,方程有两个相等实根,x1=x2=-1,∴原不等式的解集为{x|x≠-1}.③当a=-4时,Δ=0,方程有两个相等实根,x1=x2=1,∴原不等式的解集为{x|x≠1}.④当-4<a<4时,Δ<0,方程无实根,故原不等式的解集为R.[归纳提升]在解答含有参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到“不重不漏”,一般从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项的系数a>0,a=0,a<0;(2)关于不等式对应方程的根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0);(3)关于不等式对应方程的根的大小的讨论:x1>x2,x1=x2,x1<x2.【对点练习】❸解关于x的不等式ax2-x>0.。
二次函数与一元二次方程、不等式(第二课时)教学设计

2.3.1二次函数与一元二次方程、不等式(第二课时)(人教A版普通高中教科书数学必修第一册第二章)一、教学目标1.经历从实际情境中抽象出一元二次不等式的过程.了解一元二次不等式的现实意义.2.能够构建一元二次函数模型,解决实际问题.二、教学重难点1.理解二次函数及一元二次方程、一元二次不等式的联系2.会运用二次不等式模型求解范围及最值等问题及化归思想的呈现三、教学方法“问题链”教学法;“以学生为中心的课堂展开”四、教学过程1.复习引入有两个相等的实数根2.变式探究(1)一元二次不等式的本质问题1:现在,让我们回到问题的本质上去,为什么一元二次不等式的解是这个是形式?如果是一元高次不等式呢,我们又将如何解决?【活动预设】引导学生回归问题本质,运用乘法的性质来重新认识一元二次不等式,让理解力强的同学能举一反三解决三次不等式.【设计意图】从感知个例到分析通例,遵循从特殊到一般的思路,在具体实践的基础上进行理性分析,认识一元二次不等式的本质,加深外延的理解,为后续高次不等式的学习作铺垫.1.不等式0)1(12722>+++-x x x x )(的解集为 ( ) A .),(),(∞+--∞-34 B .),(),(∞+∞-43 C .),(34-- D .),(43 【预设的答案】B问题2:若上述不等式改为三次不等式如:0)1(1272>++-x x x )(:,那么我们有什么办法求解呢?问题的本质是怎么样的呢?【预设的答案】⎩⎨⎧>+->+0127012x x x 或⎩⎨⎧<+-<+0127012x x x当我们将)(1272+-x x 因式看作一个整体时,上述问题就归化为一元二次不等式的解题本质上去了,其本质是两同号因式相乘结果为正,两异号因式相乘结果为负。
(2)分式不等式问题3:在明确了问题的本质后,如果两个因式相乘与相除有什么不同呢,在具体的求解中我们又要注意些什么?【活动预设】引导学生回归问题本质,既然乘法与除法在结果上有相似性,那么对一元二次不等式问题进行迁移就可以解决分式不等式【设计意图】从感知个例到分析通例,遵循从特殊到一般的思路,在具体实践的基础上进行理性分析,认识分式不等式的本质,并理解乘法与除法的区别在于:分母不能为零2.解下列不等式:(1)2x -5x +4<0; (2)x +12x -3≤1. 【预设的答案】解 (1)2x -5x +4<0⇔(2x -5)(x +4)<0⇔-4<x <52,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-4<x <52. (2)∵x +12x -3≤1,∴x +12x -3-1≤0,∴-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0,解得x <32或x ≥4, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4. 反思感悟 分式不等式的解法:先通过移项、通分整理,再化成整式不等式来解.如果能判断出分母的正负,直接去分母即可. 跟踪训练1 解下列不等式: (1)2x -13x +1≥0;(2)2-xx +3>1. 【预设的答案】 (1)原不等式可化为⎩⎪⎨⎪⎧(2x -1)(3x +1)≥0,3x +1≠0.解得⎩⎨⎧x ≤-13或x ≥12,x ≠-13,∴x <-13或x ≥12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-13或x ≥12. (2)方法一 原不等式可化为⎩⎪⎨⎪⎧ x +3>0,2-x >x +3或⎩⎪⎨⎪⎧x +3<0,2-x <x +3.解得⎩⎪⎨⎪⎧ x >-3,x <-12或⎩⎪⎨⎪⎧x <-3,x >-12, ∴-3<x <-12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12. 方法二 原不等式可化为(2-x )-(x +3)x +3>0,化简得-2x -1x +3>0,即2x +1x +3<0,∴(2x +1)(x +3)<0,解得-3<x <-12.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12.(3)不等式恒成立问题问题4:在理解二次函数及一元二次方程、一元二次不等式的联系后,能否提炼出一元二次不等式恒成立问题的解题核心?【活动预设】引导学生回归一元二次函数图象来解决恒成立问题. 【设计意图】从感知个例到分析通例,遵循从特殊到一般的思路,在具体实践的基础上进行理性分析,认识恒成立问题,渗透数形结合这一思想,加深对一元二次不等式,一元二次方程,二次函数三者的联系的理解,为后续函数的学习作铺垫. 