2 第1讲 分层演练直击高考
高考物理二轮专题复习 (10)

名师伴你行 ·高考二轮复习 ·物理
(4)多用电表的欧姆挡刻度不均匀,结果只取两位有效数字, 不要忘记读取的数值乘以倍率.
(5)电压表与电流表若最小分度是 1、0.1、0.01 等需要估算 到下一位,若最小分度不是 1、0.1、0.01 只需读到最小分度.
第二部分 专题二 第2讲 第10页
第二部分 专题二 第2讲 第28页
名师伴你行 ·高考二轮复习 ·物理
[答案] (1)2.25 (2)0.225 (3)①滑块在 A 处时遮光条到光 电门的距离 L ②A ③t12-F (4)滑块在 A 处时遮光条到光电门 的距离 L、滑块的质量 M FL=M2td22
(5)能
第二部分 专题二 第2讲 第29页
第二部分 专题二 第2讲 第27页
名师伴你行 ·高考二轮复习 ·物理
(5)设遮光条前进了 s,遮光条通过光电门的时间为 Δt,钩码 和力传感器的重力势能减少了 mgs,系统动能增加了12(M+m)Δdt 2,所以我们可以通过比较 mgs 和12(M+m)Δdt2 的大小来验证系 统机械能守恒.即该实验装置能用于验证滑块、钩码和力传感器 组成的系统机械能守恒.
名师伴你行 ·高考二轮复习 ·物理
(1)该同学用游标卡尺测量遮光条的宽度 d,如图乙所示,则 d=________mm.
(2)实验时,由数字计时器读出遮光条通过光电门 B 的时间 t = 1.0×10 - 2 s , 则 滑 块 经 过 光 电 门 B 时 的 瞬 时 速 度 为 ________m/s.
名师伴你行 ·高考二轮复习 ·物理
⊳第二部分 考前冲刺篇
第二部分 专题二 第2讲 第1页
名师伴你行 ·高考二轮复习 ·物理
高考专题第一篇第1讲.docx

高中数学学习材料唐玲出品第1讲五种策略搞定选择题[题型解读]选择题是高考试题的三大题型之一,该题型的基本特点:绝大部分选择题属于低中档题,且一般按由易到难的顺序排列,主要的数学思想和数学方法能通过它得到充分的体现和应用,选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点,且每一道题几乎都有两种或两种以上的解法.正是因为选择题具有上述特点,所以该题型能有效地检测学生的思维层次及考查学生的观察、分析、判断、推理、基本运算、信息迁移等能力.选择题也在尝试创新,在“形成适当梯度”“用学过的知识解决没有见过的问题”“活用方法和应变能力”“知识的交汇”四个维度上不断出现新颖题,这些新颖题成为高考试卷中一道靓丽的风景线.方法一直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密地推理和准确地运算,从而得出正确的结论,然后对照题目所给出的选项“对号入座”,作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.例1 若△ABC 的内角A ,B ,C 所对边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ) A.43 B.8-4 3 C.1D.23点评 直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上的,否则一味求快则会快中出错. 变式训练1 (1)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =13,sin C =3sinB ,且S △ABC =2,则b 等于( ) A.1 B.2 3 C.3 2D.3(2)(2015·湖北)已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( ) A.sgn [g (x )]=sgn x B.sgn [g (x )]=-sgn x C.sgn [g (x )]=sgn [f (x )] D.sgn [g (x )]=-sgn [f (x )] 方法二 特例法特例检验(也称特例法或特殊值法),是用特殊值(或特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.例2 (1)设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X 、Y 、Z ,则下列等式中恒成立的是( ) A.X +Z =2Y B.Y (Y -X )=Z (Z -X ) C.Y 2=XZD.Y (Y -X )=X (Z -X )(2)若a >b >0,则下列不等式中一定成立的是( ) A.a +1b >b +1aB.b a >b +1a +1 C.a -1b >b -1aD.2a +b a +2b >a b点评 特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.变式训练2 已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 均不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ) A.