高中数学 第二章 一元二次函数、方程和不等式 2.2.2 利用基本不等式求最值学案 新人教A版必修第
高中数学第二章一元二次函数方程和不等式.基本不等式1教案第一册

2.2基本不等式教材分析:“基本不等式" 是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用。
利用基本不等式求最值在实际问题中应用广泛。
同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.教学目标 【知识与技能】1。
学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2。
掌握基本不等式2a b +≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题【过程与方法】通过实例探究抽象基本不等式; 【情感、态度与价值观】通过本节的学习,体会数学来源于生活,提高学习数学的兴趣。
教学重难点 【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2a b+≤的证明过程; 【教学难点】 12a b+≤等号成立条件; 22a b+≤求最大值、最小值。
教学过程 1。
课题导入前面我们利用完全平方公式得出了一类重要不等式:一般地,∀a ,a ∈a ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立特别地,如果a 〉0,b 〉0,我们用√a ,√a 分别代替上式中的a ,b ,可得√aa ≤a +a 2①当且仅当a =b 时,等号成立。
通常称不等式(1)为基本不等式(basic inequality )。
其中,a +a 2叫做正数a ,b 的算术平均数,√aa 叫做正数a ,b 的几何平均数。
基本不等式表明:两个正数的算术平均数不小于它们的几何平均数。
思考: 上面通过考察a 2+b 2=2ab 的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.2.讲授新课1)类比弦图几何图形的面积关系认识基本不等式2a bab +≤特别的,如果a >0,b >0,我们用分别代替a 、b ,可得2a b ab +≥,(a>0,b>0)2a bab +≤2)2a bab +≤用分析法证明:要证 2a bab +≥(1) 只要证 a +b ≥(2) 要证(2),只要证 a +b - ≥0(3) 要证(3),只要证 ( — )2≥0 (4)显然,(4)是成立的。
高中数学第二章一元二次函数方程和不等式2.2基本不等式第2课时基本不等式的应用课件新人教A版必修第一

(2)由基本不等式,得 y=x+28x8≥24 2. 当且仅当 x=28x8,即 x=12 2时,等号成立, 则 y 最小值=24 2≈34. 即最少需要约 34 米铁丝网.
2
PART TWO
易错特别练
易错点 忽略等号成立的一致性 已知 x>0,y>0,且 x+2y=1,求证:1x+1y≥3+2 2. 易错分析 易错解为1x+1y=(x+2y)1x+1y≥2 2xy·2 x1y=4 2.在证明 过程中使用了两次基本不等式:x+2y≥2 2xy,1x+1y≥2 x1y,但这两次取 “=”分别需满足 x=2y 与 x=y,自相矛盾,所以“=”取不到.
A.60 件 B.80 件 C.100 件 D.120 件
答案 B
解析 设每件产品的平均费用为 y 元,由题意得,y=80x0+8x≥2 =20.当且仅当80x0=8x(x>0),即 x=80 时“=”成立,故选 B.
800 x x ·8
11.用 17 列货车将一批货物从 A 市以 v km/h 的速度匀速行驶直达 B 市.已知 A,B 两市间铁路线长 400 km,为了确保安全,每列货车之间的距 离不得小于2v02 km,则这批货物全部运到 B 市最快需要________h,此时货 车的速度是________km/h.
(1)记全年所付运费和保管费之和为 y 元,求 y 关于 x 的函数; (2)若要使全年用于支付运费和保管费的资金最少,则每批应购入电脑多 少台?
解 (1)由题意得 y=36x0×300+k×3000x. 当 x=20 时,y=7800,解得 k=0.04. 所以 y=36x0×300+0.04×3000x=108x000+120x(x∈N*). (2)由(1)得 y=108x000+120x≥2 108x000×120x=2×3600=7200.当且 仅当108x000=120x,即 x=30 时,等号成立. 所以要使全年用于支付运费和保管费的资金最少,每批应购入电脑 30 台.