3.(1)若对∀x ∈R 不等式x 2+mx >4x +m -4恒成立,求实数m 的取值范围; (2)若x 2>4x +m -4在R 上恒成立,求m 的取值范围.【预设的答案】解 (1)原不等式可化为x 2+(m -4)x +4-m >0,∴Δ=(m -4)2-4(4-m )=m 2-4m <0, ∴0<m <4,∴m 的取值范围为{m |0<m <4}.(2)原不等式可化为x 2-4x +4=(x -2)2>m 恒成立, ∴m <0,∴m 的取值范围为{m |m <0}.[素养提升] 一元二次不等式恒成立的情况: ax 2+bx +c >0(a ≠0)恒成立⇔⎩⎪⎨⎪⎧a >0,Δ<0.ax 2+bx +c ≤0(a ≠0)恒成立⇔⎩⎪⎨⎪⎧a <0,Δ≤0.1.知识清单:(1)简单的分式不等式的解法(2)利用不等式解决实际问题的一般步骤如下:①选取合适的字母表示题目中的未知数;②由题目中给出的不等关系,列出关于未知数的不等式(组);③求解所列出的不等式(组);④结合题目的实际意义确定答案.2.方法归纳:转化、恒等变形.3.常见误区:利用一元二次不等式解决实际问题时,应注意实际意义.。
二次函数与一元二次方程,不等式 教案

必修 2.3 二次函数,一元二次方程与不等式
教学设计
活动四:完成教材52页例1,例2,例3,(利用函数图像) 例1 求不等式0652
>+-x x 的解集
例2 求不等式01692
>+-x x 的解集
例3 求不等式03-2-2
>+x x 的解集
活动五:总结一元二次不等式的解题步骤。
(三)及时反馈,数学应用 活动六、巩固训练 1. 教材53页练习1, 2,教材53页练习2 能力提升: 1.教材55页综合运用3,5
教师组织,学生完成
学生分组讨论交流,教师启发引导
最后学生复述总结
画出函数图像 学生独立完成 小组讨论,教师巡回指导,学生口述
体会过程,抽象数学
抽象数学,表达数学
锻炼学生作图能力,培养学生数形结合的思想
合作学习,学习方法指导,抽象数学
三、课堂小结
四、课下作业
1.整理笔记
2.完成质量检测A 学生版演,教师
巡回指导,
学生总结
数学运算,计算
能力培养
深化理解
体会数学的整体性
板书设计2.3 二次函数,一元二次方程与不等式
02
2<
+
+
>
+
+c
bx
ax
c
bx
ax或
课后
反思
按照学生认知程度层层递进,在原有知识基础上建立新知。
2.3 二次函数与一元二次方程、不等式(原卷版附答案).docx

2.3 二次函数与一元二次方程、不等式考点讲解考点1:一元二次不等式的解法1.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.2.解一元二次不等式常用方法(1)因式分解法解一元二次不等式一般地,如果x1<x2,则不等式(x-x1)(x-x2)<0的解集是x1<x<x2;不等式(x-x1)(x-x2)>0的解集是x>x1或x<x2.(2)配方法解一元二次不等式一元二次不等式ax2+bx+c>0(a≠0)通过配方总是可以变为(x-h)2>k或(x-h)2<k的形式,然后根据k的正负等知识,就可以得到原不等式的解集.3.三个“二次”的关系设y=ax2+bx+c(a>0),方程ax2+bx+c=0的判别式Δ=b2-4ac判别式Δ>0 Δ=0 Δ<0解不等式y>0或y<0的步骤求方程f(x)=0的解有两个不等的实数解x1,x2有两个相等的实数解x1=x2没有实数解画函数y=f(x)的示意图不等式的集解得f(x) >0 {x|x<x1或x>x2}⎭⎬⎫⎩⎨⎧-≠abxx2R f(x)<0{x|x1<x<x2} ∅∅【例1】解下列不等式:(1)6x2+5x+1>0;(2)2x2+7x+3>0;(3)-2x2+3x-2<0. (4)(x+1)(x-7)≤2.【方法技巧】1. 利用因式分解法求解一元二次不等式ax 2+bx +c >0(<0)的解集时,其关键是利用“十字相乘法”分解因式,同时要注意a 的符号.2. 用配方法解一元二次不等式ax 2+bx +c >0(a ≠0)的解集时,首先将x 2的系数转化为正值,然后配方成a (x -h )2>k 或a (x -h )2<k 的形式解决.3. 解不含参数的一元二次不等式的一般步骤(1)化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图. (5)写解集.根据图象写出不等式的解集.【针对训练】 解不等式: (1)x 2-4x -5≤0; (2)-4x 2+18x -814≥0;(3)-x 2+6x -10>0.考点2:含参数的一元二次不等式的解法【例2】 解关于x 的不等式ax 2-(a +1)x +1<0.注:对参数分类讨论的每一种情况是相互独立的一元二次不等式的解集,不能合并.【针对训练】2.解关于x的不等式:ax2-2≥2x-ax(a<0).考点3:一元二次不等式、二次方程、二次函数的关系[探究问题]1.利用函数y=x2-2x-3的图象说明当y>0、y<0、y=0时x的取值集合分别是什么?这说明二次函数与二次方程、二次不等式有何关系?2.方程x2-2x-3=0与不等式x2-2x-3>0的解集分别是什么?观察结果你发现什么问题?这又说明什么?3.设一元二次不等式ax2+bx+c>0(a>0)和ax2+bx+c<0(a>0)的解集分别为{x|x<x1或x>x2},{x|x1<x<x2}(x1<x2),则x1+x2,x1x2为何值?【例3】已知关于x的不等式ax2+bx+c>0的解集为{x|2<x<3},求关于x的不等式cx2+bx+a<0的解集.