(1,10) B.(5,6) C.(10,12) D.(20,24)方法三 排除法排除法也叫筛选法、淘汰法.它是充分利用选择题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而得出正确结论的一种方法. 例3 函数f (x )=sin x -13-2cos x -2sin x(0≤x ≤2π)的值域是( )A.⎣⎡⎦⎤-22,0 B.[-1,0] C.[-2,-1]D.⎣⎡⎦⎤-33,0 点评 排除法适用于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.变式训练3 (1)方程ax 2+2x +1=0至少有一个负根的充要条件是( ) A.0<a ≤1 B.a <1C.a ≤1D.0<a ≤1或a <0(2)(2015·青岛模拟)函数Y =x sin x 在[-π,π]上的图象是( )方法四 数形结合法根据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断,习惯上也叫数形结合法.有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质,综合图象的特征,得出结论,图形化策略是以数形结合的数学思想为指导的一种解题策略. 例4 设方程10x =|lg(-x )|的两个根分别为x 1、x 2,则( ) A.x 1x 2<0 B.x 1x 2=1 C.x 1x 2>1D.0<x 1x 2<1点评 数形结合法是依靠图形的直观性进行分析的,用这种方法解题比直接计算求解更能抓住问题的实质,并能迅速地得到结果.不过运用图解法解题一定要对有关的函数图象、几何图形较熟悉,否则错误的图象反而会导致错误的选择.变式训练4 (2014·重庆)已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3, x ∈(-1,0],x , x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( ) A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12 B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12 C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23 D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 方法五 估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法的关键是确定结果所在的大致范围,否则“估算”就没有意义,估算法往往可以减少运算量,但是加强了思维的层次.例5 已知sin θ=m -3m +5,cos θ=4-2m m +5 (π2<θ<π),则tan θ2等于( )A.m -3q -m B.m -3|q -m | C.-15D.5点评 估算法的应用技巧:估算法是根据变量变化的趋势或极值的取值情况进行求解的方法.当题目从正面解析比较麻烦,特值法又无法确定正确的选项时(如难度稍大的函数的最值或取值范围、函数图象的变化等问题)常用此种方法确定选项.变式训练5 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( ) A.1 B. 2 C.2-12D.2+12 高考题型精练1.(2015·蚌埠模拟)已知m1+i =1-n i ,其中m ,n 是实数,i 是虚数单位,则m +n i 等于( )A.1+2iB.1-2iC.2+iD.2-i2.函数Y =log 2(|x |+1)的图象大致是( )3.设全集U =R ,A ={x |2x (x -2)<1},B ={x |y =ln(1-x )},则图中阴影部分表示的集合为( )A.{x |x ≥1}B.{x |1≤x <2}C.{x |0<x ≤1}D.{x |x ≤1}4.(2015·广东)下列函数中,既不是奇函数,也不是偶函数的是( ) A. y =1+x 2B.y =x +1xC. y =2x +12xD. y =x +e x5.(2014·安徽)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( ) A.12或-1 B.2或12C.2或1D.2或-16.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于Y 轴对称,则f (x )等于( ) A.e x +1 B.e x -1 C.e -x +1D.e -x -17.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为( ) A.60° B.90° C.120°D.150°8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p 等于( ) A.1 B.32 C.2D.39.