(北师大版)初中数学第二章《有理数及其运算》单元复习

合集下载

2022-2023学年北师大版七年级数学上册《第2章有理数及其运算》单元测试题(附答案)

2022-2023学年北师大版七年级数学上册《第2章有理数及其运算》单元测试题(附答案)

2022-2023学年北师大版七年级数学上册《第2章有理数及其运算》单元测试题(附答案)一、选择题(共10题,共30分)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果高于海平面200米记为+200米,那么低于海平面300米应记为()A.﹣300米B.+500米C.+300米D.﹣100米2.﹣的相反数是()A.﹣B.C.﹣2D.23.数轴上有A,B,C,D四个点,其中表示的数的绝对值等于2的点是()A.点A B.点B C.点C D.点D4.下列各数中,不是有理数是()A.0B.C.﹣2.D.3.14159265.计算(﹣1)÷(﹣5)×的结果是()A.﹣1B.1C.D.﹣256.在﹣(﹣2),﹣24,﹣|﹣23|,﹣{+[﹣(﹣3)]}中,负数的个数为()A.0个B.1个C.2个D.3个7.下列说法正确的是()A.|x|>xB.当x=1时,|x+1|+2取最小值C.若x>1>y>﹣1,则|x|<|y|D.若|x+1|≤0,|x+1|≥0,则x=﹣18.有理数a、b、c在数轴上对应的点的位置如图所示.如果﹣(a+b)=a+b,那么下列结论正确的是()A.abc>0B.C.|a|<|c|D.a+c=09.一个动点P从数轴上的原点O出发开始移动,第1次向右移动1个单位长度到达点P1,第2次向右移动2个单位长度到达点P2,第3次向左移动3个单位长度到达点P3,第4次向左移动4个单位长度到达点P4,第5次向右移动5个单位长度到达点P5…,点P按此规律移动,则移动第2022次后到达的点P2022在数轴上表示的数为()A.﹣2020B.﹣2021C.2022D.202310.有理数a,b,c满足abc≠0,a<b且a+b<0,,那么的值为()A.0B.2C.0或2D.0或﹣2二、填空题(共8题,共32分)11.比较大小:﹣﹣0.3333.(填“>”,“=”,或“<”)12.如图,数轴上有三个点A,B,C,它们表示的数均为整数,且B,C之间的距离为1个单位长度.若点A,B表示的数互为相反数,则图中点C表示的数是.13.在﹣32,﹣|﹣3.4|,,﹣(﹣5),﹣中,负分数的个数为个.14.已知(x﹣3)2+|y+2|=0,那么3x﹣y2的值为.15.如果a,b互为相反数a≠0,c是最大的负整数,m是﹣的倒数,则m(a+b+c)+的值是.16.已知点A表示的数是﹣2,一个点从数轴上的P点出发,先向左移动1个单位长度,再向右移动5个单位长度,终点距离A点的距离为3,则点P表示的数为.17.对一个正整数n进行如下操作:若n为奇数,则将它乘以3,再加1,得到一个新数;若n为偶数,则取它的一半,若结果仍为偶数,则再取这个结果的一半,…,直到得到一个新的奇数.对n进行1次上述操作所得的结果记为(n)1,再将(n)1进行一次上述操作,所得的结果记为(n)2,….例如:数9经过1次操作得到28,即(9)1=28,经过2次操作得到7,即(9)2=7,经过3次操作得到22,即(9)3=22.则(11)100=.18.对于数轴上的三个点A,B,C给出如下定义:A,B两点到C点的距离之差的绝对值称为A,B两点关于点C的绝对距离,记为||ACB||.若P,Q为数轴上的两点(点P在点Q 的左边),且PQ=9,点C表示的数为﹣1,若||PCQ||=6,则点P表示的数为.三、解答题(共5题,共58分)19.计算:(1)﹣2+(﹣3)﹣(﹣10)﹣(+4);(2);(3);(4)﹣32×(﹣2)+(﹣1)2022×(﹣4)2﹣(﹣2)+.20.简便计算:(1);(2);(3);(4).21.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”号连接起来:﹣|﹣2.5|,﹣(﹣),(﹣1)2025,﹣22.22.如图所示,已知A,B两点在数轴上表示的数分别为a,b.(1)若,,求(a+b)×(a﹣b)的值;(2)化简:﹣|﹣b|+|1﹣a|﹣|a|+|b﹣a|.23.中国四大火炉城市之一的重庆,在2022年夏天遭遇了连晴高温天气.已知重庆某地8月14日的气温为39.5℃,如表记录了该地2022年8月15日(星期一)到8月21日这一周的气温变化情况(正号表示气温比前一天上升,负号表示气温比前一天下降,单位:℃):星期一二三四五六日气温变化+1.3+0.4﹣0.5+1.7﹣0.3+0.7﹣0.2(1)通过计算说明,这一周该地哪天的气温最高?最高气温是多少?并计算出星期四的气温.(2)计算这一周该地的平均气温.24.2022年8月,重庆多地突发山火.明知山有火,偏向火山行,在大火面前,山城涌现出一个个平民英雄.00后小伙“龙麻子”便是其中一员,他连续奋战36小时,背着50斤的背篓,驾驶摩托车行驶在坡度将近70度的山路上,奔波于火场和物资点之间.若上山用时记为正,下山用时记为负,“龙麻子”22号某时段驾驶摩托车运送物资所用的时间(单位:小时)可记为:+1,﹣,+,﹣1,+2,﹣1,+,﹣.(1)22号该时段“龙麻子”驾驶摩托车运送物资的时间一共是多少小时?(2)若“龙麻子”驾驶摩托车上山的速度是每小时20公里,下山的速度是每小时30公里.摩托车正常路况下的平均油耗是每公里0.025升,上山因为路况原因每公里要多耗油0.02升,下山每公里省油0.01升.请计算22号这个时段“龙麻子”的摩托车共耗油多少升.25.如图,AB和CD是数轴上的两条线段,线段AB的长度为1个单位长度,线段CD的长度为2个单位长度,B,C之间的距离为6个单位长度且与原点的距离相等分别以AB,CD为边作正方形ABEF,正方形CDGH.(1)直接写出:B表示的数为,D表示的数为;(2)P,Q是数轴上的动点,点P从B出发,以每秒1个单位长度的速度向C运动,点Q从C出发,向B运动,P,Q相遇后均立即以每秒比之前多1个单位长度的速度返回,分别到达B,C点后立即返回,第二次相遇时P,Q两点同时停止运动.已知第一次相遇时,点P到点C的距离比点P到点B的距离多两个单位长度,求P,Q第二次相遇时,点P所表示的数.(3)将AB和CD较近的两个端点之间的距离叫做正方形ABEF和正方形CDGH之间的最小距离,将AB和CD较远的两个端点之间的距离叫做正方形ABEF和正方形CDGH 之间的最大距离.例如图中正方形ABEF和正方形CDGH之间的最小距离即B,C之间的距离,最大距离即A,D之间的距离.若正方形ABEF以每秒1个单位长度的速度向数轴的正方向运动,正方形CDGH以每秒2个单位长度的速度向数轴的负方向运动.设运动时间为t秒,当这两个正方形之间的最大距离是最小距离的两倍时,请直接写出t 的值.参考答案一、选择题(共10题,共30分)1.解:如果高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.故选:A.2.解:﹣的相反数是,故选:B.3.解:一个数的绝对值为2,则这个数为2或﹣2,∴表示绝对值为2的点为点A.故选:A.4.解:A.0是整数,属于有理数,故本选项不合题意;B.不是有理数,故本选项符合题意;C.﹣2.是循环小数,属于有理数,故本选项不合题意;D.3.1415926是有限小数,属于有理数,故本选项不合题意.