等腰三角形的性质定理及推论

合集下载

初中数学定理及推论的证明

初中数学定理及推论的证明

初中数学定理及推论的证明证明一:等腰三角形的定理定理:如果一个三角形的两条边等长,那么这个三角形是等腰三角形。

证明:假设三角形ABC的两条边AB和AC等长,即AB=AC。

由等量减法原理,我们可以得到:AB-AC=0。

再根据减法交换律,我们可以得到:AC-AB=0。

根据减法结合律,上述两式可以合并为:AC-AB+AB-AC=0。

通过合并同类项,我们可以得到:AC-AC+AB-AB=0。

根据零元素的性质,我们可以得到:0+0=0。

根据加法恒等性质,上述两式可以合并为:0=0。

根据等式传递律,我们可以得到:AC-AB=AB-AC。

根据相反数的性质,上式可以变为:AC+(-AB)=AB+(-AC)。

根据加法逆元的定义,我们可以将上式简化为:AC-AB=AB-AC=0。

由于AC-AB=0,所以AC=AB。

这就证明了三角形ABC是等腰三角形。

证明二:三角形内角和定理定理:三角形的内角和等于180度。

证明:假设三角形ABC的三个内角分别为∠A、∠B、∠C。

我们可以通过以下步骤来证明内角和定理:1.根据直角三角形的性质,直角三角形的内角和等于90度。

所以∠A+∠B+∠C=90度。

2.将三角形ABC划分为两个直角三角形,其中一个直角三角形的两个内角分别为∠A和∠B。

3.根据直角三角形内角和定理,我们可以得到∠A+∠B=90度。

4.将上述结果代入第一步的等式中,我们可以得到90度+∠C=90度。

5.根据加法逆元的定义,我们可以将上述结果简化为∠C=0度。

6.根据零元素的性质,0度+0度+0度=0度。

结合第一步的等式,我们可以得到∠A+∠B+∠C=0度。

因此,三角形ABC的内角和等于180度。

证明三:略以上是初中数学中的两个重要定理及其证明。

这些证明基于基本的数学概念和运算法则,通过逻辑推理和数学运算的方法,从已知条件推导出结论。

这些证明过程旨在培养学生的逻辑思维能力和数学推理能力,加深对数学定理的理解和应用。

同时,这些定理的证明也为后续数学知识的学习和应用奠定了基础。

2.3 第1课时 等腰三角形的性质定理1及推论

2.3  第1课时  等腰三角形的性质定理1及推论

在△ABC中
∵AB=AC
B
C
∴ ∠B=∠C
例题精讲
A
例1 求等边三角形ABC的内角度数.
解 在△ABC中,
∵ AB=AC (已知)
B
C
∴ ∠C=∠B (同一个三角形中等边对等角)
∵∠A+∠B+∠C=180° ∴∠A=∠B=∠C=180°÷3=60°
推论 等边三角形的各角都相等, 推论也可以和定理、定义、性质、基 并且每一个角都等于60 º 本事实一样作为推理、论证的依据
例2 求证“等腰三角形两底角的平分线相等”.
已知: 如图 ,在△ABC中,AB=AC,
BD, CE分别是∠ABC,∠ACB的平分线 . 求证: BD=CE
BD=CE
∆BCE≌ ∆CBD
BC=CB ∠ABC=∠ACB BC=CB
AB=AC
BD, CE是
△ABC平分线
【想一想】你能证明前两个吗?
等腰三角形 两腰上的中线
相等
等腰三角形 两腰上的高线
相等
等腰三角形两 底角的平分线
相等
课堂小结
1)等腰三角形一个性质定理: 两底角相等 简称:等边对等角
2)等腰三角形一个推论:等边三角形的每个内角都等于60° 3)利用等腰三角形的性质定理 可进行简单的 推理,计算。
随堂演练
1.如图2-3-1所示,在△ABC中,AB=AC,∠B=50°,则∠C的度数
_轴__对___称____图形,它的对称轴是顶角平分线所
底角 底角
B
C
在的直线.底边Fra bibliotek获取新知
等腰三角形的性质定理1
等腰三角形的两个底角相等
在同一个三角形中,等边对等角

推导等腰三角形的性质与相关定理

推导等腰三角形的性质与相关定理

推导等腰三角形的性质与相关定理等腰三角形是指有两条边长度相等的三角形。

在几何学中,等腰三角形具有许多特点和性质,也有一些相关的定理与推导。

本文将探讨等腰三角形的各种性质以及相关的定理,并通过推导来进一步理解这些性质。

一、等腰三角形的性质1. 两底角相等:等腰三角形的两个底角是相等的,即两条底边所对的内角相等。

2. 两腰边相等:等腰三角形的两条腰边长度相等,即两边边长相等。

3. 顶角角平分线:等腰三角形的顶角的角平分线也是底边所在的直线。

4. 表面积:等腰三角形的面积可以通过底边长度和高的关系来求解,即面积等于底边乘以高再除以2。

二、等腰三角形的定理1. 定理一:等腰三角形的底角相等。

即对于等腰三角形ABC,若AB=AC,则∠B=∠C。

证明:我们可以通过反证法来证明此定理。

假设∠B≠∠C,那么不妨设∠B>∠C。

由于∠B+∠C=180°,所以∠B-∠C>0.由三角形内角和定理可知,在三角形ABC中,∠B-∠C<∠B+∠C=180°,所以∠B-∠C<∠B-∠C,这与假设∠B-∠C>0矛盾。