函数y =2x -x 2的图象大致是( )10.(2014·福建)在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A.e 1=(0,0),e 2=(1,2) B.e 1=(-1,2),e 2=(5,-2) C.e 1=(3,5),e 2=(6,10) D.e 1=(2,-3),e 2=(-2,3)11.若动点P ,Q 在椭圆9x 2+16Y 2=144上,O 为原点,且满足OP ⊥OQ ,则O 到弦PQ 的距离|OH |必等于( )A.203B.234C.125D.41512.如图所示,图中的图象所表示的函数的解析式为( )A.y =32|x -1| (0≤x ≤2)B. y =32-32|x -1|(0≤x ≤2)C. y =32-|x -1| (0≤x ≤2)D. y =1-|x -1| (0≤x ≤2)13.已知函数f (x )=4x 与g (x )=x 3+t ,若f (x )与g (x )的交点在直线y =x 的两侧,则实数t 的取值范围是( ) A.(-6,0] B.(-6,6) C.(4,+∞)D.(-4,4)14.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π的简图是( )15.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 2,C 1上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ) A.52-4 B.17-1 C.6-2 2D.1716.设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( )A.∀x ∈R ,f (x )≤f (x 0)B.-x 0是f (-x )的极小值点C.-x 0是-f (x )的极小值点D.-x 0是-f (-x )的极小值点17.在抛物线y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( ) A.(-2,1) B.(1,2) C.(2,1)D.(-1,2)18.(2015·广东)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A.至多等于3 B.至多等于4 C.等于5D.大于519.(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B.[0,1] C.⎣⎡⎭⎫23,+∞ D.[1, +∞)20.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( ) A.[1-22,1+22] B.[1-2,3] C.[-1,1+22] D.[1-22,3]答案精析技巧·规范·回扣篇第一篇 快速解答选择、填空题第1讲 五种策略搞定选择题典例剖析例1 A [由(a +b )2-c 2=4,得a 2+b 2+2ab -c 2=4, 由C =60°,得cos C =a 2+b 2-c 22ab =4-2ab 2ab =12.解得ab =43.]变式训练1 (1)A (2)B解析 (1)∵cos A =13,∴sin A =223.又S △ABC =12bc sin A =2,∴bc =3.又sin C =3sin B ,∴c =3b ,∴b =1,c =3.(2)因为a >1,所以当x >0时,x <ax ,因为f (x )是R 上的增函数,所以f (x )<f (ax ),所以g (x )=f (x )-f (ax )<0,sgn [g (x )]=-1=-sgn x ;同理可得当x <0时,g (x )=f (x )-f (ax )>0,sgn [g (x )]=1=-sgn x ;当x =0时,g (x )=0,sgn [g (x )]=0=-sgn x 也成立.故B 正确. 例2 (1)D (2)A解析 (1)由{a n }是任意等比数列, 不妨令n =1,a 1=1,a 2=2,a 3=4, 则X =1,Y =3,Z =7,验证A.X +Z =8,2Y =6,X +Z =2Y 不成立, B.Y (Y -X )=3×2=6,Z (Z -X )=7×6=42, 即Y (Y -X )=Z (Z -X )不成立, C.Y 2=9,XZ =7,Y 2=XZ 不成立,D.Y (Y -X )=3×2=6,X (Z -X )=1×(7-1)=6, 即Y (Y -X )=X (Z -X ).故选D.(2)取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a -1a >b-1b ⇔a +1b >b +1a,但g (a )>g (b )未必成立,故选A. 变式训练2 C [方法一 不妨设0<a <1<b ≤10<c ,取特例, 如取f (a )=f (b )=f (c )=12,则易得a =10-12,b =1012,c =11,从而abc =11,故选C.