故选:B.5.解:(﹣1)÷(﹣5)×,=(﹣1)×(﹣)×,=.故选:C.6.解:∵﹣(﹣2)=2,∴﹣(﹣2)是正数,∵﹣24=﹣16,∴﹣24是负数;∵﹣|﹣23|=﹣|﹣8|=﹣8,∴﹣|﹣23|是负数;∵﹣{+[﹣(﹣3)]}=﹣3,∴﹣{+[﹣(﹣3)]}是负数,综上,负数的个数有3个,故选:D.7.解:A、当x=0时,|x|=x,原说法错误,故此选项不符合题意;B、∵|x+1|≥0,∴当x=﹣1时,|x+1|+2取最小值,原说法错误,故此选项不符合题意;C、∵x>1>y>﹣1,∴|x|>1,|y|<1,∴|x|>|y|,原说法错误,故此选项不符合题意;D、∵|x+1|≤0,|x+1|≥0,∴x+1=0,∴x=﹣1,原说法正确,故此选项符合题意.故选:D.8.解:∵﹣(a+b)=a+b,∴a+b=0,∴a<0,b>0,|c|>|a|,A、a<0,b>0,c>0,所以abc<0,此选项不符合题意;B、a<0,b>0,|a|=|b|,所以=﹣1,此选项不符合题意;C、|c|>|b|=|a|,所以|a|<|c|,此选项符合题意;D、a<0,c>0,|a|<|c|,所以a+c>0,此选项不符合题意.故选:C.9.解:∵P1表示的数为+1,P2表示的数为+3,P3表示的数为0,P4表示的数为﹣4,P5表示的数为+1,.....,∴每移动四次相当于向左移动4个单位长度,∵2022÷4=505……2,∴505×(﹣4)+2021+2022=2023,∴P2022在数轴上表示的数为2023,故选:D.10.解:∵a<b且a+b<0,abc≠0,∴a<0,b<0或a<0,b>0,当a<0,b<0时,则=﹣1﹣1=﹣2,∵,∴=1,∴c>0.∴a<0,b<0,c>0,∴ab>0,bc<0,ac<0,abc>0,∴原式=1﹣1﹣1+1=0;当a<0,b>0时,则=﹣1+1=0,∵,∴=﹣1,∴c<0.∴a<0,b>0,c<0,∴ab<0,bc<0,ac>0,abc>0,∴原式=﹣1﹣1+1+1=0,综上,的值为0,故选:A.二、填空题(共8题,共32分)11.解:|﹣|=≈0.33333,|﹣0.3333|=0.3333,∵0.33333>0.3333,∴>0.3333,∴﹣<﹣0.3333.故答案为:<.12.解:由于A、B两点表示的数互为相反数,因此A、B一定关于原点对称,∴原点O与各点的位置如图所示,将单位长度视为1,因此C所表示的数为3.故答案为:3.13.解:∵﹣32=﹣9是负整数,﹣|﹣3.4|=﹣3.4是负分数,是正数,﹣(﹣5)=5是正数,﹣是负分数,∴负分数的个数为2个,故答案为:2.14.解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,则3x﹣y2=3×3﹣(﹣2)2=9﹣4=5.故答案为:5.15.解:由题意知a+b=0且=﹣1,c=﹣1,m=﹣3,则原式=﹣3×(0﹣1)﹣1=﹣3×(﹣1)﹣1=3﹣1=2,故答案为:2.16.解:∵点A表示的数是﹣2,终点距离A点的距离为3,∴终点表示的数为﹣5或1,∵一个点从数轴上的P点出发,先向左移动1个单位长度,再向右移动5个单位长度,∴点P表示的数为﹣9或﹣3.故答案为:﹣9或﹣3.17.解:由题意可得,(11)1=34,(11)2=17,(11)3=52,(11)4=13,(11)5=40,(11)6=5,(11)7=16,(11)8=1,(11)9=4,(11)10=1,(11)11=4,(11)12=1,(11)13=4,...,观察其规律可得,(11)100=1.故答案为:1.18.解:∵点P在点Q的左边,PQ=9,∴设点P表示的数为x,则点Q表示的数为x+9,∵||PCQ||=6,∴点P在点C的左边,点Q在点C的右边,∴|(﹣1﹣x)﹣[x+9﹣(﹣1)]|=6,解得x=﹣8.5或﹣2.5,∴点P表示的数为﹣8.5或﹣2.5.三、解答题(共5题,共58分)19.解:(1)原式=﹣2﹣3+10﹣4=﹣9+10=1;(2)原式=﹣×3××=﹣2;(3)原式=1×(﹣8)++||=﹣8++=﹣;(4)原式=﹣9×(﹣2)+1×16+2+=18+16+2+=36.20.解:(1)原式=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣20+16﹣6=﹣10;(2)原式=﹣6+1+5.3﹣3.3+2+=﹣5+2+3=0;(3)原式=84+6+209=299;(4)原式=(﹣2)×(+﹣)=(﹣2)×=﹣2.21.解:∵﹣|﹣2.5|=﹣2.5,﹣(﹣)=,(﹣1)2025=﹣1,﹣22=﹣4,把各数在数轴上表示如下:,∴﹣22<﹣|﹣2.5|<(﹣1)2025<﹣(﹣).22.解:(1)由数轴可知,﹣1<a<0,b>1,∵,,∴a=﹣,b=1,∴(a+b)×(a﹣b)=a2﹣b2=﹣=﹣;(2)∵﹣1<a<0,b>1,∴﹣b<0,1﹣a>0,b﹣a>0,∴﹣|﹣b|+|1﹣a|﹣|a|+|b﹣a|=﹣b+1﹣a+a+b﹣a=1﹣a.23.解:周一:39.5+1.3=40.8(℃),周二:40.8+0.4=41.2(℃),周三:41.2﹣0.5=40.7(℃),周四:40.7+1.7=42.4(℃),周五:42.4﹣0.3=42.1(℃),周六:42.1+0.7=42.8(℃),周日:42.8﹣0.2=42.6(℃),答:这一周该地周六气温最高,最高气温是42.8℃,星期四的气温为42.4℃;(2)这一周该地的平均气温为:×(40.8+41.2+40.7+42.4+42.1+42.8+42.6)=41.8(℃),答:这一周该地的平均气温为41.8℃.24.解:(1)|+1|+|﹣|+|+|+|﹣1|+|+2|+|﹣1|+|+|+|﹣|=9.故22号该时段“龙麻子”驾驶摩托车运送物资的时间一共是9小时;(2)20×(1++2+)×(0.025+0.02)+30×(+1+1+)×(0.025﹣0.01)=20×5×0.045+30×4×0.015=4.5+1.8=6.3(升).答:22号这个时段“龙麻子”的摩托车共耗油6.3升.25.解:(1)∵点B,C之间的距离为6个单位长度且与原点的距离相等,CD=2,∴点B在数轴上表示的数是﹣3,点C在数轴上表示的数是3,D表示的数为5;故答案为:﹣3,5;(2)设点Q开始出发时的速度为v单位/秒,点P运动的时间为t秒,则第一次相遇前点P表示的数为﹣3+t,点C表示的数为3+vt,∵第一次相遇时,点P到点C的距离比点P到点B的距离多两个单位长度,∴PC=2+PB,∴3﹣(﹣3+t)=2+t,∴t=2,∴2×(1+v)=6,∴v=2,即第一次相遇前点Q的运动速度为每秒2个单位长度,∵P,Q相遇后均立即以每秒比之前多1个单位长度的速度返回,∴点P相遇后返回到点B的时间=1,2(t﹣2)+3(t﹣2)=2×6,∴t=,∴P,Q第二次相遇时,点P所表示的数为:﹣3+2(﹣2﹣1)=﹣;(3)运动后,点A表示的数为:﹣4+t,点B表示的数为:﹣3+t,点C表示的数为:3﹣2t,点D表示的数为:4﹣2t,∵这两个正方形之间的最大距离是最小距离的两倍,∴AD=2BC,∴|4﹣2t﹣(﹣4+t)|=2|﹣3+t﹣(3﹣2t)|,∴|8﹣3t|=2|﹣6+3t|,∴8﹣3t=2(﹣6+3t)或8﹣3t=﹣2(﹣6+3t),∴t=或.。