【变式分析】1.(变结论)本例中的条件不变,求关于x 的不等式cx 2-bx +a >0的解集.2.(变条件)若将本例中的条件“关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}变为“关于x 的不等式ax 2+bx +c ≥0的解集是⎭⎬⎫⎩⎨⎧≤≤-231x x .求不等式cx 2+bx +a <0的解集.【方法技巧】已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循: (1)根据解集来判断二次项系数的符号;(2)根据根与系数的关系把b ,c 用a 表示出来并代入所要解的不等式; (3)约去 a , 将不等式化为具体的一元二次不等式求解. 考点4:分式不等式的解法(化分式不等式为整式不等式)类型同解不等式f (x )g (x )>0(<0) 法一:⎩⎨⎧f (x )>0(<0)g (x )>0或⎩⎨⎧f (x )<0(>0)g (x )<0法二:f (x )·g (x )>0(<0) f (x )g (x )≥0(≤0) 法一:⎩⎨⎧f (x )≥0(≤0)g (x )>0或⎩⎨⎧f (x )≤0(≥0)g (x )<0法二:⎩⎨⎧f (x )·g (x )≥0(≤0)g (x )≠0f (x )g (x )>a ⎝ ⎛⎭⎪⎪⎫<a ≥a ≤a 先移项转化为上述两种形式【例4】 解下列不等式: (1)x -3x +2<0;(2)x +12x -3≤1.【方法技巧】1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.【针对训练】4.解下列不等式:(1)x +1x -3≥0;(2)5x +1x +1<3.考点5:一元二次不等式的应用【例5】 国家原计划以2 400元/吨的价格收购某种农产品m 吨.按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点,即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x 个百分点,收购量能增加2x 个百分点.试确定x 的范围,使税率调低后,国家此项税收总收入不低于原计划的78%.【针对训练】5.某校园内有一块长为800 m,宽为600 m 的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.考点6:不等式恒成立问题1.(1)不等式的解集为R (或恒成立)的条件不等式 ax 2+bx +c >0 ax 2+bx +c <0 a =0 b =0,c >0b =0,c <0a ≠0⎩⎨⎧a>0Δ<0⎩⎨⎧a<0Δ<0(2)有关不等式恒成立求参数的取值范围的方法f (x )≤a 恒成立⇔f (x )max ≤a f (x )≥a 恒成立⇔f (x )min ≥a[探究问题]1.若函数f (x )=ax 2+2x +2对一切x ∈R,f (x )>0恒成立,如何求实数a 的取值范围?2.若函数f (x )=x 2-ax -3对x ∈[-3,-1]上恒有f (x )<0成立,如何求a 的范围?3.若函数y =x 2+2(a -2)x +4对任意a ∈[-3,1]时,y <0恒成立,如何求x 的取值范围?【例3】 已知f (x )=x 2+ax +3-a ,若x ∈[-2,2],f (x )≥0恒成立,求a 的取值范围.【变式分析】1.(变结论)本例条件不变,若f (x )≥2恒成立,求a 的取值范围.2.(变条件)将例题中的条件“f (x )=x 2+ax +3-a ,x ∈[-2,2],f (x )≥0恒成立”变为“不等式x 2+2x +a 2-3>0的解集为R”求a 的取值范围.【方法技巧】1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是:当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a>0Δ<0.2.不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是:当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a<0Δ<0.3.f (x )≤a 恒成立⇔a ≥[f (x )]max ,f (x )≥a 恒成立⇔a ≤[f (x )]min .考点过关一、选择题A .⎭⎬⎫⎩⎨⎧-≠31x x B .⎭⎬⎫⎩⎨⎧≤≤-3131x x C .∅D .⎭⎬⎫⎩⎨⎧-=31x x 2.若集合A ={x |(2x +1)(x -3)<0},B ={x |x ∈N *,x ≤5},则A ∩B 等于( ) A .{1,2,3} B .{1,2} C .{4,5}D .{1,2,3,4,5}3.不等式1+x1-x ≥0的解集为( )A .{x |-1<x ≤1}B .{x |-1≤x <1}C .{x |-1≤x ≤1}D .{x |-1<x <1} 4.不等式(x -2)2(x -3)x +1<0的解集为( )A .{x |-1<x <2或2<x <3}B .{x |1<x <3}C .{x |2<x <3}D .{x |-1<x <2}5.若0<t <1,则不等式(x -t )⎪⎭⎫ ⎝⎛-t x 1<0的解集为( ) A .⎭⎬⎫⎩⎨⎧<<t x t x 1 B.⎭⎬⎫⎩⎨⎧<>t x t x x 或1C .⎭⎬⎫⎩⎨⎧><t x t x x 或1 D .⎭⎬⎫⎩⎨⎧<<t x x 1t 6.