因此,等腰三角形的底角相等。

2. 定理二:等腰三角形的底边中线与高相等。

即对于等腰三角形ABC,若AB=AC,则AM=AH,其中M为BC的中点,H为顶角A所在边的垂足。

证明:根据定义可知,AM为BC的中线,AH为三角形ABC中顶角A所在边的高。

由于等腰三角形的两条腰边相等,所以AM=1/2(AB+AC)=AB=AC,同理可得AH=AM,即等腰三角形的底边中线与高相等。

三、推导等腰三角形的性质与定理现在,我们通过推导来进一步理解等腰三角形的性质与相关的定理。

假设有一个等腰三角形ABC,其中AB=AC,我们还可以假设三角形ABC中的底边为BC。

根据性质1,我们知道∠B=∠C,假设∠B=x,那么∠C也为x。

根据性质2,我们知道AB=AC,所以假设AB=AC=a。

由于三角形ABC中三个内角和为180°,根据角度的性质,我们可以得到∠A=180°-2x。

等腰三角形的性质与判定

等腰三角形的性质与判定

等腰三角形的性质与判定1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A ∠-︒ 2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

等腰三角形知识点一:等腰三角形的性质——等边对等角等腰三角形的两个底角 .例1:(2009年贵州黔东南州)如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )A .30oB .40oC .45oD .36o同步检测一:1.在△ABC 中,AB =AC ,①若∠A =70°,则∠B = °,∠C = °②若∠B =40°,则∠A = °2.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )A.50° B.80° C.50°或80° D.40°或65°知识点二:等腰三角形的性质——三线合一等腰三角形的 、 、 互相重合。

例2:如图,在△ABC 中,AD =AE ,BD =CE ,求证:AB =AC同步检测二:1.在△ABC 中,AB =AC ,D 为BC 的中点,∠B =70°,BC =10㎝,则BD = ,∠BAD = °A B CD E F知识点三:等腰三角形的判定——等角对等边在△ABC 中,如果∠A =∠B ,则有 =例3:如图,已知BD 是∠ABC 的角平分线,DE ∥BC 交AB 于E ,求证:△BED 是等腰三角形.1.在△ABC 中∠A =50°,∠B =80°,BC =10㎝,则AB = ㎝ 【证明题典例】例4:已知:如图,AC 和BD 相交于点O ,AB ∥CD ,OA=OB ,求证:OC=OD例5:求证:等腰三角形两腰上的中线相等.例6:在△ABC 中,∠ABC、∠ACB 的平分线相交于点O ,过点O 作DE∥BC,分别交AB 、AC 于点D 、E .求证:DE=BD+EC .A B C DE随堂检测:1、已知ABC ∆中,AB AC =.36A ∠=︒,则C ∠______.2、若等腰三角形中有一个角等于50︒,则这个等腰三角形的顶角的度数为( )A .50︒ B.80︒ C.65︒或50︒ D.50︒或80︒3、等腰三角形一腰为3cm,底为4cm,则它的周长是 ;4、已知等腰三角形的周长为24cm ,一腰长是底边长的2倍,则腰长是( )A .4.8cmB .9.6cmC .2.4cmD .1.2cm 5、如图,若已知36A ∠=︒,72C ∠=︒,BD 平分ABC ∠交AC 于D ,若已知 4AD =cm , (5题图)则BC = cm .6、如图,等腰ABC △中,底边BC a =,36A ∠=︒,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,则图中等腰三角形共有( )个.A .3B .4C .5D .67、如图,已知OC 平分∠AOB ,CD ∥OB ,若OD =3㎝,则CD = ㎝(6题图) (7题图) (8题图)8.如图,△ABC 中,AB =AC , ∠B =30°,EF 垂直平分AB 如CF =8,则BF = .9、如图,在△ABC 中,∠B 和∠C 的平分线相交于点O ,且OB=OC ,请说明AB=AC 的理由.(9题图)10、(1)已知:OD 平分∠AOB ,EO=E D.请说明:ED ∥OB.(2)已知:ED ∥O B ,EO=ED.请说明:OD 平分∠AOB. (10题图)11、已知:如图所示,在△ABC 和△DCB 中,∠A=∠D=90°,AC 与BD 相交于点O ,AC=DB .求证:△OBC 为A B D CE D C BAA B CO等腰三角形.12、(1)已知:如图,在△ABC 中,D 是BC 的中点,DE⊥AB,DF⊥AC,垂足分别是E 、F ,且DE=DF .求证:△ABC 是等腰三角形.(2)求证:等腰三角形底边的中点到两腰的距离相等.【课后作业】1.在△ABC 中,AB=AC,BD 是角平分线,如果∠A=40 o ,那么∠BDC= .2. 在△ABC 中,点D 在CB 上,且AB=AD=CD,∠C=25 o ,那么∠BA C= .3.下列说法正确的是( )A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等 (2题图)C.等腰三角形一边不可是另一边的两倍D.等腰三角形的两个底角相等4、如图,在△ABC 中,已知∠B 和∠C 的平分线相交于点F ,过F作DE ∥BC ,交AB 于点D ,交AC 于点E ,若BD+CE=9, 则线段DE 的长为( ).(A) 9 (B) 8 (C) 7 (D) 65.如图,在△ABC 中,D 是BC 上的一点,DE 平分∠ADB ,DF 平分∠ADC ,且EF ∥BC ,若EF 交AD 于M ,EF=12,则DM = .(5题图) (6题图)6.如图,在△ABC 中,AB =AC ,∠BAD =20o ,AD =AE ,则∠EDC= .7.已知:如图,△ABC 的两条高BE 、CD 相交于点O ,且OB=OC ,求证:△ABC 是等腰三角形.E D C BA。