新教材人教版高中数学必修第一册 第二章 知识点总结

必修 第一册 第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质1.比较大小的基本事实:比较两实数大小的方法——求差比较法0a b a b >⇔->;0a b a b =⇔-=;0a b a b <⇔-<。
2.恒成立的不等式:一般地,∀R b a ∈,,有ab b a 222≥+,当且仅当b a =时等号成立。
说明:(1)指出定理适用范围:R b a ∈,;(2)强调取“=”的条件b a =。
3.等式的性质:性质1:若a =b ,则b =a ;性质2:若a=b,b=c,则a=c;性质3:若a=b ,则a±c=b±c;性质4:若a=b ,则ac=bc;性质5:若a=b ,c≠0,则cb c a = 4.不等式的性质:性质1:若a b >,则b a <;若b a <,则a b >.即a b >⇔b a <。
说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。
性质2:若a b >,b c >,则a c >。
不等式的传递性。
性质3:若a b >,则a c b c +>+。
性质4:如果b a >且0>c ,那么bc ac >;如果b a >且0<c ,那么bc ac <。
性质5:若,,a b c d a c b d >>+>+且则。
性质6:如果0>>b a 且0>>d c ,那么bd ac >。
性质7:如果0>>b a , 那么n n b a > )1(>∈n N n 且。
2.2 基本不等式1. 如果b a ,是正数,那么ab b a ≥+2(当且仅当b a =时取“=”) 说明:(1)这个定理适用的范围:,a b R +∈;(2)我们称b a b a ,2为+的算术平均数,称b a ab ,为的几何平均数。
【课件】基本不等式(第二课时)2023-2024学年高一数学(人教A版2019必修第一册)

出发使用基本不等式,求得最值.
练一练
2+1
已知a>1,b>0,则
+2a的最小值为
(−1)
提示:
目标式局部:b2+1≥2b,
所以
2+1
2
+2a≥
(−1)
−1
+2(a-1)+2≥…
.
用基本不等式求最值
( )
例3. 已知 x>0, y>0 ,x+y+2=xy,则xy的
条
件
最
值
之
最小值为
.
2
+2
+
2 (−2)2 (−1)2
=
+
+1
4 1
=(m+n)+( + )-6(以下逆代)
用基本不等式求最值
( )
七
条
件
最
值
之
等
价
变
形
1
例6.已知x>0,y>0,且
+2
+
1 1
= ,求xy的最小值.
+2 3
1
解:由等式
+2
1
3
变形得xy=x+y+8
+
1
+2
=
所以xy≥2 +8 解得xy最小值为16
( )
一
直
接
求
最
值
例1. 已知 x>0,
则y= 2
的最大值
+2+4
1
新教材高中数学第二章一元二次函数方程和不等式22基本不等式第2课时基本不等式的应用课件新人教A版必修

新知初探·课前预习
题型探究·课堂解透
新知初探·课前预习
课程标准 (1)熟练掌握基本不等式及变形的应用.(2)会用基本不等式解决简单 的最大(小)值问题.(3)能够运用基本不等式解决生活中的应用问题.
助学批注 批注❶ 在运用基本不等式时,要特别注意“拆”“拼”“凑”等 技巧,使其满足基本不等式中“正”“定”“等”的条件. 批注❷ a+b为定值 批注❸ a2+b2为定值.
巩固训练2 若正实数x,y满足y(x-9)=x,则x+y的最小值为 ____1_6___.
题型 3利用基本不等式解决实际问题 例3 如图所示,园林设计师计划在一面墙的同侧,用彩带围成四个 相同的矩形区域,即如图小矩形ABCD,且其面积为24m2.(注:靠墙 的部分不用彩带) (1)要使围成四个矩形的彩带总长不超过52 m,求BC的取值范围; (2)当围成四个矩形的彩带总长最小时,求AB和BC的值,并求彩带
√ ×
× ×
答案:C
3.用一段长为36 m的篱笆围成一个矩形菜园,则该菜园面积的最
大值为( )
A.81 m2
B.36 m2
C.18 m2
D.9 m2
答案:A
8
题型探究·课堂解透
方法归纳
拼凑法求解最值的策略 先通过代数式变形拼凑出和或积为常数的两项,然后利用基本不等 式求解最值.利用基本不等式求解最值时,要注意“一正、二定、三 相等”,尤其是要注意验证等号成立的条件.