一元二次方程ax 2+bx +c =0的两根为-2,3,a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3}D .{x |-3<x <2}7.不等式组⎩⎨⎧x -1>a2x -4<2a有解,则实数a 的取值范围是( )A .(-1,3)B .(-∞,-1)∪(3,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)8.二次不等式ax 2+bx +c <0的解集为全体实数的条件是( )A .⎩⎨⎧a>0Δ>0B .⎩⎨⎧a>0Δ<0C .⎩⎨⎧a<0Δ>0D .⎩⎨⎧a<0Δ<09.在R 上定义运算⊙:A ⊙B =A (1-B ),若不等式(x -a )⊙(x +a )<1对任意的实数x ∈R 恒成立,则实数a 的取值范围为( ) A .-1<a <1 B .0<a <2 C .-12<a <32D .-32<a <12A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)二、填空题11.不等式-x 2-3x +4>0的解集为________.12.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.13.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B ⊆A ,则a 的取值范围为________.14.某地每年销售木材约20万m 3,每m 3价格为2 400元.为了减少木材消耗,决定按销售收入的t %征收木材税,这样每年的木材销售量减少52t 万m 3.为了既减少木材消耗又保证税金收入每年不少于900万元,则t 的取值范围是________.15.不等式2x 2-x <4的解集为______. 三、解答题16.求下列不等式的解集: (1)x 2-5x +6>0; (2)-12x 2+3x -5>0.17.解关于x 的不等式x 2-(3a -1)x +(2a 2-2)>0.18.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0; (2)b 为何值时,ax 2+bx +3≥0的解集为R?19.某地区上年度电价为0.8元/kw ·h ,年用电量为a kw ·h .本年度计划将电价降低到0.55元/kw ·h 至0.75元/kw ·h 之间,而用户期望电价为0.4元/kw ·h .经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.3元/kw·h.(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;20.已知M是关于x的不等式2x2+(3a-7)x+3+a-2a2<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出该不等式的解集.2.3 二次函数与一元二次方程、不等式考点讲解考点1:一元二次不等式的解法1.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.2.解一元二次不等式常用方法(1)因式分解法解一元二次不等式一般地,如果x1<x2,则不等式(x-x1)(x-x2)<0的解集是x1<x<x2;不等式(x-x1)(x-x2)>0的解集是x>x1或x<x2.(2)配方法解一元二次不等式一元二次不等式ax2+bx+c>0(a≠0)通过配方总是可以变为(x-h)2>k或(x-h)2<k的形式,然后根据k的正负等知识,就可以得到原不等式的解集.3.三个“二次”的关系设y=ax2+bx+c(a>0),方程ax2+bx+c=0的判别式Δ=b2-4ac判别式Δ>0 Δ=0 Δ<0解不等式y>0或y<0的步骤求方程f(x)=0的解有两个不等的实数解x1,x2有两个相等的实数解x1=x2没有实数解画函数y=f(x)的示意图不等式的集解得f(x) >0 {x|x<x1或x>x2}⎭⎬⎫⎩⎨⎧-≠abxx2R f(x)<0{x|x1<x<x2} ∅∅(1)6x 2+5x +1>0; (2)2x 2+7x +3>0; (3)-2x 2+3x -2<0. (4)(x +1)(x -7)≤2.[解] (1)由6x 2+5x +1>0,得(2x +1)(3x +1)>0, ∴x >-13或x <-12,∴不等式的解集为⎪⎭⎫⎝⎛+∞-⋃⎪⎭⎫ ⎝⎛-∞-,3121, (2)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12.又二次函数y =2x 2+7x +3的图象开口向上,所以原不等式的解集为⎭⎬⎫⎩⎨⎧-<->321x x x 或(3)原不等式可化为2x 2-3x +2>0,因为Δ=9-4×2×2=-7<0,所以方程2x 2-3x +2=0无实根,又二次函数y =2x 2-3x +2的图象开口向上,所以原不等式的解集为R. (4)由(x +1)(x -7)≤2,得x 2-6x -9≤0. 又x 2-6x -9=(x -3)2-18, ∴原不等式化为(x -3)2-18≤0, ∴(x -3)2≤18, 即-32≤x -3≤32, 解得3-32≤x ≤3+32,∴不等式的解集为[3-32,3+32]. 【方法技巧】4. 利用因式分解法求解一元二次不等式ax 2+bx +c >0(<0)的解集时,其关键是利用“十字相乘法”分解因式,同时要注意a 的符号.5. 