等腰三角形的性质与定理

等腰三角形的性质与定理

等腰三角形的性质与定理等腰三角形是指具有两条边长度相等的三角形。

在几何学中,等腰三角形具有一些独特的性质和定理。

本文将对等腰三角形的性质与定理进行详细的介绍。

一、等腰三角形的定义和性质等腰三角形的定义:等腰三角形是指具有两条边的长度相等的三角形。

在等腰三角形ABC中,若AB=AC,则∠B=∠C。

等腰三角形的性质:1. 等腰三角形的底角(底边上的角)两个相等。

证明:由等腰三角形的定义可知,AB=AC,再加上三角形内角和为180度的性质,可得∠A+∠B+∠C=180度。

由于∠A=∠B=∠C,所以∠B+∠B+∠B=180度,即3∠B=180度,所以∠B=∠C=60度。

2. 等腰三角形的高(从顶点到底边的垂直线段)和斜边的中线相等。

证明:作等腰三角形ABC的高AD和BC的中线DE。

首先证明AD=DE。

由于三角形ABC是等腰三角形,所以∠A=∠B=∠C=60度。

又因为∠DAB和∠DEC是等腰三角形的底角,所以∠DAB=∠DEC=60度。

因此,由三角形内角和为180度的性质可知,∠DAB+∠BAD+∠BDA=180度,即60度+∠BAD+90度=180度,解得∠BAD=30度。

同理,∠DCE=30度。

再考虑三角形ABD和DEC,由于∠BAD=∠DCE=30度,∠DAB=∠DEC=60度,所以根据AA相似性质可知,∠ABD=∠DEC,故两个三角形相似。

根据相似三角形的性质,可得AD/DE=BD/EC=AB/DC=1/2。

又已知BD=DC,所以AD=DE。

3. 等腰三角形的对顶角(顶点所对的两边的角)相等。

证明:在等腰三角形ABC中,已知∠B=∠C,∠BAC是三角形内角和,即∠BAC+∠CAB+∠ABC=180度,即2∠B+∠ABC=180度,解得∠ABC=180度-2∠B。

同理,∠ACB=180度-2∠C。

由于∠B=∠C,所以∠ABC=∠ACB。

因此,等腰三角形的对顶角相等。

二、等腰三角形的定理1. 等腰三角形底角的平分线是高和对称轴。

15.3-等腰三角形的性质定理及推论

15.3-等腰三角形的性质定理及推论
1 BAD BAC = 60°. 2
C
D
7.如图,已知△ABC为等腰三角形,BD、CE为底 角的平分线,且∠DBC=∠F,求证:EC∥DF. 证明:∵△ABC为等腰三角形,AB=AC, ∴∠ABC=∠ACB.
又∵BD、CE为底角的平分线,
1 1 DBC ABC,ECB ACB, 2 2
A 12
D
C
画出任意一个等腰三角 A
形的底角平分线、这个 底角所对的腰上的中线 和高,看看它们是否重 合?
A
B
C
E
D
D
F
B
C
1.等腰三角形的顶角一定是锐角.
(X)
2.等腰三角形的底角可能是锐角或者直角、
钝角都可以.
(X)
(X)
3.钝角三角形不可能是等腰三角形.
4.等腰三角形的顶角平分线一定垂直底边. 5.等腰三角形的角平分线、中线和高互相重合. 6.等腰三角形底边上的中线一定平分顶角.
∴∠DBC=∠ECB.
∵∠DBC=∠F,∴∠ECB=∠F,
∴EC∥DF.
8.△ABC为正三角形,点M是BC边上任意一点,点N是 CA边上任意一点,且BM=CN,BN与AM相交于Q点, ∠BQM 等于多少度?
解:∵△ABC为正三角形, ∴∠ABC=∠C=∠BAC=60°,AB=BC. 又∵BM=CN, ∴△AMB≌△BCN(SAS), ∴∠BAM=∠CBN, ∴∠BQM=∠ABQ+∠BAM =∠ABQ+∠CBN=∠ABC=60°.
学练优八年级数学上(HK) 教学课件
第15章 轴对称图形与等腰三角形
15.3 等腰三角形
第1课时
导入新课
等腰三角形的性质定理及推论
讲授新课 当堂练习 课堂小结

2019届中考数学一轮复习讲义第27讲等腰三角形

2019届中考数学一轮复习讲义考点二十七:等腰三角形聚焦考点☆温习理解一、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45 °②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a,底边长为b,则b<a2④等腰三角形的三角关系:设顶角为顶角为∠ A ,底角为∠ B、/ C,则∠ A=180—2 ∠ B,/ B= ∠180 AC=—22、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

学!科网推论1:三个角都相等的三角形是等边三角形推论2 :有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