七年级数学上册 第二章 有理数及其运算 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版

七年级数学上册 第二章 有理数及其运算 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版
A.高于正常水位 3 米记作+3 米 B.低于正常水位 5 米记作-5 米 C.+6 米表示水深为 6 米 D.-1 米表示比正常水位低 1 米
2最0新19北/11师/8大版初中数学精品
数学8·课标版(BS)
第二章复习
方法技巧 用正数和负数表示具有相反意义的量,关键是看规定 哪种意义的量为正,则与之相反意义的量为负.
2最0新19北/11师/8大版初中数学精品
数学1·6 课标版(BS)
第二章复习 ►考点五 有理数的大小比较
用“>”或“<”填空:
(1)9___>_____-16; (2)-175___<_____-125;(3)0___>_____-7.
[解析] 因为正数大于负数,所以 9>-16;因为在数轴
7
2
数学5·课标版(BS)
第二章复习
(4) 运 算 律 : ① 交 换 律 : a·b = _____ ; ② 结 合 律 : (a·b)·c =
__a_·(_b_8(·1_.c))_法有则;理一③数:乘的两法除数对法相加除法,的同分号配得律_:_b_·a_a(,b+异c号)=得_a__b___+___,_a_c并__把. 绝对
2最0新19北/11师/8大版初中数学精品
数学2·1 课标版(BS)
第二章复习
易错警示
(1)-22 与(-2)2 不同,-22 的底数是 2,(-2)2 的底数
是-2;
(2)在计算 12÷

12―13―14时,要清楚除法没有分配律;
(3)有理数的混合运算一定要按照顺序进行,同时要注
意每一步运算的符号.

底数
指数
2019/11/8
最新北师大版初中数学精品
6数学·课标版(BS)

第二章 有理数及其运算 复习课 课件 2024-—2025学年北师大版数学七年级上册

第二章 有理数及其运算 复习课 课件 2024-—2025学年北师大版数学七年级上册

解:(1)100×3+10-6-8=296(个), 所以前三天共生产296个. (2)18-(-12)=18+12=30(个), 所以产量最多的一天比产量最少的一天多生产30个. (3)这一周多生产的总个数是10-6-8+15-12+18-9=8(个), 10×700+12×8=7096(元). 答:该厂工人这一周的工资总额是7096元.
解:若在数轴上表示这两数的点位于原点的两侧,则这两个 数到原点的距离分别是3和6,所以这两个数是-3, 6或6,3.若在数轴上表示这两数的点位于原点的同侧,则这两 个数到原点的距离分别是9和18,所以这两个数是-18,-9或 18,9.
·导学建议· 本章所涉及的概念较多,相互之间联系紧密,所以要特别注 意概念的巩固.像第3题这种答案有两种情况的题目学生易出错, 尽量让学生用画图的方法反复体会,形象直观地理解、记忆.
解:(1)正整数;正分数. (2)如图所示:
正确理解有理数有关的概念
例2 若a、b互为相反数,c、d互为倒数,|m|=2,求a4+mb+m-3cd 的值.
解:因为a、b互为相反数, 所以a+b=0. 因为c、d互为倒数, 所以cd=1. 因为|m|=2, 所以m=±2. 所以,原式=0+2-3=-1或原式=0-2-3=-5.
变式训练
去年10月初,由于受台风影响,某地区的水位发生了变化,该 区10月6日的水位是2.83米,由于各种原因,水位一度超过警戒线, 下表是该区10月7日至12日的水位变化情况(单位:米).
日期 7 8 9 10 11
12
水位 +0.41 +0.09 -0.04 +0.06 -0.45