总长的最小值.
方法归纳
利用基本不等式解决实际问题的步骤
答案:A
答案:B
(2)若正数x,y满足x+3y=5xy,则3x+4法求解最值的策略 通过代数式的变形,构造和式或积式为定值的式子,然后利用基本 不等式求解最值.应用此种方法求解最值时,应把“1”的表达式与所 求最值的表达式相乘求积或相除求商.
2021_2022学年新教材高中数学第二章一元二次函数方程和不等式2.2第2课时基本不等式的应用课件

【加固训练】 已知 a,b,c 为正实数,且 a+b+c=1, 求证:1a-1 b1-1 1c-1 ≥8.
【解析】因为 a,b,c 为正实数,且 a+b+c=1,
所以a1
-1=1-a a
=b+a c
≥2
bc a
.
同理,1b
-1≥2
ac b
,c1
-1≥2
ab c
.
上述三个不等式两边均为正,相乘得:
130
130
x2
130
【解析】(1)设所用时间为 t= x ,则 y= x ×2×2+360 +14× x ,
50≤x≤100.
所以,这次行车总费用 y 关于 x 的表达式是
130×18 y= x
2×130 + 360
x,50≤x≤100或y=23x40+1138x,50≤x≤100
.
(2)y=130× x 18 +2×361030 x≥26 10 , 当且仅当130× x 18 =2×361030 x, 即 x=18 10 时等号成立. 故当 x=18 10 千米/时时,这次行车的总费用最低,最低费用的值为 26 10 元.
bc ca ab 当且仅当 a = b = c ,即 a=b=c 时取等号.
已知 x,y,z 都是正数,求证:(x+y)(y+z)(z+x)≥8xyz. 【证明】因为 x,y,z 都是正数,x+y≥2 xy ,y+z≥2 yz ,x+z≥2 xz , 所以(x+y)(y+z)(z+x)≥8xyz.
方法二:由 xy=24,得 x=2y4 . 所以 l=4x+6y=9y6 +6y=61y6+y
16 ≥6×2 y ·y =48. 当且仅当1y6 =y,即 y=4 时,等号成立,此时 x=6. 故每间虎笼长 6 m,宽 4 m 时,可使钢筋网总长最小.
第2章一元二次函数方程和不等式知识点清单-高一上学期数学湘教版

新教材湘教版2019版数学必修第一册第2章知识点清单目录第2章一元二次函数、方程和不等式2. 1 相等关系与不等关系2. 1. 1 等式与不等式2. 1. 2 基本不等式2. 1. 3 基本不等式的应用2. 2 从函数观点看一元二次方程2. 3 一元二次不等式第2章 一元二次函数、方程和不等式 2. 1 相等关系与不等关系 2. 1. 1 等式与不等式一、不等式的性质及其推论 1. 不等式的性质性质1:如果a>b ,那么b<a ;如果b<a ,那么a>b. 即a>b ⇔b<a. 性质2:如果a>b ,b>c ,那么a>c. 即a>b ,b>c ⇒a>c. 性质3:如果a>b ,那么a+c>b+c.性质4:如果a>b ,c>0,那么ac>bc. 如果a>b ,c<0,那么ac<bc. 性质5:如果a>b>0,那么√a n> √b n(n∈N +).性质6:如果a>b ,且ab>0,那么1a< 1b. 如果a>b ,且ab<0,那么1a >1b .2. 不等式性质的推论推论1:如果a+b>c ,那么a>c-b. 推论2:如果a>b ,c>d ,那么a+c>b+d. 推论3:如果a>b>0,c>d>0,那么ac>bd. 推论4:如果a>b>0,那么a n >b n (n∈N +).(1)在应用不等式的性质及其推论时,一定要弄清它们成立的前提条件. (2)要注意各性质和推论是否具有可逆性. 二、比较实数(代数式)的大小 1. 作差比较法(1)依据:a-b>0⇔a>b ;a-b<0⇔a<b ;a-b=0⇔a=b.