用配方法解一元二次不等式ax 2+bx +c >0(a ≠0)的解集时,首先将x 2的系数转化为正值,然后配方成a (x -h )2>k 或a (x -h )2<k 的形式解决.6. 解不含参数的一元二次不等式的一般步骤(1)化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图. (5)写解集.根据图象写出不等式的解集.【针对训练】 解不等式: (1)x 2-4x -5≤0; (2)-4x 2+18x -814≥0;(3)-x 2+6x -10>0.[解]:(1)原不等式可化为(x -5)(x +1)≤0,所以原不等式的解集为{x |-1≤x ≤5}.(2)原不等式可化为2292⎪⎭⎫ ⎝⎛-x ≤0,所以原不等式的解集为⎭⎬⎫⎩⎨⎧=49x x (3)原不等式可化为x 2-6x +10<0,因为Δ=(-6)2-40=-4<0,所以方程x 2-6x +10=0无实根,又二次函数y =x 2-6x +10的图像开口向上,所以原不等式的解集为∅.考点2:含参数的一元二次不等式的解法【例2】 解关于x 的不等式ax 2-(a +1)x +1<0.思路探究:①对于二次项的系数a 是否分a =0,a <0,a >0三类进行讨论?②当a ≠0时,是否还要比较两根的大小? [解] 当a =0时,原不等式可化为x >1. 当a ≠0时,原不等式可化为(ax -1)(x -1)<0.当a <0时,不等式可化为⎪⎭⎫ ⎝⎛-a x 1(x -1)>0, ∵1a <1,∴x <1a或x >1. 当a >0时,原不等式可化为⎪⎭⎫ ⎝⎛-a x 1(x -1)<0. 若1a <1,即a >1,则1a <x <1; 若1a =1,即a =1,则x ∈∅; 若1a >1,即0<a <1,则1<x <1a. 综上所述,当a <0时,原不等式的解集为⎭⎬⎫⎩⎨⎧><11x a x x 或;当a =0时,原不等式的解集为{x |x >1};当0<a <1时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<a x x 11;当a =1时,原不等式的解集为∅;当a >1时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<11x a x .【方法技巧】解含参数的一元二次不等式的一般步骤注:对参数分类讨论的每一种情况是相互独立的一元二次不等式的解集,不能合并. 【针对训练】2.解关于x 的不等式:ax 2-2≥2x -ax (a <0). [解] 原不等式移项得ax 2+(a -2)x -2≥0, 化简为(x +1)(ax -2)≥0.∵a <0,∴(x +1)⎪⎭⎫ ⎝⎛-a x 2≤0. 当-2<a <0时,2a ≤x ≤-1;当a =-2时,x =-1; 当a <-2时,-1≤x ≤2a .综上所述,当-2<a <0时,解集为⎭⎬⎫⎩⎨⎧-≤≤12x a x ; 当a =-2时,解集为{x |x =-1};当a <-2时,解集为⎭⎬⎫⎩⎨⎧≤≤a x x 21-.考点3:一元二次不等式、二次方程、二次函数的关系[探究问题]1.利用函数y =x 2-2x -3的图象说明当y >0、y <0、y =0时x 的取值集合分别是什么?这说明二次函数与二次方程、二次不等式有何关系? [提示] y =x 2-2x -3的图象如图所示.函数y =x 2-2x -3的值满足y >0时自变量x 组成的集合,亦即二次函数y =x 2-2x -3的图象在x 轴上方时点的横坐标x 的集合{x |x <-1或x >3};同理,满足y <0时x 的取值集合为{x |-1<x <3},满足y =0时x 的取值集合,亦即y =x 2-2x -3图象与x 轴交点横坐标组成的集合{-1,3}.这说明:方程ax 2+bx +c =0(a ≠0)和不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)是函数y =ax 2+bx +c (a ≠0)的一种特殊情况,它们之间是一种包含关系,也就是当y =0时,函数y =ax 2+bx +c (a ≠0)就转化为方程,当y >0或y <0时,就转化为一元二次不等式.2.方程x 2-2x -3=0与不等式x 2-2x -3>0的解集分别是什么?观察结果你发现什么问题?这又说明什么? [提示] 方程x 2-2x -3=0的解集为{-1,3}.不等式x 2-2x -3>0的解集为{x |x <-1或x >3},观察发现不等式x 2-2x -3>0解集的端点值恰好是方程x 2-2x -3=0的根.3.设一元二次不等式ax 2+bx +c >0(a >0)和ax 2+bx +c <0(a >0)的解集分别为{x |x <x 1或x >x 2},{x |x 1<x <x 2}(x 1<x 2),则x 1+x 2,x 1x 2为何值?[提示] 一元二次不等式ax 2+bx +c >0(a >0)和ax 2+bx +c <0(a >0)的解集分别为{x |x <x 1或x >x 2},{x |x 1<x <x 2}(x 1<x 2),则⎩⎪⎨⎪⎧x1+x2=-ba x1x2=ca即不等式的解集的端点值是相应方程的根.【例3】 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.思路探究:由给定不等式的解集形式→确定a<0及关于abc 的方程组→错误!→错误!→错误![解] 法一:由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知,a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系可知b a =-5,c a =6.