北师大版七年级数学上册第二章《有理数及其运算》复习教案

北师大版七年级数学上册第二章《有理数及其运算》复习教案
(1)有理数的概念及其分类,特别是正数、负数、整数、分数的认知。
(2)有理数的性质,如相反数、绝对值的概念和理解。
(3)有理数的加减乘除运算规则,包括同号相加、异号相加、乘法法则等。
(4)混合运算的顺序和法则,以及在实际问题中的应用。
举例:
-重点讲解正负数的加减法运算,如3 + (-2)的计算方法和规则。
最后,通过这节课的教学,我认识到要关注每一个学生的个体差异。对于学习有困难的学生,我需要给予更多的关心和指导,帮助他们克服困难,提高学习效果。同时,对于学习优秀的学生,我也要适当提高要求,让他们在掌握基础知识的同时,拓展思维,提高解决问题的能力。
3.培养学生具备良好的逻辑思维能力,通过有理数运算掌握数学推理方法。
4.培养学生养成数学运算的准确性和规范性,提高运算速度和效率。
5.引导学生体会数学在生活中的广泛应用,激发学习数学的兴趣和积极性。
6.培养学生面对数学问题敢于探究、勇于创新的精神,发展数学思维能力。
三、教学难点与重点
1.教学重点
本节课的核心内容包括:
北师大版七年级数学上册第二章《有理数及其运算》复习教案
一、教学内容
北师大版七年级数学上册第二章《有理数及其运算》复习教案,主要包括以下内容:
1.有理数的概念:正数、负数、整数、分数、有理数的定义及其分类。
2.有理数的性质:相反数、绝对值、有理数的加减乘除运算性质。
3.有理数的运算:
(1)有理数的加减法运算:同号相加、异号相加、加减混合运算。
-难点巩固:通过复杂混合运算的题目,训练学生识别运算顺序,正确运用括号,解决实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《有理数及其运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量,比如温度上升和下降?”这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾有理数的奥秘。

2024年秋新北师大版七年级上册数学教学课件 第二章 有理数及其运算 章末复习

2024年秋新北师大版七年级上册数学教学课件 第二章 有理数及其运算 章末复习
( 正分数 )
( 负分数 )
3.数轴 规定了原点、正方向和单位长度的直线.
-4 -3 -2 -1 0 1 2 3 4
-4 -3 -2 -1 0 1 2 3 4
(1)在数轴上表示的两个数,右边的数总 比左边的数大;
(2)正数都大于0,负数都小于0;正数大 于一切负数;
(3)所有有理数都可以用数轴上的点表示.
4.相反数 如果两个数只有符号不同,那么称
其中一个数为另一个数的相反数.
-4 -3 -2 -1 0 1 2 3 4
(1)数a的相反数是-a(a是任意一个有理数); (2)0的相反数是0; (3)若a、b互为相反数,则 a+b = 0.
5.倒数 如果两个有理数的乘积为1,那么称
其中的一个数是另一个数的倒数.
-10
-73
(7) 7.54+(-4.4)+(-2.54)+4.4; 5
(8) ( 2 1 )-( 1 5 ); 2
32 36
3
(9) 2.4-( 3 )+(-3.1)+
(10)
(
6
5
)+
(
7
)
-
4;
5
0.7
( -2 ); 1
- 0.5, - 3.5,7, - 4.5, - 4.
相反数: 0.5 3.5 -7 4.5 4 绝对值: 0.5 3.5 7 4.5 4
3. 下面两个圈分别表示负数集合和整数集合,请 将下列各数填在适当的圈中:
5 1 ,0 ,2 , 7 ,1.25 , 7 , 3 , 3
2
3
4
5 1 , 7, 7 ,7, 3
整数集合
4. 比较下列每组数的大小:

七年级上册数学北师大版 第二章 有理数及其运算 阶段专题复习

七年级上册数学北师大版 第二章 有理数及其运算 阶段专题复习
A
)
解析:500=5×102,故 500 亿=5×102×1×108=5×1010, 故选 A.
8.移动互联网已经全面进入人们的日常生活.截止 2016 年 底,全国 4G 用户总数达到 7.7 亿,其中 7.7 亿用科学记数法表示 为( C ) A.7.7×104 C.7.7×108 B.7.7×106 D.7.7×109
数轴——有理数的大小比较:④在数轴上表示的两个有理数,右边的数总比左边的数大 倒数:⑤乘积为1的两个数
正整数
⑦负整数
⑧正分数 分数 负分数
加减运算 乘除运算
有 理 数 及 其 运 算


分数
负分数
加减运算
乘除运算 运算法则 乘方——科学记数法:⑨把一个大于10的数写成a×10 的形式 其中1≤a<10,n为正整数
2.若一个数的相反数是 3,则这个数是( 1 1 A.- B. 3 3 C.-3 D.3
C
)
3.计算:|-5+3|的结果是( B ) A.-2 B.2 C.-8 D.8
4.计算(-3)+(-9)的结果是( A ) A.-12 B.-6 C.+6 D.12
5.计算(-3)2 的结果是( D ) A.-6 B.6 C.-9 D.9 6.计算:-3×2+(-2)2-5=
n
运算顺序
运算
运算律

加法交换律:⑩a+b=b+a 加法结合律:⑪a+b+c=a+b+c 乘法交换律:⑫ab=ba 乘法结合律:⑬abc=abc 乘法分配律:⑭ab+c=ab+ac
考点 1 有理数的有关概念及其运算
本章学习的主要内容是有理数的有关概念及其运算.引入负 数后,数的范围扩大了,新概念增加了,如负数、相反数、绝对 值、倒数等.进行有理数的运算至少需要两个步骤:先确定符号, 再进行绝对值的运算.每种运算都要按照一定的顺序 (法则)来进 行,同时还初步了解或掌握了一定的数学方法,如分类思想、数 形结合思想、化归思想和类比思想等.