二•等边三角形1•定义三条边都相等的三角形是等边三角形• 2.性质:3•判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三.线段垂直平分线1•定义垂直一条线段,并且平分这条线段的直线叫作这条线段的垂直平分线2•性质线段垂直平分线上的一点到这条线段的两端距离相等3•判定到一条线段两端点距离相等的点,在这条线段的垂直平分线上名师点睛☆典例分类考点典例一、等腰三角形的性质【例1】(2018黑龙江齐齐哈尔中考模拟)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的和谐分割线”.如图,线段CD是ABC的和谐分割线”,ACD为等腰三角形,CBD和ABC相【解析】试题分析:T △比CDS AEA∙G∕∙Z⅛CD=Z44h ,'∕Δ⅛CD是等腰三角形,,∕Z ADC>Z BCD J.'.Z AD OZA J即AC≠CD,①⅛AC?=AJ)时’ ZACD=ZADC=^ =67, .∖ZACE=670+4S C=113° *■②当DADC 时,ZCD=ZjL= 46 Q R √.ZACB=46" +46' =93Q J 故答案为M时或财-考点:1∙相似三角形的性质;2.等腰三角形的性质.【点睛】本题考查的是等腰三角形的性质和相似三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.【举一反三】如图,AD , CE分别是△ABC的中线和角平分线.若AB=AC , ∠ CAD=20 ,则∠ ACE的度数是( )A. 20 °B. 35 °C. 40 °D. 70 °【来源】浙江省湖州市2018年中考数学试题【答案】B【解析】分析;先⅛据等腰三角形的⅛m及三角形内角和定S⅛⅛ZCAfr=2ZCADM0% ZB=ZACH £( IS^ZCAB) =70°.再禾U用角平分线定义即可得出ZX*E W√ACB=3實.徉解::AD 是∆ABC 的中线』AB-AC J. ZaAD=20%/.ZCAB=2ZQAD=40S ZB=ZACB=I (IS^-ZCAB) =70t.ICE是AABC的甬平分线,∕÷ ZACE=i ZACB=JS ci.Z故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70是解题的关键.考点典例二、等腰三角形的多解问题1【例2】(2018黑龙江绥化中考模拟)在等腰ABC中,AD BC交直线BC于点D ,若AD -BC ,2则ABC的顶角的度数为 ____________ .【答案】30°或150°或90°. 【解析】 试题分析:①BC 为腰,1∙∙∙ AD 丄 BC 于点 D , AD= BC ,/∙∠2②BC 为底,如图3,CAD= - ×80 °90 °2腰时,应在符合三角形三边关系的前提下分类讨论. 【举一反三】(湖南省衡阳市船山实验中学 2017-2018学年八年级上期末模拟)等腰三角形的一个内角为 70°它的一腰上的高与底边所夹的角的度数是()ACD=30° ,如图1 , AD 在△ABC 内部时, 顶角∠ C=30 ,如图2,AD 在△ABC 外部时,顶角∠ ACB=180 - 30o=150°,∙∙∙ AD 丄 BC 于点 D , AD= I BC,∙∙∙ AD=BD=CD , ∙∙∙ ∠ B= ∠ BAD , ∠ C= ∠ CAD , /. ∠ BAD+ ∠【点睛】题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边∙顶角∠ BAC=90 ,来源学科网ZXXMA. 35 °B. 20 °C. 35 °或20 °D. 无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35° 70°是底角,顶角是40°它的一腰上的高与底边所夹的角的度数是20°.故选C.考点典例三、等边三角形的性质与判定【例3】已知:在附鳥中,悴F T&I,为的中点V-銅,:■,垂足分别为点,且册•罔•求证:1是等边三角形.【来源】浙江省嘉兴市2018年中考数学试题【答案】证明见解析MMfi】分析;由等腥三角形的性质得SUZR=NG再用HL证明I∆CTF,得到厶IYG从而得到ZAQNG即可得到结论,徉解:「密FU /.Z5=ZC.∖'DElAB f DFLBC J ,\ZD£^=ZDFO90&.丁D为的卫匚中⅛jλΣfA=DC.又YDE=D F, -IR L AAE实RlACDF (HL),--ZJi=N方-ΞZ^C?:-AA^C是等边三角形- 点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质•解题的关键是证明∠ A=∠ C.【举一反三】(重庆市江津区2017-2018学年八年级上学期期末模拟 )如图所示,AABC为等边三角形,P为BC上一点,Q为AC上一点,AQ=PQ , PR=PS, PR⊥ AB于R, PS⊥ AC于S, ?则对下面四个结论判断正确的是()①点P在∠ BAC的平分线上,②AS=AR , ③QP// AR , ④厶BRP^Δ QSP.A.全部正确;B.仅①和②正确;C.仅②③正确;D.仅①和③正确【答案】A【解析】试题解析:∙∙∙PR⊥ AB于R, PS⊥ AC于S.∙∙∙∠ARP= ∠ ASP=90 .∙∙∙ PR=PS, AP=AP..∙. Rt △A RP也Rt AASP.∙∙∙ AR=AS ,故(2)正确,∠ BAP= ∠ CAP..AP是等边三角形的顶角的平分线,故(1)正确.∙AP是BC边上的高和中线,即点P是BC的中点.∙∙∙ AQ=PQ.∙点Q是AC的中点.∙PQ是边AB对的中位线.∙PQ // AB ,故(3)正确.∙.∙∠ B= ∠ C=60 ,∠ BRP= ∠ CSP=90 , BP=CP.•••△ BRPQSP,故(4)正确.•全部正确.•故选A.考点典例四、线段垂直平分线的性质运用【例3】.如图,MM中,川,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交•于点;②作边的垂直平分线,'与!相交于点;③连接•,'.