由a <0知c <0,b c =-56,故不等式cx 2+bx +a <0,即x 2+b cx +a c>0,即x 2-56x +16>0,解得x <13或x >12,所以不等式cx 2+bx +a <0的解集为⎪⎭⎫ ⎝⎛+∞⋃⎪⎭⎫ ⎝⎛∞-,2131,. 法二:由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知,a <0,且2和3是方程ax 2+bx +c =0的两根,所以ax 2+bx +c =a (x -2)(x -3)=ax 2-5ax +6a ⇒b =-5a ,c =6a ,故不等式cx 2+bx +a <0,即6ax 2-5ax +a <0⇒6a ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2131x x <0,故原不等式的解集为⎪⎭⎫⎝⎛+∞⋃⎪⎭⎫ ⎝⎛∞-,2131, 【变式分析】1.(变结论)本例中的条件不变,求关于x 的不等式cx 2-bx +a >0的解集. [解] 由根与系数的关系知b a =-5,ca =6且a <0.∴c <0,b c =-56,故不等式cx 2-bx +a >0,即x 2-b c x +a c <0,即x 2+56x +16<0.解之得.⎭⎬⎫⎩⎨⎧≤≤-231x x 2.(变条件)若将本例中的条件“关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}变为“关于x 的不等式ax 2+bx +c ≥0的解集是⎭⎬⎫⎩⎨⎧≤≤-231x x .求不等式cx 2+bx +a <0的解集.[解] 法一:由ax 2+bx +c ≥0的解集为⎭⎬⎫⎩⎨⎧≤≤-231x x 知a <0.又31-×2=c a<0,则c >0. 又-13,2为方程ax 2+bx +c =0的两个根,∴-b a =53,∴b a =-53.又c a =-23,∴b =-53a ,c =-23a , ∴不等式变为⎪⎭⎫ ⎝⎛-a 32x 2+⎪⎭⎫⎝⎛-a 35x +a <0, 即2ax 2+5ax -3a >0. 又∵a <0,∴2x 2+5x -3<0,所求不等式的解集为⎭⎬⎫⎩⎨⎧<<-231x x 法二:由已知得a <0 且⎪⎭⎫ ⎝⎛-31+2=-b a,⎪⎭⎫ ⎝⎛-31×2=ca知c >0,设方程cx 2+bx +a =0的两根分别为x 1,x 2, 则x 1+x 2=-b c ,x 1·x 2=a c ,其中a c =1⎝⎛⎭⎫-13×2=-32,-b c =-b a c a =⎝⎛⎭⎫-13+2⎝⎛⎭⎫-13×2=1⎝⎛⎭⎫-13+12=-52,∴x 1=1⎝⎛⎭⎫-13=-3,x 2=12.∴不等式cx 2+bx +a <0(c >0)的解集为⎭⎬⎫⎩⎨⎧<<-231x x . 【方法技巧】已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循: (1)根据解集来判断二次项系数的符号;(2)根据根与系数的关系把b ,c 用a 表示出来并代入所要解的不等式; (3)约去 a , 将不等式化为具体的一元二次不等式求解.考点4:分式不等式的解法(化分式不等式为整式不等式)类型同解不等式f (x )g (x )>0(<0) 法一:⎩⎨⎧f (x )>0(<0)g (x )>0或⎩⎨⎧f (x )<0(>0)g (x )<0法二:f (x )·g (x )>0(<0) f (x )g (x )≥0(≤0) 法一:⎩⎨⎧f (x )≥0(≤0)g (x )>0或⎩⎨⎧f (x )≤0(≥0)g (x )<0法二:⎩⎨⎧f (x )·g (x )≥0(≤0)g (x )≠0f (x )g (x )>a ⎝ ⎛⎭⎪⎪⎫<a ≥a ≤a 先移项转化为上述两种形式【例4】 解下列不等式: (1)x -3x +2<0;(2)x +12x -3≤1.[解] (1)x -3x +2<0⇔(x -3)(x +2)<0⇔-2<x <3,∴原不等式的解集为{x |-2<x <3}.(2)∵x +12x -3≤1, ∴x +12x -3-1≤0, ∴-x +42x -3≤0, 即x -4x -32≥0. 此不等式等价于(x -4)⎪⎭⎫ ⎝⎛-23x ≥0且x -32≠0,解得x <32或x ≥4,∴原不等式的解集为.⎭⎬⎫⎩⎨⎧≥<423x x x 或 【方法技巧】1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.【针对训练】4.解下列不等式:(1)x +1x -3≥0;(2)5x +1x +1<3.[解] (1)根据商的符号法则,不等式x +1x -3≥0可转化成不等式组⎩⎨⎧(x +1)(x -3)≥0x≠3.解这个不等式组,可得x ≤-1或x >3. 即知原不等式的解集为{x |x ≤-1或x >3}.(2)不等式5x +1x +1<3可改写为5x +1x +1-3<0,即2(x -1)x +1<0.可将这个不等式转化成2(x -1)(x +1)<0, 解得-1<x <1.所以,原不等式的解集为{x |-1<x <1}.考点5:一元二次不等式的应用【例5】 国家原计划以2 400元/吨的价格收购某种农产品m 吨.按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点,即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x 个百分点,收购量能增加2x 个百分点.