北师大版(2012)数学七年级上册第2章《有理数及其运算》单元复习课件

北师大版(2012)数学七年级上册第2章《有理数及其运算》单元复习课件

画一条水平直线,在直线上取一点表示0,并把这个点
叫原点,选取某一长度作为单位长度,规定直线上向右的方
向为正方向,就得到下面的数轴.
.
.
.
.
数轴像什么? ——像一个平放的温度计!
探究新知
数轴的画法:
1.画:画一条水平直线;
2.取:在直线上取一点表示0(原点);
3.定:规定直线上向右的方向为正方向;
4.选:选取某一长度作为单位长度.
探究新知
知识点 2
正数和负数的概念
具有相反意义的量
用正数和负数可以表示具有相反意义的量
• 判断一个数是正数还是负数的方法:从符号上判断,即只含有“+”
或省略符号的数(0除外)是正数,正数前面有“-”的数是负数,
从数的性质上判断,即所有大于0的数都是正数,所有小于0的数都
是负数.
为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表
的单位长度建立数轴;(2)在数轴上找出所给数相
对应的点,先通过这个数的符号确定它所对应的点在
数轴上原点的哪一边,再在相应的方向上确定它所对
应的点与原点相距几个单位长度,然后画出点即可.
利用数轴比较有理数大小的三个步骤:
(1)画数轴;
(2)定顺序,确定点在数轴上的左右顺序,标出各
点;
(3)定大小,根据数轴上两个点表示的数,右边的
示;而把与这个量意义相反的量规定为负的,用负数来表示.
我们把正整数、0和负整数统称为整数;
正分数和负分数统称为分数.
探究新知
正整数
整数与分数统称为有理数
整数

负整数
有理数
正分数
分数
负分数

北师大版七年级数学上册第二章《有理数及其运算》复习题含答案解析 (1)

北师大版七年级数学上册第二章《有理数及其运算》复习题含答案解析 (1)