请你观察图形解答下列问题:(1) __________________________________________ 线段PA^B^C之间的数量关系是(2)若曲吭-潜,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1)•:'「二-b 二V; (2)80°【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ ABC= ∠ ACB=70 ,由三角形的内角和得:∠BAC=180 -2 ×0°=40°,由角平分线定义得:∠ BAD= ∠ CAD=20 ,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC ,理由是:∙∙∙ AB=AC , AM 平分∠ BAC ,∙∙∙ AD是BC的垂直平分线,∙∙∙ PB=PC ,∙∙∙ EP是AB的垂直平分线,∙PA=PB,∙PA=PB=PC ;故答案为:PA=PB=PC ;⑵ 丁AE=AG/.Z ABC-Z ACE-VO O J.∖ ZBAC=I 80o-2^70c=40e,TANl 平分ZBAC,.,.ZBAD=ZCAD=2fl D,TPA=PB=PG・∖ ZABP= Z BAP=ZACP»20C,/. ZBPc=ZABP-Z BAC+Z ACP=20 i→0fr-2 =So S.点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.【举一反三】(2018广西钦州市中考模拟)如图,在△ABC中,∠ ACB=90 ,分别以点A和点B为圆心,以相同的长(大于AB )为半径作弧,两弧相交于点M和点N ,作直线MN 交AB于点D ,交BC于点巳若AC=3 , AB=5 ,则DE等于()A. B. C.D.【答案】C【解析】根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:BC==4,连接AE,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得AC +CE =AE+ (4-AE )即3=AE解得:AE=在Rt △ADEAD= AB=勾股定理得) DE +(=(解得:DE=故选C.课时作业☆能力提升一、选择题1. (2018年湖北省松滋市初级中学数学中考模拟试题(一))如图,在△ABC中,AB=AC , AB的垂直平分线交边AB于D点,交边AC于E点,若ΔABC与ΔEBC的周长分别是40,24,则AB为()S CA. 8B. 12C. 16D. 20【答案】C【解析】试题解析:∙∙∙DE是AB的垂直平分线,ME = RE :的周长任「Δ EHC的周长I = EE + EC + IiC =AE^ Ec [ IiC = AC + 甘:.∙. I总盒强:的周长—M 泪的周长=AB ,∣ΛZP=40-24=16.故选C.点睛:线段的垂直平分线上的点到线段两个端点的距离相等.2. (2017黑龙江大庆)如图,ΔABD是以BD3. 已知 汀 口耽:,用尺规作图的方法在 冋上确定一点冈,使Un ,则符合要求的作图痕迹是ΔBCD 中,∠ DBC=90° ∠ BCD=60° DC 中点为E , AD 与BE 的延长线交于点 F ,则∠ AF B 的度数为()A. 30 °B.15 °C.45 °D.25 °【答案】B【解析】解:τ∠ DBC=90° E 为 DC 中点,∙∙∙ BE=CE=CD ,τ∠ BCD=60° Λ∠ CBE=60° ∕∙∠ DBF=30°∙∠ ABF=75° ∙∠ AFB=180° - 90° - 75°=15° 故选B .为斜边的等腰直角三角形, •••△ ABD 是等腰直角三角形,∙∠ ABD=45° , A.【答案】D【解折】分析:夷使PZPC=BC,必有PA=PB,所以选项中只有作AB 的中垂线才能满足遗个条件,故D 正确. 详解:D 选项中作的是AB 的中垂线,.∖PA=PB.'.PB-PC-BC J∕r PA+PC=BC故选D*点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出 PA=PB .4.(河北省故城县运河中学 2017-2018学年八年级(上)期末)等边三角形的边长为 2,则该三角形的面积为()A. D. 3 【答案】CB.C.【解析】如图,作CD丄AB ,贝U CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=I ,所以,在直角ΔADC中,利用勾股定理,可求出CD= =面积计算公式,解答,代入出S AABC = ×2×故选:C.5. (2017-2018 学年苏州市工业园区金鸡湖学校期末复习)如图,在于占4八、、于占4八、、边的中点,连接则下列结论①②为等边三角形.下面判断正确是( )A. ①正确B. ②正确C. ①②都正确D. ①②都不正确【答案】C【解析】试题解析:①∙∙∙BM丄AC于点M, CN丄AB于点N , P为BC边的中点,PN= ∙∙∙ PM=PN ,正确;②∙∙∙∠ A=60 , BM 丄AC 于点M , CN 丄AB 于点N ,∙∠ ABM= ∠ ACN=30 ,在 AABC 中,∠ BCN+ ∠ CBlvF 180° -60 °-30 °×2=60° , •••点P 是BC 的中点,BM 丄AC , CN 丄AB , ∙ PM=PN=PB=PC ,∙∠ BPN=2 ∠ BCN , ∠ CPM=2 ∠ CBM ,∙∠ BPN+ ∠ CPM=2 (∠ BCN+ ∠ CBM ) =2×60°=120° , ∙∠ MPN=60 ,•••△ PMN 是等边三角形,正确; 所以①②都正确.PM= BCBC ,故选C .6.在平面直角坐标系中,点 A ( J2 ,迈),B ( 3J2 , 3丿2 ),动点C 在X 轴上,若以A 、B 、C 三点为 顶点的三角形是等腰三 角形,则点C 的个数为()A . 2B . 3C . 4D . 5【答案】B . 【解析】试爾分析:SC≡√∕AB 所在的M ⅛⅛Sy = X ,Λ⅛ AB 的中垂线所在的直线野二 V 丁点BZCgZ 的中点坐 ⅛⅛(2∙d, 2 如 把 x=2√∑,产 2√Σ 代AF = -K+占,解得 b=4√2, …朋的中垂线所在的S÷⅞≡y = -χ+4√2 , .'.C 1 ¢4^, O )J決点启为圆^以期的长为半^画弧P 与-轴的交点为点55 ^B √(3√2 -√2)z + (3√2 -√2)z =4, V3√2>4,圆心,以朋的长九半径画弧 与耳轴沒有交点.综上,可得若以久趴€三点为顶点的三角形是等腰三角形P 则点f 的个数为取故选亠考点:1.