试确定x 的范围,使税率调低后,国家此项税收总收入不低于原计划的78%.思路探究:将文字语言转换成数学语言:“税率降低x 个百分点”即调节后税率为(8-x )%;“收购量能增加2x 个百分点”,此时总收购量为m (1+2x %)吨,“原计划的78%”即为2 400m ×8%×78%.[解] 设税率调低后“税收总收入”为y 元. y =2 400m (1+2x %)·(8-x )% =-1225m (x 2+42x -400)(0<x ≤8).依题意,得y ≥2 400m ×8%×78%,即-1225m (x 2+42x -400)≥2 400m ×8%×78%,整理,得x 2+42x -88≤0,解得-44≤x ≤2.根据x 的实际意义,知0<x ≤8,所以x 的范围为(0,2].【针对训练】5.某校园内有一块长为800 m,宽为600 m 的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.[解] 设花卉带的宽度为x m(0<x <600),则中间草坪的长为(800-2x )m ,宽为(600-2x )m .根据题意可得(800-2x )(600-2x )≥12×800×600,整理得x 2-700x +600×100≥0,即(x -600)(x -100)≥0,所以0<x ≤100或x ≥600,x ≥600不符合题意,舍去.故所求花卉带宽度的范围为(0,100] m.考点6:不等式恒成立问题1.(1)不等式的解集为R (或恒成立)的条件不等式 ax 2+bx +c >0 ax 2+bx +c <0 a =0 b =0,c >0b =0,c <0a ≠0⎩⎨⎧a>0Δ<0⎩⎨⎧a<0Δ<0(2)有关不等式恒成立求参数的取值范围的方法f (x )≤a 恒成立⇔f (x )max ≤a f (x )≥a 恒成立⇔f (x )min ≥a[探究问题]1.若函数f (x )=ax 2+2x +2对一切x ∈R,f (x )>0恒成立,如何求实数a 的取值范围?[提示] 若a =0,显然f (x )>0不能对一切x ∈R 都成立.所以a ≠0,此时只有二次函数f (x )=ax 2+2x +2的图象与直角坐标系中的x 轴无交点且抛物线开口向上时,才满足题意,则⎩⎨⎧a >0Δ=4-8a<0解得a >12.2.若函数f (x )=x 2-ax -3对x ∈[-3,-1]上恒有f (x )<0成立,如何求a 的范围?[提示] 要使f (x )<0在[-3,-1]上恒成立,则必使函数f (x )=x 2-ax -3在[-3,-1]上的图象在x 轴的下方,由f (x )的图象可知,此时a 应满足⎩⎪⎨⎪⎧f (-3)<0f (-1)<0即⎩⎪⎨⎪⎧3a +6<0a -2<0 解得a <-2.故当a ∈(-∞,-2)时,有f (x )<0在x ∈[-3,-1]时恒成立.3.若函数y =x 2+2(a -2)x +4对任意a ∈[-3,1]时,y <0恒成立,如何求x 的取值范围?[提示] 由于本题中已知a 的取值范围求x ,所以我们可以把函数f (x )转化为关于自变量是a 的函数,求参数x 的取值问题,则令g (a )=2x ·a +x 2-4x +4.要使对任意a ∈[-3,1],y <0恒成立,只需满足⎩⎪⎨⎪⎧g (1)<0g (-3)<0即⎩⎨⎧x2-2x +4<0x2-10x +4<0.因为x 2-2x +4<0的解集是空集,所以不存在实数x ,使函数y =x 2+2(a -2)x +4对任意a ∈[-3,1],y <0恒成立. 【例3】 已知f (x )=x 2+ax +3-a ,若x ∈[-2,2],f (x )≥0恒成立,求a 的取值范围.思路探究:对于含参数的函数在闭区间上的函数值恒大于等于零的问题,可以利用函数的图象与性质求解. [解] 设函数f (x )=x 2+ax +3-a 在x ∈[-2,2]时的最小值为g (a ),则(1)当对称轴x =-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,解得a ≤73,与a >4矛盾,不符合题意.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=3-a -a24≥0,解得-6≤a ≤2,此时-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0,解得a ≥-7,此时-7≤a <-4.综上,a 的取值范围为-7≤a ≤2. 【变式分析】1.(变结论)本例条件不变,若f (x )≥2恒成立,求a 的取值范围.[解] 若x ∈[-2,2],f (x )≥2恒成立可转化为:当x ∈[-2,2]时,f (x )min ≥2⇔⎩⎪⎨⎪⎧-a 2<-2f (x )min =f (-2)=7-3a≥2或⎩⎪⎨⎪⎧-2≤-a2≤2f (x )min =f ⎝⎛⎭⎫-a 2=3-a -a24≥2或⎩⎨⎧-a2>2f (x )min =f (2)=7+a≥2 解得a 的取值范围为[-5,-2+22].2.(变条件)将例题中的条件“f (x )=x 2+ax +3-a ,x ∈[-2,2],f (x )≥0恒成立”变为“不等式x 2+2x +a 2-3>0的解集为R”求a 的取值范围. 知识改变命运。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.1 二次函数与一元二次方程、不等式学案
(含答案)
学习目标
1.从函数观点看一元二次方程了解函数的零点与方程根的关系.