一、选择题1. 对于任意非零实数 a ,b ,定义运算“⊕”,使下列式子成立;1⊕2=−32,2⊕1=32,(−2)⊕5=2110,5⊕(−2)=−2110,⋯,则 (−3)⊕(−4)= ( ) A .712B . −712C .2512D . −25122. 如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点 A ,B ,C ,D 对应的数分别是数 a ,b ,c ,d ,且 d −2a =11,那么数轴上原点的位置应在 ( )A .点 AB .点 BC .点 CD .点 D3. 若 √x −1+(y +2)2=0,则 (x +y )2020 等于 ( ) A . −1 B . 1C . 32020D . −320204. 下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为 ( ) 1429 26320 38435⋯⋯⋯a18b xA . 135B . 153C . 170D . 1895. 如图,数轴上 A ,B ,C 三点所表示的数分别为 a ,b ,c ,且 AB =BC .如果有 a +b <0,b +c >0,a +c <0,那么该数轴原点 O 的位置应该在 ( )A .点 A 的左边B .点 A 与 B 之间C .点 B 与 C 之间D .点 C 的右边6. 定义一种新运算:a ⋇b ={a −b,a ≥b3b,a <b ,则 2⋇3−4⋇3 的值 ( )A . 5B . 8C . 7D . 67. 已知 4−∣5−b∣−∣a +2∣=∣4+a∣+∣b −3∣,则 ab 的最大值是 ( ) A . −12 B . 20 C . −20 D . −68. 如图所示,数轴上点 A ,B 对应的有理数分别为 a ,b ,下列说法正确的是 ( )A . ab >0B . a +b >0C . ∣a∣−∣b∣<0D . a −b <09. 王老师有一个实际容量为 1.8 GB (1 GB =220 KB ) 的 U 盘,内有三个文件夹.已知课件文件夹占用了 0.8 GB 的内存,照片文件夹内有 32 张大小都是 211 KB 的旅行照片,音乐文件夹内有若干首大小都是 215 KB 的音乐.若该 U 盘内存恰好用完,则此时文件夹内有音乐 ( ) 首. A . 28 B . 30 C . 32 D . 3410. 一串数字的排列规律是:第一个数是 2,从第二个数起每一个数与前一个数的倒数之和为 1,则第 2020 个数是 ( ) A . 2B . −2C . −1D . 12二、填空题11. 对于正整数 n ,定义 F (n )={n 2,n <10f (n ),n ≥10,其中 f (n ) 表示 n 的首位数字、末位数字的平方和.例如:F (6)=62=36,F (123)=12+32=10.规定 F 1(n )=F (n ),F k+1(n )=F(F (n ))(k 为正整数),例如,F 1(123)=F (123)=10,F 2(123)=F(F 1(123))=F (10)=1.按此定义,则由 F 1(4)= ,F 2019(4)= .12. 有理数 a ,b ,c 在数轴上的位置如图所示,化简:−∣c −a ∣−∣b −a ∣+∣c ∣= .13. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的,绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到野果 个.14. 定义新运算:对任意有理数 a ,b ,c ,都有 a ∗b ∗c =∣a−b−c∣+a+b+c2.例如:(−1)∗2∗3=∣−1−2−3∣+(−1)+2+32=5.将 −716,−616,−516,−416,−316,−216,−116,816,916,1016,1116,1216,1316,1416,1516 这 15 个数分成 5 组,每组 3 个数,进行 a ∗b ∗c 运算,得到 5 个不同的结果,那么 5 个结果之和的最大值是.15.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.×1×22,16.已知:13=1=14×22×32,13+23=9=14×32×42,13+23+33=36=14×42×52,13+23+33+43=100=14⋯根据上述规律计算:13+23+33+⋯+193+203=.17.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.三、解答题18.计算:÷(−3)2];(1) −3−[−5+15×35(2) −12022+(−2)×(−3)2−(−2)3÷4.19.已知抛物线G:y=x2−2tx+3( t为常数)的顶点为P.(1) 求点P的坐标;(用含t的式子表示)(2) 在同一平面直角坐标系中,存在函数图象H,点A(m,n1)在图象H上,点B(m,n2)在抛物线G上,对于任意的实数m,都有点A,B关于点(m,m)对称.①当t=1时,求图象H对应函数的解析式;②当1≤m≤t+1时,都有n1>n2成立,结合图象,求t的取值范围.20.阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示有理数,这样就建立起了“数”与“形”之间的联系,在数轴上,若点A,B分别表示数a,b,则A,B 两点之间的距离为AB=∣a−b∣,反之,可以理解式子∣x−3∣的几何意义是数轴上表示有理数x与有理数3的两点之间的距离.根据上述材料,利用数轴解决下列问题:(1) 若∣x−3∣=2,则x的值为;若∣x−5∣=∣x+1∣,则x的值为‘(2) 当x在什么范围时,∣x−2∣+∣x−5∣有最小值?并求出它的最小值.(3) 若a<2<b,在数轴上是否存在数x,使得∣x−a∣+2∣x−2∣+∣x−b∣的值最小?若存在,请求出最小值及x的值;若不存在,请说明理由.21.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.(1) 直接写出:最小的“和平数”是;最大的“和平数”是.(2) 一个“和平数”,十位数字为方程5x−13=3的解,千位数字与个位数字的比为2:3,百位数字比千位数字小1,求这个“和平数”.(3) 将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”.请直接写出:和是3333的所有“相关和平数”.22.某校初2021届1到4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:班级1班2班3班4班实际购数量(本)3321实际购数量与计划购数量的差值(本)+12−8−9(1) 完成表格;(2) 根据记录的数据可知4个班实际一共购书本?(3) 书店给出两种优惠方案,方案甲:一次购买不少于15本,其中2本书免费;乙方案:如果一次性购书不少于20本,总价9折优惠,假设每本书售价为30元,请你计算初2021届1班实际购书最少花费多少元?23.观察下列两个等式:2−13=2×13+1,5−23=5×23+1,给出定义如下:我们称使等式a−b=ab+1成立的一对有理数对“a,b”为“共生有理数对”,记为(a,b).”是不是“共生有理数对”;(1) 通过计算判断数对“−4,2”,“7,34(2) 若(3,x)是“共生有理数对”,求x的值;(3) 若(m,n)是“共生有理数对”,则“−n,−m” 共生有理数对”(填“是”或“不是”),并说明理由.24.计算:已知∣m∣=1,∣n∣=4.(1) 当mn<0时,求m+n的值;(2) 求m−n的最大值.25.如图,圆的半径为2个单位长度.数轴上每个数字之间的距离为1个单位长度,在圆的4等分π点处分别标上点A,B,C,D.先让圆周上的点A与数轴上表示−1的点重合.(1) 圆的周长为多少?(2) 若该圆在数轴上向右滚动2周后,则与点A重合的点表示的数为多少?(3) 若将数轴按照顺时针方向绕在该圆上(如数轴上表示−2的点与点B重合,数轴上表示−3的点与点C重合⋯),那么数轴上表示−2018的点与圆周上哪个点重合?答案一、选择题1. 【答案】B【解析】1⊕2=−32=12−221×2,2⊕1=32=22−121×2,(−2)⊕5=2110=(−2)2−52(−2)×5,5⊕(−2)=−2110=52−(−2)25×(−2),⋯,a⊕b=a2−b2ab,∴(−3)⊕(−4)=(−3)2−(−4)2(−3)×(−4)=−712.【知识点】有理数的加减乘除乘方混合运算2. 【答案】C【解析】若原点是A,则a=0,d=7,此时d−2a=7,和已知不符,排除;若原点是点B,则a=−3,d=4,此时d−2a=10,已知不符,排除,若原点是点C,则a=−4,d=3,此时d−2a=11,和已知相符,正确.故数轴的原点应是C点.【知识点】绝对值的几何意义3. 【答案】B【解析】∵√x−1+(y+2)2=0,∴x−1=0,y+2=0,∴x=1,y=−2,∴(x+y)2020=(1−2)2020=1.【知识点】有理数的乘方、算术平方根的性质4. 【答案】C【知识点】有理数的乘法5. 【答案】C【解析】因为AB=BC,a+b<0,b+c>0,a+c<0,所以a<0,b<0,c>0,所以数轴原点O的位置应该在点B与点C之间.故选:C.【知识点】有理数的加法法则及计算、数轴的概念6. 【答案】B【解析】2⋇3−4⋇3 =3×3−(4−3) =9−1=8.【知识点】有理数的乘法7. 【答案】D【解析】4−∣5−b∣−∣a+2∣=∣4+a∣+∣b−3∣即为4=∣5−b∣+∣a+2∣+∣4+a∣+∣b−3∣,由绝对值不等式的性质可得:∣a+2∣+∣a+4∣≥2,∣5−b∣+∣b−3∣≥2,∴−4≤a≤−2,3≤b≤5,∴ab的最大值为−6.