等腰三角形的判定;2•坐标与图形性质;3•分类讨论;4 •综合题;5•压轴题.7(浙江省上杭县西南片区 2017-2018学年八年级上册期末模拟 )如图,在 MBC 中,∠ B= ∠ C, AD 为AABC 的中线,那么下列结论错误的是()A. AABD ACDB. AD为ΔABC的高线C. ADD. ΔABC是等边三角形为ΔABC的角平分线【答案】D【解析】试题解析:τ∠ B= ∠ C, ∙∙∙ AB=AC ,∙∙∙ AD是△ABC的中线,∙AD丄BC ,∠ BAD= ∠ CAD ,即AD是ΔABC的高,AD为△ABC的角平分线,∙∠ADB= ∠ ADC=9°0 ,在ΔABD和ΔACD中•••△ ABD BΔ ACD ,即选项A、B、C 都正确,根据已知只能推出AC=AB ,不能推出AC、AB 和BC 的关系,即不能得出△ABC 是等边三角形,选项D 错误,故选D .二、填空题8. (2018广州市黄埔区中考数学一模)如图,已知ΔABC和ΔAED均为等边三角形,点D在BC边上,DE 与AB相交于点F,如果AC=12 , CD=4 ,那么BF的长度为__.答案】解析】试题分析:△ABC 和△AED 均为等边三角形,~ ?ACD, 又2017-2018 学年八年级上期末模拟 )已知:点 P 、Q 是 △ABC 的边 BC 上的两个 ,∠BAC 的度数是( ) 9. ( 山西省汾西县双语学校点,且 BP=PQ=QC=AP=AQA. 100 °B. 120 °C.130 °D. 150【答案】B【解析】VPctAP=AQ l l.∖ ZAP Q= ZPAQ= ZAQP=605,ZAP=BP,.∖Z B-Z TAB J Z,∖PQ-Z B÷ZPAB-SO C),∖ZB=ZTAB=SO fi,同理ZQAC=ZC=30%.∖ZBAoZPAQ十ZPAB十ZQAOl2'O HS.故选B. I10.(浙江省宁波市东方中学2017-2018学年八年级上册期末模拟)等腰△ABC ,其中AB=AC=17cm , BC=16cm ,则三角形的面积为___________ cm2.【答案】120 【解析】利用等腰三角形的顶角的平分线、底边上的中线、底边上的高的重合的性质,勾股定理求出三角形的高AD= =15cm ,再利用三角形面积公式求S AABC = BC?AD=×16×15=120cm2故答案为:120.11.(浙江省宁波市李兴贵中学2017-2018学年八年级上册期末模拟)等腰三角形一腰上的高与另一腰的夹角为40°则等腰三角形顶角的度数是________[来]【答案】50或130【解析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,①如图 1 ,∙∙∙ BD 丄AC , ∠ ABD=40 ,∙∙∙∠A=50 ,即顶角的度数为50°.另一种情况等腰三角形为钝角三角形,②如图2,∙∙∙ BD 丄AC , ∠ DBA=40∙∙∙∠ BAD=50 ,∙∙∙∠ BAC=130 .故答案为:50或130.12.(浙师大附属秀洲实验学校 2017-2018学年九年级下学期第三次模拟 )已知□ ABCD 中,AB=4, ABC 与 EDC 的角平分线交AD 边于点E , F ,且EF=3,则边AD 的长为 ___________________ .【答案】5或11;【解析】∙∙∙ BE 平分∠ ABC,∙∠ ABE= ∠ CBE ,•••四边形ABCD 是平行四边形,∙ AD // CB , CD=AB=4 ,∙∠ AEB= ∠ CBE∙∠ ABE= ∠ AEB ,∙ AE=AB=4 ,同理:DF=CD=4 ,分两种情况:∙ AD=AE+EF+DF=4+3+4=11∙ AF=1 , ∙ AD=AF+DF=1+4=5; ①如图1所示:∙∙∙ EF=3②如图2所示:■/ EF=4 ,AE=DF=4综上所述: AD的长为11或5;故答案为:5或11.13. (2017新疆建设兵团第15题)如图,在四边形 ABCD 中,AB=AD , CB=CD ,对角线AC , BD 相交于 点0,下列结论中:① ∠ ABC= ∠ ADC ;② AC 与BD 相互平分;③ AC ,BD 分别平分四边形 ABCD 的两组对角;1④ 四边形ABCD 的面积S= AC?BD .2试题解析:①在 △ABC 和ΔADC 中,AB AD∙∙∙ BC CD ,AC AC•••△ ABC ADC ( SSS),∙∙∙∠ ABC= ∠ ADC ,故①结论正确;②•••△ ABC BΔ ADC ,∙∠ BAC= ∠ DAC ,∙∙∙ AB=AD ,• OB=OD , AC 丄 BD ,而AB 与BC 不一定相等,所以 AO 与OC 不一定相等,故②结论不正确; ③由②可知:AC 平分四边形 ABCD 的∠ BAD 、/ BCD,1 而AB 与BC 不一定相等,所以 BD 不一定平分四边形 ABCD 的对角; 故③结论不正确;④∙∙∙ AC 丄 BD ,[来源学科网]•••四边形ABCD 1 1 1的面积 S=SSS 3 2 BD ?A O + 2 BD ?CO = 2 BD ?(AO+CO )=AC?BD . 2故④结论正确;所以正确的有:①④考点:全等三角形的判定与性质;线段垂直平分线的性质.14.等腰三角形 中,顶角为 ,点在以为圆心,'长为半径的圆上,且为 _________ .【来源】2018年浙江省绍兴市中考数学试卷解析【答案】 或【解析】【分析】画出示意图,分两种情况进行讨论即【解答】如图:分两种情况进行讨论■■■ ^PBC = ^ABP + ^ABC= Ilo Dl 同理:^AffP r ^^BAC )J-ABP a■ 2.BAC = 40\ LABC = tβo"-+t>*1 Λ ^P I ffC = ^AeC-= 30°.故答案为:3^或】1孑【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用15. (2017广西贵港第16题)如图,点P 在等边 ABC 的内部,且PC 6,PA 8,PB 10 ,将线段PC绕点C 顺时针旋转60o得到P'C ,连接AP',则Sin PAP'的值为 ___________________ . 【答案】35∙∙∙ CP=CP =6,∠ PCP =60°•••△ CPP 为等边三角形,• PP =PC=6•••△ ABC 为等边三角形,• CB=CA , ∠ ACB=60 ,∙∠ PCB= ∠ P' CA在△PCB 和 ΔP ,CA 中 PC PCPCB PCACB CAτ 62+82=102,• PP 2+AP 2=P'A,∙ PB=P A=10,[来源学。