2.从函数观点看一元二次不等式经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.
3.借助一元二次函数的图象,了解一元二次不等式与相应函数.方程的联系知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式
ax2bxc0,ax2bxc000的图象一元二次方程ax2bxc0a0的根有两个不相等的实数根x1,x2x10a0的解集x|xx2xxb2aRax2bxc0的解集x|x1xx2预习小测自我检验1下面所给关于x的几个不等式
3x40;ax24x70;x20的解集为________答案x|0x2解析原不等式可化为xx20,0x
2.3不等式4x290的解集是________答案x32x32解析原不等式可化为x294,即32x3
2.4已知一元二次不等式ax22x10的解集为R,则a的取值范围是________答案a|a1解析由题意知a0,0,a0,44a0,a0;23x25x20;3x24x
50.解1不等式可化为x25x60,所以方程x25x60有两个实数根x12,x
23.由二次函数yx25x6的图象如图,得原不等式的解集为
x|2x0,所以方程3x25x20的两实根为x12,x21
3.由二次函数y3x25x2的图象图,得原不等式的解集为xx2或x13.3方程x24x50无实数解,函数yx24x5的图象是开口向上的抛物线,与x轴无交点如图观察图象可得,不等式的解集为R.反思感悟解一元二次不等式的一般步骤
第一步把一元二次不等式化为标准形式二次项系数为正,右边为0的形式;第二步求b24ac;第三步若0;2x26x
100.解1方程4x24x10有两个相等的实根x1x21
2.作出函数y4x24x1的图象如图由图可得原不等式的解集为xx12.2原不等式可化为x26x100,364040的解集为x|3x0的解集为x|3x2,所以3,2是方程ax2b8xaab0的两根,所以32b8a,
32aaba,解得a3,b5,所以y3x23x
18.2因为a30的解集为x13x0.解1当a0时,不等式可化为x20,解得x2,即原不等式的解集为x|x22当a0时,方程
ax212ax20的两根分别为2和1a.当a12时,解不等式得1ax2,即原不等式的解集为x1ax2;当a12时,不等式无解,即原不等式的解集为;当12a0时,解不等式得2x1a,即原不等式的解集为
x2x0时,解不等式得x2,即原不等式的解集为xx2.反思感悟解含参数的一元二次不等式的步骤特别提醒对应方程的根优先考虑用
因式分解确定,分解不开时再求判别式,用求根公式计算跟踪训练31当a12时,求关于x的不等式x2a1ax10的解集;2若a0,求关于x的不等式x2a1ax10的解集解1当a12时,有x252x10,即2x25x20,解得12x2,故不等式的解集为
x12x2.2x2a1ax10x1axa0,当0a1时,a1时,a1a,不等式的解集为x1axa.综上,当0a1时,不等式的解集为x1axa.1不等式
9x26x10的解集是
A.xx13
B.x13x13C
D.xx13答案D解析原不等式可化为3x120,3x10,x1
3.2如果关于x的不等式x2axb的解集是x|1x3,那么ba等于A81B81C64D64答案B解析不等式x2axb可化为x2axb0,其解集是x|1x0的解集是Ax|x2或x0Bx|x2或x0Cx|0x2Dx|0x0,即
xx20,得x2或x0,故选
B.4不等式x23x100的解集是________答案x|2x5解析由于
x23x100的两根为2,5,故x23x100的解集为x|2x0a0或
ax2bxc0;求方程ax2bxc0a0的根,并画出对应函数yax2bxc图象的简图;由图象得出不等式的解集2代数法将所给不等式化为一般式后借助分解因式或配方求解2方法归纳数形结合,分类讨论3常见误区当二次项系数小于0时,需两边同乘1,化为正的。