【知识点】绝对值的几何意义8. 【答案】D【解析】根据图示,可得a<0<b,而且∣a∣>∣b∣,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且∣a∣>∣b∣,∴a+b<0,∴选项B不正确,选项D正确;∵∣a∣>∣b∣,∴∣a∣−∣b∣>0,∴选项C不正确.【知识点】绝对值的几何意义、利用数轴比较大小9. 【答案】B【知识点】有理数的乘方10. 【答案】A【解析】第一个数是2,倒数是12,第二个数是12,倒数是2,第三个数是−1,倒数是−1.第四个数是2.由规律可知,这串数由2,12,−1循环出现2020÷3=673⋯1,∴ 第 2020 个数是 2. 【知识点】倒数二、填空题11. 【答案】 16 ; 58【解析】 F 1(4)=16,F 2(4)=F (16)=12+62=37,F 3(4)=F (37)=32+72=58,F 4(4)=F (58)=52+82=89, F 5(4)=F (89)=82+92=145,F 6(4)=F (145)=12+52=26, F 7(4)=F (26)=22+62=40,F 8(4)=F (40)=42+0=16,⋯ 通过计算发现,F 1(4)=F 8(4), ∵2019÷7=288⋯3, ∴F 2019(4)=F 3(4)=58. 【知识点】有理数的乘方12. 【答案】 −b【解析】由数轴可知 c <0<a <b , ∴c −a <0,b −a >0, ∴−∣c −a ∣−∣b −a ∣+∣c ∣=c −a −(b −a )+(−c )=c −a −b +a −c =−b.【知识点】绝对值的几何意义13. 【答案】 1838【解析】由题意可知,题图中从右到左依次排列的绳子分别代表绳结数乘 1,6 的 1 次幂,6 的 2 次幂,6 的 3 次幂,6 的 4 次幂,则她一共采集到野果 2×1+3×62+2×63+1×64=1838(个).【知识点】有理数的乘方14. 【答案】158【解析】令 b ,c 取最大的正数 1416,1516,a 取最小的负数 −716, ∴a ∗b ∗c =∣∣−716−1416−1516∣∣−716+1416+15162=158.【知识点】有理数的加减乘除乘方混合运算15. 【答案】 1838【解析】 2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838. 【知识点】有理数的乘方16. 【答案】44100【解析】∵13=14×12×22,13+23=14×22×32,13+23+33=14×32×42,∴13+23+33+⋯+193+203=14×202×212=44100.【知识点】有理数的乘方17. 【答案】1838【解析】2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838.【知识点】有理数的乘法三、解答题18. 【答案】(1)−3−[−5+15×35÷(−3)2]=−3−(−5+15×35÷9)=−3−(−5+9÷9)=−3−(−5+1)=−3−(−4)=−3+4= 1.(2)−12022+(−2)×(−3)2−(−2)3÷4 =−1+(−2)×9−(−8)÷4=−1+(−18)+2=−17.【知识点】有理数的加减乘除乘方混合运算19. 【答案】(1) y=x2−2tx+3=x2−2tx+t2−t2+3=(x−t)2−t2+3.∴顶点P的坐标为(t,−t2+3).(2) ①当t=1时,得G的解析式为:y=x2−2x+3,点B(m,n2)在G上,∴n2=m2−2m+3,∵点A(m,n1)与点B关于点(m,m)对称,则点A,B到点(m,m)的距离相等,此三点横坐标相同,有n2−m=m−n1.∴(m2−2m+3)−m=m−n1,整理,得n1=−m2+4m−3,由于m为任意实数,令m为自变量x,n1为y.即可得H的解析式为:y=−x2+4x−3;②关于抛物线G的性质:点B(m,n2)在G上,∴n2=m2−2tm+3,由G:y=x2−2tx+3,知抛物线G开口向上,对称轴为x=t,顶点P(t,−t2+3),且图象恒过点(0,3).∴当t≤x≤t+1时,图象G的y随着x的增大而增大.当x=t+1时,y取最大值−t2+4;当x=t时,y取最小值−t2+3;最大值比最小值大1.关于图象H的性质:∵点A(m,n1)与点B关于点(m,m)对称,有n2−m=m−n1,(m2−2tm+3)−m=m−n1,整理,得n1=−m2+2tm+2m−3.∴图象H的解析式为:y H=−x2+2tx+2x−3.配方,得y H=−[x−(t+1)]2+(t2+2t−2)∴图象H为一抛物线,开口向下,对称轴为x=t+1,顶点P(t+1,t2+2t−2),且图象恒过点(0,−3).∴当t≤x≤t+1时,图象H的y随着x的增大而增大.当x=t+1时,y取最大值t2+2t−2;当x=t时,y取最小值y=t2+2t−3,即过Q(t,t2+2t−3);最大值比最小值大1.情况1:当P,Q两点重合,即两个函数恰好都经过(t,t),(t+1,t+1)时,把(t,t)代入y=x2−2tx+3得t=t2−2t⋅t+3,解得,t=−1+√132或t=−1−√132.分别对应图3,图4两种情形,由图可知,当m=t,或m=t+1时,A与B重合,即有n1=n2,不合题意,舍去;情况2:当点P在点Q下方,即t>−1+√132时,大致图象如图1,当t<−1−√132时,大致图象如图2,都有点A在点B的上方,即n1>n2成立,符合题意;情况3:当点P在点Q上方,即−1−√132<t<−1+√132时,大致图象如图5,图6,当t≤m≤t+1时,存在A在B的下方,即存在n1<n2,不符合题意,舍去;综上所述,所求t的取值范围为:t>−1+√132或t<−1−√132.【知识点】二次函数的顶点、二次函数的最值、二次函数与不等式、y=ax^2+bx+c的图象20. 【答案】(1) 5或1;2(2) 当2≤x≤5时,∣x−2∣+∣x−5∣有最小值,最小值是3,当x>5时,x−2+x−5=2x−7>3,当2≤x≤5时,x−2+5−x=3,当x<2时,2−x+5−x=7−2x>3,故当2≤x≤5时,∣x−2∣+∣x−5∣有最小值,最小值是3.(3) ∵∣x−a∣+2∣x−2∣+∣x−b∣表示数x分别与a,2,b的距离之和,∴x=2时,∣x−a∣+2∣x−2∣+∣x−b∣的值最小,∵a<2<b,∴∣x−a∣+2∣x−2∣+∣x−b∣的最小值是2−a+b−2=b−a.故x=2时,∣x−a∣+2∣x−2∣+∣x−b∣的值最小,最小值是b−a.【解析】(1) ∵∣x−3∣=2,∴x−3=±2,∴x=5或1,∵∣x−5∣=∣x+1∣,∴x=2,故为5或1;2.【知识点】绝对值的几何意义21. 【答案】(1) 1001;9999.(2) x=2;6529.(3) 1212与2121;1221与2112;1203与2130;1230与2103.【知识点】一元一次方程的解、有理数的加法法则及计算22. 【答案】(1) 由于4班实际购入21本书,实际购入数量与计划购入数量的差值=−9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33−30=3本,3班实际购入数量=30−8=22本.故答案依次为42,+3,22.(2) 118(3) 如果按甲方案购书,花费=30×38=1140(元)(购买两次),如果按乙方案购书,则共花费=30×42×90%=1134(元).故按乙方案购入书花费最少为1134元.【解析】(2) 4个班一共购入数量=42+33+22+21=118本,另解:4个班一共购入数量=30×4+12+3−8−9=118.故答案为118.【知识点】有理数减法的应用、有理数乘法的应用、有理数加法的应用23. 【答案】(1) −4−2=−6,−4×2+1=−7,∴−4−2≠−4×2+1,∴“−4,2”不是“共生有理数对”;∵7−34=614,7×34+1=614,∴7−34=7×34+1,∴(7,34)是共生有理数对.(2) 由题意得:3−x=3x+1,解得x=12.(3) 是理由:−n−(−m)=−n+m,−n⋅(−m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m−n=mn+1,∴−n+m=mn+1,∴(−n,−m)是“共生有理数对”.【知识点】有理数的乘法、有理数的减法法则及计算、解常规一元一次方程24. 【答案】(1) 因为∣m∣=1,∣n∣=4,所以m=±1,n=±4,因为mn<0,所以m=1,n=−4或m=−1,n=4,所以m+n=±3.(2) m=1,n=4时,m−n=−3;m=−1,n=−4时,m−n=3;m=1,n=−4时,m−n=5;m=−1,n=4时,m−n=−5;所以m−n的最大值是5.【知识点】有理数的减法法则及计算、有理数的加法法则及计算25. 【答案】(1) 圆的周长=2π⋅2π=4个单位长度.(2) 若该圆在数轴上向右滚动2周后,点A需要滚动8个单位长度,此时与点A重合的点表示的数为:8−1=7.(3) 由图可知,每4个数为一个循环组依次循环,∵2018÷4=504⋯2,∴表示−2018的点是第505个循环组的第2个数B重合.【知识点】数轴的概念、圆的周长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数单元复习
一.知识点讲解
一.有理数
(1)概念:有理数的分类;相反数;绝对值;数轴;比较大小;
(2)运算:加、减、乘、除、乘方
二.知识盲点总结
(1)有理数:①分类;②分数;③正负数的理解;④0的理解
例:一.判断正误:
任意的一个分数都是有理数。