(2)应用范围:数(式)的大小不明显,作差后可化为积或商的形式. (3)步骤:①作差;②变形;③判断符号;④下结论.(4)变形技巧:①分解因式;②平方后再作差;③配方法;④分子(分母)有理化.2. 作商比较法(1)依据:a>0,b>0且ab >1⇒a>b;a>0,b>0且ab<1⇒a<b.(2)应用范围:同号两数比较大小.(3)步骤:①作商;②变形;③判断商与1的大小关系;④下结论.三、利用不等式的性质求代数式的取值范围 1. 解决此类问题,一般先建立待求范围的整体与已知范围的关系,然后利用不等式的性质进行运算,求得待求式的范围.2. 同向(异向)不等式的两边可以相加(相减),但这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.2. 1. 2 基本不等式 2. 1. 3 基本不等式的应用一、基本不等式一般地,对于正数a,b,我们把2称为a,b的算术平均数, √ab称为a,b的几何平均数.二、基本不等式与最值已知x,y都为正数,则(1)如果积xy是定值p,那么当且仅当x=y时,和x+y有最小值2√p;(2)如果和x+y是定值s,那么当且仅当x=y时,积xy有最大值s 24. 上述结论可归纳为“和定积最大,积定和最小”.三、利用基本不等式求最值的注意事项 1. 利用基本不等式求最值必须满足三个条件才可以进行,即“一正,二定,三相等”. (1)“一正”:各项必须都是正值.例如:代数式x+1x,当x<0时,绝不能认为x+1x≥2,即x+1x的最小值为2. 事实上,当x<0时,x+1x=-[(−x)+1−x]≤-2,当且仅当-x=1−x,即x=-1时,等号成立,此时x+1x取得最大值-2.(2)“二定”:各项之和或各项之积为定值.例如:已知0<x<52,求(5-2x)x 的最大值,需变形为(5-2x)·2x·12,这时2x+(5-2x)=5为定值,且2x>0,5-2x>0. 当2x=5-2x ,即x=54时,[(5-2x)x]max =258.(3)“三相等”:必须验证等号是否成立. 特别是在连续使用基本不等式求最值时,要求必须同时满足任何一步等号成立的字母取值存在且一致. 四、利用基本不等式求最值 1. 利用基本不等式求最值有关问题的关键是凑出“和”或“积”为定值,并保证等号成立,常见的方法技巧如下:(1)拆(裂项拆项):对分子的次数不低于分母次数的分式进行整式分离——分离成整式与“真分式”的和,再根据分式中分母的情况对整式进行拆项,为应用基本不等式凑定值创造条件.(2)并(分组并项):目的是分组后各组可以单独应用基本不等式,或分组后先对一组应用基本不等式,再在组与组之间应用基本不等式得出最值.(3)配(配式、配系数,凑出定值):有时为了挖掘出“积”或“和”为定值,常常需要根据题设条件采取合理配式、配系数的方法,使配出的式子与待求式相乘后可以应用基本不等式得出定值,或配以恰当的系数后,使积式中的各项之和为定值.(4)换(常值代换、变量代换):对条件变形,以进行“1”的代换,从而构造利用基本不等式求最值的形式. 常用于“已知ax+by=m(a ,b ,x ,y 均为正数),求1x +1y 的最小值”和“已知a x +by=m(a ,b ,x ,y 均为正数),求x+y 的最小值”两种类型.2. 2 从函数观点看一元二次方程 2. 3 一元二次不等式一、二次函数的零点1. 一般地,我们把使得ax2+bx+c=0(a≠0)成立的实数x叫作二次函数y=ax2+bx+c的零点. 这样,一元二次方程ax2+bx+c=0的实数根就是二次函数y=ax2+bx+c的零点,也就是函数y=ax2+bx+c的图象与x轴交点的横坐标.二、一元二次不等式及其解法1. 