9.等腰三角形、直角三角形、勾股定理

9、等腰三角形直角三角形与勾股定理(八上ch16、八下ch19)(专题21、22)一 . 等腰三角形1、性质定理:等腰三角形的两个底角相等(简写:等边对等角)两个推论:推论1:等腰三角形顶角平分线平分底边,并且垂直于底边.推论2:等边三角形各角都相等,并且每一个角都等于60o .2、判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写:等角对等边) 三个推论:推论1:三个角都相等的三角形是等边三角形.推论2:有一个角等于60o 的等腰三角形是等边三角形推论3:直角三角形中,若有一个锐角等于30o ,则它所对的直角边等于斜边的一半.3、三角形中的不等关系: 定理:三角形中,若两条边不等,则它们所对角也不等,大边所对的角较大(简写:大边对大角) 逆定理:三角形中,若两个角不等,则它们所对边也不等,大角所对边较大.(简写:大角对大边)二、直角三角形1、直角三角形的概念2、直角三角形的性质(1)直角三角形中,30°的锐角所对的直角边等于斜边的一半 ;(2)直角三角形中,若一条直角边等于斜边的一半,则这条直角边所对锐角等于30°;(3)直角三角形中,斜边上的中线等于斜边的一半.重要结论:(1)S Rt △ABC =21ch=21ab,其中a ,b 为两直角边,c 为斜边,h 为斜边上的高; 3、直角三角形的判定(1)两个内角互余的三角形是直角三角形;(2)一边上的中线等于这边一半的三角形是直角三角形.4、勾股定理及逆定理定理:如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么a 2+b 2=c 2.变式:(1)a 2=c 2-b 2;(2)b 2=c 2-a 2;(3)a=22b c-;(4)b=22a c -;(5)c=22b a + 逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.。

等腰三角形的性质定理和判定定理

教学内容(一)知识梳理知识点1:等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)知识点2:等腰三角形性质定理2:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)∵AB=AC ∵AB=AC ∵AB=AC∠1=∠2 AD⊥BC BD=DC∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2,BD=DC AD⊥BC知识3:等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。

在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC【典型例题分析】例1. 如图,已知P、Q是△ABC边BC上两点,且BP=PQ=AP=AQ=QC,求∠BAC的度数。

解:∵AP=PQ=AQ(已知)∴△APQ是等边三角形(等边三角形的定义)∴∠APQ=∠AQP=∠PAQ=60°(等边三角形的性质)∵AP=BP(已知)∴∠PBA=∠PAB(等边对等角)又∠APQ=∠PAB+∠PBA=60°∴∠PBA=∠PAB=30°同理∠QAC=30°∴∠BAC=∠PAB+∠PAQ+∠QAC=30°+60°+30°=120°例2. 已知:如图,在△ABC中,∠B=∠C,D、E、F分别为AB,BC,AC上的点,且BD=CE,∠DEF=∠B。