( )
整数和分数组成有理数。

( )
正数、负数和0统称有理数。

( )
正有理数包括正整数和正分数。

( )
任意一个小数都可以化为分数。

( )
π是一个正分数。

( )
二.关于0的说法正确的是( )
(1)0是整数;(2)0是最小的整数;(3)0是绝对值最小的有理数;(4)0的绝对值是0;
(5)0没有相反数
三.把下列各数分别填入相应的大括号里:5.2-、14.3、2-、72+、6.0 -、π、7
22、0、010101.0-
正数集合{ } 分数集合{ } 非负整数集合{ }
(2)相反数:
①a 的相反数是a -;b a -的相反数是a b -;b a +的相反数是b a --
②b a ,互为相反数⇔0=+b a ③a a =- ④b a b a =⇔=或b a -=
例:化简下列各数的符号 ①)213(-- ②)5
14(-+ ③)]5([--- ④)]}2([{+-+-
(3)绝对值:
① ② 0≥⇔=a a a
=a
0≤⇔-=a a a ③0是绝对值最小的有理数 例:(1)绝对值大于1且不大于5的整数有______________ (2)比较大小:8.5_____6-- 9____9- 8
1____71-- 5_____8.6-- 3
1____21 (3)正数a -的绝对值为_______;负数b -的绝对值为________;负数a +1的绝对值为______;正数1+-a 的绝对值为________
(4)倒数
①0没有倒数;
②a 的倒数是a
1 ③倒数等于它本身的数是________
相反数等于它本身的数是________
绝对值等于它本身的数是________
例:已知b a ,互为相反数,d c ,互为倒数,m 的绝对值时2,求式子
m cd m b a +--+5的值
(5)数轴
例:一、下列各图中,数轴画法正确的是( )
二、不大于4的非负整数是________________ 三、在数轴上,与-3所表示的点距离3个单位长度的点有___个,这样的点表示的数是_____ 概念理解
(1)下列说法正确的是( )
A. 最小的有理数是0;
B. 最大的负整数是-1;
C. 最小的自然数是1;
D. 最小的正数是1.
(2)下列说法正确的是( )
A. 两个有理数的和为零,则这两个有理数都为0; A B C
D
通过以上知识点的复习,您对本章的知识是否有一个更清晰的认识呢?试试以下几个小题吧!
B. 两个有理数的和一定大于其中任何一个加数;
C. 两个有理数的和为正数,则这两个数中至少有一个加数是正数;
D. 两个有理数的和为负数,则这两个数一定都是负数.
(3)下列说法正确的是( )
A. 一个正数减去一个负数,结果是正数;
B. 零减去一个数一定是负数;
C. 一个负数减去一个负数,结果是负数;
D. “-2-3”读作“负2减负3”
(4)下列说法正确的是( )
A. n 个有理数相乘,当因数是奇数个时,积为负;
B. n 个有理数相乘,当正因数有奇数个时,积为负;
C. n 个有理数相乘,当负因数有奇数个时,积为负;
D. n 个有理数相乘,当积为负时,负因数有奇数个.
(5)下列说法正确的是( )
A. 相反数是本身的数是1和0;
B. 倒数是本身的数是1和0;
C. 绝对值是 本身的数是0和正数;
D. 平方等于64的数是8.
三. 计算易错点分析
二. 计算易错点分析
(1)加法有交换律、结合律;乘法有交换律、结合律、分配律;但是减法和除法均没有以上规律。

(2)同一级运算一定要从左到右。

加减-----乘除------乘方。

(3)注意认准乘方的底数。

(1) 61533--
)615(33-----------减法没有结合律!
(2))4
1
()52()3(-÷-÷- )]4
1()52[()3(-÷-÷------------除法没有结合律! (3))]4(8[60---÷
)4(60)8(60-÷--÷-----------除法没有分配律!
(4))3
1
()2(6-⨯-÷ )]3
1()2[(6-⨯-÷--------------同一级运算时一定要从左向右! (5)22,2)2(-,)2(2-,2
)2(--
3)32(,323,3)3
2(-,323------------注意认准底数! 配套练习: (1)
)8
3()31(8132-+--- (2) 4
1)5.1()1(÷-÷- (3) )24
1()43213283(-÷⨯-+- (4))21()51(10-⨯-÷ (5) )1(])3(2[422-⨯-+-
简便运算:
(1)6928)28(31++-+ ………… 互为相反数的两个数,可先加
(2))32(24)25(16-++-+ …………符号相同的数,可先加
(3)7)1.10()41()21(1.4+-+-+++……几个数相加得整数时,可先相加
(4)
)3
1()21(54)32(21-+-++-+…… 同分母的分数,可先相加 2005)2004(2003)4(3)2(1+-+++-++-+。

相关文档
最新文档