一元二次不等式的概念我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2. 解形如ax2+bx+c>0或ax2+bx+c<0(其中a>0)的一元二次不等式的一般步骤:(1)确定对应一元二次方程ax2+bx+c=0的根;(2)画出对应二次函数y=ax2+bx+c的大致图象;(3)由图象得出不等式的解集.对于二次项系数是负数(即a<0)的一元二次不等式,可以先把二次项系数化为正数,再按上述步骤求解.三、三个“二次”之间的关系二次函数、一元二次方程、一元二次不等式(即三个“二次”)之间的关系如下(其中a,b,c为常数,a>0):四、一元二次不等式的应用1. 利用一元二次不等式解决实际问题的一般步骤 (1)理解题意,分清量与量之间的关系;(2)建立相应的不等关系,把实际问题抽象为一元二次不等式问题; (3)解这个一元二次不等式,结合实际检验,得到实际问题的解. 五、含参数的一元二次不等式的解法 解含参数的一元二次不等式的基本方法——分类讨论1. 解含参数的一元二次不等式时,为了做到分类不重不漏,讨论一般需从如下几个方面考虑:(1)关于二次项系数符号的讨论:分a>0,a<0. (注意,在未说明不等式为一元二次不 等式的情况下,还要考虑a=0的情况)(2)关于不等式对应方程的根的个数的讨论:分两根(Δ>0),一根(Δ=0),无根(Δ<0). (3)关于不等式对应方程的根x 1,x 2的大小的讨论:分x 1>x 2,x 1=x 2,x 1<x 2. 六、简单的分式不等式的解法 1. 解分式不等式的思路:先转化为整式不等式,再求解.2. 化分式不等式为“标准形式”的方法:移项,通分,右边化为0,左边化为f(x)g(x)的形式(f(x),g(x)为关于x 的整式). (1)形如f(x)g(x)>a(a ≠0)的分式不等式可同解变形为f(x)−ag(x)g(x)>0,进而转化为g(x)[f(x)-ag(x)]>0. (2)解f(x)g(x)≥0(≤0)型的分式不等式,转化为整式不等式后,应注意分子可取0,而分母不能取0.七、一元二次不等式恒成立问题 1. 不等式ax2+bx+c>0的解是全体实数(或恒成立)的条件是:当a=0时,b=0,且c>0;当a≠0时,a>0,且Δ<0.2. 不等式ax2+bx+c<0的解是全体实数(或恒成立)的条件是:当a=0时,b=0,且c<0;当a≠0时,a<0,且Δ<0.3. 解决恒成立问题一定要分清谁是自变量,谁是参数. 一般地,知道谁的范围,谁就是自变量,求谁的范围,谁就是参数.4. 若f(x)有最大值f(x)max,则a>f(x)恒成立⇔a>f(x)max;若f(x)有最小值f(x)min,则a<f(x)恒成立⇔a<f(x)min. (f(x)是关于x的函数)。
高中数学第2章一元二次函数、方程和不等式2.2第1课时基本不等式a高一第一册数学

知
合
②∵a∈R,a≠0,∴4a+a≥2 4a·a=4;
作
探 究 释
③∵x,y∈R,xy<0,∴xy+yx=--yx+-yx≤-2
疑
难 =-2.
12/8/2021
第十三页,共四十二页。
课 堂 小 结 提 素 养
课
时
分
-xy-yx
层 作 业
返 首 页
课
情
堂
景
小
导
结
学 提
探 新
其中正确的推导为( )
素
知
课
合
时
作 探 究
③由 xy<0,得xy,yx均为负数,但在推导过程中将整体xy+yx提出
分 层 作
释
业
疑 难
负号后,-xy,-yx均变为正数,符合基本不等式的条件,故③正确.]
返
首
页
12/8/2021
第十五页,共四十二页。
情 景
1.基本不等式 ab≤a+2 b (a>0,b>0)反映了两个正数的和与积
合
(2)若 a≠0,则 a+1a≥2 a·a1=2.
作
探 究 释 疑
(3)若 a>0,b>0,则 ab≤a+2 b2.