求证:△DEF是等腰三角形。

证明:∵∠B+∠BDE+∠BED=180°(三角形内角和定理)∠BED+∠DEF+∠FEC=180°(平角性质)∠B=∠DEF(已知)∴∠BDE=∠FEC(等角的补角相等)在△BED和△CFE中,∠BDE=∠FEC中(已证),BD=CE (已知),∠B=∠C (已知)∴△BED≌△CFE (ASA),∴DE=EF (全等三角形对应边相等)∴△DEF是等腰三角形(等腰三角形定义)例3. 已知:如图,AC和BD相交于点O,AB∥CD,OA=OB,求证:OC=OD证明:∵AB∥CD (已知)∴∠A=∠C,∠B=∠D (两直线平行,内错角相等)∵OA=OB (已知)∴∠A=∠B (等边对等角)∴∠C=∠D (等量代换)∴OC=OD (等角对等边)例4. 如图,在四边形ABDC中,AB=2AC,∠1=∠2,DA=DB,试判断DC与AC的位置关系,并证明你的结论。

等腰三角形的相关定理和推论

等腰三角形的相关定理和推论
等腰三角形是指两条边长度相等的三角形。

在几何学中,等腰三角形有一些重要的定理和推论,下面将介绍其中的几个。

等腰三角形的定理
1. 等腰三角形的两底角相等。

即如果一个三角形的两边长度相等,则该三角形的两底角也相等。

2. 等腰三角形的顶角平分底角。

即如果一个三角形的两边长度相等,则该三角形的顶角等于其底角的一半。

3. 等腰三角形的底角平分顶角。

即如果一个三角形的顶角等于其底角的一半,则该三角形的两边长度相等。

等腰三角形的推论
1. 等腰三角形的底边上的高线也是中线。

即等腰三角形从顶点到底边上某点的线段既是高线又是中线。

2. 等腰三角形的高线平分底边长度。

即等腰三角形的高线将底边分成两段长度相等的线段。

3. 等腰三角形的底边上的垂直平分线也是高线。

即等腰三角形的底边上垂直平分线是高线。

以上是关于等腰三角形的一些重要定理和推论。

通过这些定理和推论,我们可以更好地理解和研究等腰三角形的性质和特点。

在解决相关几何问题时,可以应用这些定理和推论来简化计算和推导过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时等腰三角形的性质定理及推论
教学目的
1.使学生了解等腰三角形的有关概念,掌握等腰三角形的性质。

2.通过探索等腰三角形的性质,使学生进一步经历观察、实验、推理、交流等活动。

重点:等腰三角形等边对等角性质。

难点:通过操作,如何观察、分析、归纳得出等腰三角形性质。

教学过程
一、复习引入
1.让学生在练习本上画一个等腰三角形,标出字母,问什么样的三角形是等腰三角形?
△ABC中,如果有两边AB=AC,那么它是等腰三角形。

2.日常生活中,哪些物体具有等腰三角形的形象?
二、新课
1.指出△ABC的腰、顶角、底角。

相等的两边AB、AC都叫做腰,另外一边BC叫做底边,两腰的夹角∠BAC,叫做顶角,腰和底边的夹角∠ABC、∠ACB叫做底角。

2.实验。

现在请同学们做一张等腰三角形的半透明纸片,每个人的等腰三
角形的大小和形状可以不一样,把纸片对折,让两腰AB、AC重叠在一起,折痕为AD,如图(2)所示,你能发现什么现象吗?请你尽可能多的写出结论。

可让学生有充分的时间观察、思考、交流,可能得到的结论:
(1)等腰三角形是轴对称图形
(2)∠B=∠C
(3)BD=CD,AD为底边上的中线。

(4)∠ADB=∠ADC=90°,AD为底边上的高线。

(5)∠BAD=∠CAD,AD为顶角平分线。

结论(2)用文字如何表述?
等腰三角形的两个底角相等(简写成“等边对等角”)。

结论(3)、(4)、(5)用一句话可以归结为什么?
等腰三角形的顶角平分线,底边上的高和底边上的中线互相重合 (简称“三线合一”)。

例l已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数。

本题较易,可由学生口述,教师板书解题过程。

引申:已知:在△ABC中,AB=AC,∠A=80°,求∠B和∠C的度数。

小结:在等腰三角形中,已知一个角,就可以求另外两个角。

三、练习巩固
本课时练习
补充:
填空:在△ABC中,AB=AC,D在BC上,
1.如果AD⊥BC,那么∠BAD=∠______,BD=_______
2.如果∠BAD=∠CAD,那么AD⊥_____,BD=______
3.如果BD=CD,那么∠BAD=∠_______,AD⊥______
四、小结
本节课,我们学习了等腰三角形的性质:等腰三角形的两底角相等 (简写“等边对等角”);等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(简称“三线合一”),它们对今后的学习十分重要,因此要牢记并能熟练应用。

用数学语言表述如下:
1.△ABC中,如果AB=AC,那么∠B=∠C。

2.△ABC中,如果A月=AC,D在BC上,那么由条件(1)∠BAD=∠CAD,(2)AD⊥AC,(3)BD=CD中的任意一个都可以推出另外两个。

五、作业
课后习题
教学后记:。

相关文档
最新文档