难
12/8/2021
第七页,共四十二页。
(
)
课 时
分
层
(
)
作 业
返 首 页
[提示] (1)任意 a,b∈R,有 a2+b2≥2ab 成立,当 a,b 都为正 课
情
堂
景 导
数时,不等式 a+b≥2
)课 堂
景
导
A.a2+b2
B.2 ab
小 结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 利用基本不等式求最值1.会用基本不等式解决简单的最大(小)值问题. 2.能够运用基本不等式解决生活中的应用问题.基本不等式与最值 已知x ,y 都是正数,(1)如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.温馨提示:从上面可以看出,利用基本不等式求最值时,必须有:(1)x 、y >0,(2)和(积)为定值,(3)存在取等号的条件.判断正误(正确的打“√”,错误的打“×”) (1)若a >0,b >0,且a +b =16,则ab ≤64.( ) (2)若ab =2,则a +b 的最小值为2 2.( ) (3)当x >1时,函数y =x +1x -1≥2x x -1,所以函数y 的最小值是2xx -1.( )(4)若x ∈R ,则x 2+2+1x 2+2≥2.( ) [答案] (1)√ (2)× (3)× (4)×题型一利用基本不等式求最值【典例1】 (1)若x >0,求y =4x +9x的最小值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值; (4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[思路导引] 利用基本不等式求最值,当积或和不是定值时,通过变形使其和或积为定值,再利用基本不等式求解.[解] (1)∵x >0, ∴由基本不等式得y =4x +9x≥24x ·9x=236=12,当且仅当4x =9x ,即x =32时,y =4x +9x 取最小值12.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92.当且仅当2x =3-2x ,即x =34时取“=”.∴y 的最大值为92.(3)∵x >2,∴x -2>0, ∴x +4x -2=(x -2)+4x -2+2 ≥2(x -2)·4x -2+2=6. 当且仅当x -2=4x -2, 即x =4时,x +4x -2取最小值6. (4)∵x >0,y >0,1x +9y=1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫1x +9y =10+y x +9x y≥10+29=16.当且仅当y x =9x y 且1x +9y=1时等号成立, 即x =4,y =12时等号成立.∴当x =4,y =12时,x +y 有最小值16.[变式] (1)本例(3)中,把“x >2”改为“x <2”,则x +4x -2的最值又如何? (2)本例(3)中,条件不变,改为求x 2-2x +4x -2的最小值.[解] (1)∵x <2,∴2-x >0, ∴x +4x -2=x -2+4x -2+2=-⎣⎢⎡⎦⎥⎤(2-x )+42-x +2≤-2 (2-x )·42-x+2=-2.当且仅当2-x =42-x,即x =0时,x +4x -2取最大值-2. (2)x 2-2x +4x -2=(x -2)2+2(x -2)+4x -2=x -2+4x -2+2≥2 (x -2)·4x -2+2=6 当且仅当x -2=4x -2,即x =4时,原式有最小值6.(1)若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形、合理拆分项或配凑因式.(2)若多次使用基本不等式,等号成立的条件应相同. [针对训练]1.已知x ,y >0,且满足x 3+y4=1,则xy 的最大值为________.[解析] ∵x ,y >0, ∴x 3+y 4=1≥2 xy12, 得xy ≤3,当且仅当x 3=y 4即x =32,y =2时,取“=”号,∴xy 的最大值为3.[答案] 32.已知x ,y >0,且x +y =4,则1x +3y的最小值为________.[解析] ∵x ,y >0,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x+3x y ≥4+23,当且仅当y x =3xy, 即x =2(3-1),y =2(3-3)时取“=”号, 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. [答案] 1+323.若x <3,则实数f (x )=4x -3+x 的最大值为________. [解析] ∵x <3,∴x -3<0, ∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x =3-x ,即x =1时取“=”号.∴f (x )的最大值为-1. [答案] -1题型二利用基本不等式解决实际问题【典例2】 如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围 36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?[思路导引] 设每间虎笼长x m ,宽y m ,则问题是在4x +6y =36的前提下求xy 的最大值.[解] (1)设每间虎笼长x m ,宽为y m ,则由条件知4x +6y =36,即2x +3y =18. 设每间虎笼面积为S ,则S =xy .解法一:由于2x +3y ≥22x ·3y =26xy , ∴26xy ≤18,得xy ≤272,即S ≤272,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =4.5,y =3.故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 解法二:∵2x +3y =18,∴S =xy =16·(2x )·(3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=816=272.(以下同解法一)(2)由条件知S =xy =24.设钢筋网总长为l ,则l =4x +6y . ∵2x +3y ≥22x ·3y =26xy =24,∴l =4x +6y =2(2x +3y )≥48,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3y ,xy =24,解得⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.解决实际问题时,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).[针对训练]4.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000 m 2的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)[解] 设将楼房建为x 层,则每平方米的平均购地费用为2160×1042000 x =10800x .于是每平方米的平均综合费用y =560+48x +10800x=560+48⎝ ⎛⎭⎪⎫x +225x (x ≥10),当x +225x取最小时,y 有最小值.∵x >0,∴x +225x≥2x ·225x=30,当且仅当x =225x,即x =15时,上式等号成立.∴当x =15时,y 有最小值2000元.因此该楼房建为15层时,每平方米的平均综合费用最小.课堂归纳小结1.利用基本不等式求最大值或最小值时应注意: (1)x ,y 一定要都是正数;(2)求积xy 最大值时,应看和x +y 是否为定值;求和x +y 最小值时,应看积xy 是否为定值;(3)等号是否能够成立.以上三点可简记为“一正、二定、三相等”.2.利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用.3.求解应用题的方法与步骤(1)审题;(2)建模(列式);(3)解模;(4)作答.1.已知y =x +1x-2(x >0),则y 有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2[答案] B2.已知0<x <1,则当x (1-x )取最大值时,x 的值为( )A.13B.12C.14D.23[解析] ∵0<x <1,∴1-x >0.∴x (1-x )≤⎝ ⎛⎭⎪⎫x +1-x 22=14,当且仅当x =1-x ,即x =12时,等号成立.[答案] B3.已知p ,q ∈R ,pq =100,则p 2+q 2的最小值是________. [答案] 2004.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.[解析] 由基本不等式,得4x +a x≥24x ·a x =4a ,当且仅当4x =a x,即x =a2时,等号成立,即a2=3,a =36.[答案] 365.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?[解] 由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x-200≥212x ·80000x-200=200, 当且仅当12x =80000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.课后作业(十二)复习巩固一、选择题1.当x >0时,y =12x+4x 的最小值为( )A .4B .8C .8 3D .16 [解析] ∵x >0,∴12x >0,4x >0.∴y =12x +4x ≥212x ·4x =8 3.当且仅当12x=4x ,即x =3时取最小值83,∴当x >0时,y 的最小值为8 3.[答案] C2.设x ,y 为正数,则(x +y )⎝⎛⎭⎪⎫1x +4y的最小值为( ) A .6 B .9 C .12D .15[解析] (x +y )⎝ ⎛⎭⎪⎫1x +4y =x ·1x +4x y +y x +y ·4y =1+4+4x y +y x ≥5+24x y ·yx=9.[答案] B3.若x >0,y >0,且2x +8y=1,则xy 有( )A .最大值64B .最小值164C .最小值12D .最小值64[解析] 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.[答案] D4.已知p >0,q >0,p +q =1,且x =p +1p ,y =q +1q,则x +y 的最小值为( )A .6B .5C .4D .3[解析] 由p +q =1,∴x +y =p +1p +q +1q =1+1p +1q=1+⎝ ⎛⎭⎪⎫1p +1q (p +q )=1+2+q p +p q ≥3+2q p ·pq=5,当且仅当q p =p q 即p =q =12时取等号,所以B 选项是正确的. [答案] B 5.若a <1,则a +1a -1有最________(填“大”或“小”)值,为________. [解析] ∵a <1, ∴a -1<0, ∴-⎝⎛⎭⎪⎫a -1+1a -1=(1-a )+11-a≥2, ∴a -1+1a -1≤-2, ∴a +1a -1≤-1. 当且仅当a =0时取等号. [答案] 大 -1 二、填空题6.已知0<x <1,则x (3-3x )取得最大值时x 的值为________.[解析] 由x (3-3x )=13×3x (3-3x )≤13×⎝ ⎛⎭⎪⎫3x +3-3x 22=34,当且仅当3x =3-3x ,即x =12时等号成立.[答案] 127.已知正数x ,y 满足x +2y =1,则1x +1y的最小值为________.[解析] ∵x ,y 为正数,且x +2y =1, ∴1x +1y=(x +2y )⎝ ⎛⎭⎪⎫1x +1y =3+2y x +x y≥3+22,当且仅当2y x =x y ,即当x =2-1,y =1-22时等号成立.∴1x +1y的最小值为3+2 2.[答案] 3+2 28.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.[解析] 每年购买次数为400x次.∴总费用=400x·4+4x ≥26400=160,当且仅当1600x=4x ,即x =20时等号成立.[答案] 20 三、解答题9.已知a ,b ,x ,y >0,x ,y 为变量,a ,b 为常数,且a +b =10,a x +by=1,x +y 的最小值为18,求a ,b .[解] x +y =(x +y )⎝⎛⎭⎪⎫a x +by=a +b +bx y +ay x≥a +b +2ab =(a +b )2, 当且仅当bx y =ayx时取等号. 故(x +y )min =(a +b )2=18, 即a +b +2ab =18,① 又a +b =10,②由①②可得{ a =2,b =8或{ a =8,b =2. 10.(1)已知x <3,求f (x )=4x -3+x 的最大值; (2)设x >0,y >0,且2x +8y =xy ,求x +y 的最小值. [解] (1)∵x <3,∴x -3<0. ∴f (x )=4x -3+x =4x -3+x -3+3 =-⎝⎛⎭⎪⎫43-x +3-x +3≤-243-x·(3-x )+3=-1, 当且仅当43-x =3-x ,即x =1时取等号,∴f (x )的最大值为-1.(2)解法一:由2x +8y -xy =0,得y (x -8)=2x ,∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2x x -8=x +(2x -16)+16x -8 =(x -8)+16x -8+10 ≥2(x -8)×16x -8+10 =18. 当且仅当x -8=16x -8,即x =12时,等号成立. ∴x +y 的最小值是18.解法二:由2x +8y -xy =0及x >0,y >0,得8x +2y=1, ∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =8y x +2x y +10≥2 8y x ·2x y+10 =18.当且仅当8y x =2x y,即x =2y =12时等号成立, ∴x +y 的最小值是18.综合运用11.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( ) A.72 B .4 C.92D .5 [解析] ∵a +b =2,∴a +b2=1,∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝ ⎛⎭⎪⎫a +b 2=52+⎝ ⎛⎭⎪⎫2a b +b 2a ≥52+22a b ·b 2a =92(当且仅当2a b =b 2a ,即b =2a 时,“=”成立),故y =1a +4b 的最小值为92. [答案] C12.若xy 是正数,则⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是( ) A .3 B.72 C .4 D.92[解析] ⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2 =x 2+y 2+14⎝ ⎛⎭⎪⎫1x 2+1y 2+x y +y x=⎝ ⎛⎭⎪⎫x 2+14x 2+⎝ ⎛⎭⎪⎫y 2+14y 2+⎝ ⎛⎭⎪⎫x y +y x ≥1+1+2=4.当且仅当x =y =22或x =y =-22时取等号. [答案] C13.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是________. [解析] 因为x >0,所以x +1x≥2, 当且仅当x =1时取等号,所以有x x 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. [答案] ⎣⎢⎡⎭⎪⎫15,+∞ 14.设x >-1,则函数y =(x +5)(x +2)x +1的最小值是________. [解析] ∵x >-1,∴x +1>0,设x +1=t >0,则x =t -1,于是有y =(t +4)(t +1)t =t 2+5t +4t=t +4t +5≥2t ·4t +5=9, 当且仅当t =4t,即t =2时取等号,此时x =1, ∴当x =1时,函数y =(x +5)(x +2)x +1取得最小值9.[答案] 915.阳光蔬菜生产基地计划建造一个室内面积为800 m 2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?[解] 设矩形温室的一边长为x m ,则另一边长为800xm(2<x <200).依题意得种植面积:S =(x -2)⎝ ⎛⎭⎪⎫800x -4=800-1600x -4x +8 =808-⎝ ⎛⎭⎪⎫1600x +4x ≤808-21600x ·4x =648, 当且仅当1600x =4x ,即x =20时,等号成立.即当矩形温室的一边长为20 m ,另一边长为40 m 时种植面积最大,最大种植面积是648 m 2.。