方法二 不妨设a <b <c ,则由f (a )=f (b )⇒ab =1, 再根据图象(图略)易得10<c <12.实际上a ,b ,c 中较小的两个数互为倒数. 故abc 的取值范围是(10,12).] 例3 B [令sin x =0,cos x =1, 则f (x )=0-13-2×1-2×0=-1,排除A ,D ;令sin x =1,cos x =0,则f (x )=1-13-2×0-2×1=0,排除C ,故选B.]变式训练3 (1)C (2)A解析 (1)当a =0时,x =-12,故排除A 、D.当a =1时,x =-1,排除B.(2)易判断函数y =x sin x 为偶函数,可排除D ; 当0<x <π2时,y =x sin x >0,可排除B ;当x =π时,y =0,可排除C.故选A.例4 D [构造函数y =10x 与y =|lg(-x )|, 并作出它们的图象,如图所示, 因为x 1,x 2是10x =|lg(-x )|的两个根, 则两个函数图象交点的横坐标分别为x 1,x 2, 不妨设x 2<-1,-1<x 1<0, 则10x 1=-lg(-x 1),10x 2=lg(-x 2), 因此10x 2-10x 1=lg(x 1x 2), 因为10x 2-10x 1<0,所以lg(x 1x 2)<0,即0<x 1x 2<1,故选D.]变式训练4 A [作出函数f (x )的图象如图所示,其中A (1,1),B (0,-2).因为直线y =mx +m =m (x +1)恒过定点C (-1,0),故当直线y =m (x+1)在AC 位置时,m =12,可知当直线y =m (x +1)在x 轴和AC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与AC 重合但不能与x 轴重合),此时0<m ≤12,g (x )有两个不同的零点.当直线y =m (x +1)过点B 时,m =-2;当直线y =m (x +1)与曲线f (x )相切时,联立⎩⎪⎨⎪⎧ y =1x +1-3,y =m (x +1),得mx 2+(2m +3)x +m +2=0,由Δ=(2m +3)2-4m (m +2)=0,解得m =-94,可知当y =m (x +1)在切线和BC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与BC 重合但不能与切线重合),此时-94<m ≤-2,g (x )有两个不同的零点.综上,m 的取值范围为(-94,-2]∪(0,12],故选A.] 例5 D [由于受条件sin 2θ+cos 2θ=1的制约,m 一定为确定的值进而推知tan θ2也是一确定的值,又π2<θ<π,所以π4<θ2<π2,故tan θ2>1.所以D 正确.] 变式训练5 C [由俯视图知正方体的底面水平放置,其正视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.] 高考题型精练1.C [由m 1+i=1-n i , 得m =(1+i)(1-n i)=(1+n )+(1-n )i ,根据复数相等的条件得⎩⎪⎨⎪⎧ m =1+n ,0=1-n ,∴⎩⎪⎨⎪⎧m =2,n =1. ∴m +n i =2+i ,故选C.]2.B [由f (0)=0,排除C 、D ,又log 2⎝⎛⎭⎫⎪⎪⎪⎪12+1=log 232>log 22=12. 即0<x <1时,f (x )>x ,排除A.]3.B [A ={x |2x (x -2)<1}={x |0<x <2},B ={x |y =ln(1-x )}={x |x <1}.由题图知阴影部分是由A 中元素且排除B 中元素组成,得1≤x <2.故选B.]4.D [令f (x )=x +e x ,则f (1)=1+e ,f (-1)=-1+e -1,即f (-1)≠f (1),f (-1)≠-f (1),所以y =x +e x 既不是奇函数也不是偶函数,而A 、B 、C 依次是偶函数、奇函数、偶函数,故选D.]5.D [如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.]6.D [依题意,f (x )向右平移一个单位长度之后得到的函数是y =e -x ,于是f (x )相当于y =e -x 向左平移一个单位的结果,所以f (x )=e -x -1.]7.B [如图,因为〈a ,b 〉=120°,|b |=2|a |,a +b +c =0,所以在△OBC 中,BC 与CO 的夹角为90°,即a 与c 的夹角为90°. ]8.C [由c a =2(c 为半焦距),则b a =3, 即双曲线两条渐近线的倾斜角分别为60°和120°,所以△AOB 的面积为3p 24, 又3p 24=3,所以p =2为所求.] 9.A [因为当x =2或x =4时,2x -x 2=0,所以排除B ,C ;当x =-2时,2x -x 2=14-4<0,排除D ,故选A.]10.B [由题意知,A 选项中e 1=0,C 、D 选项中两向量均共线,都不符合基底条件,故选B(事实上,a =(3,2)=2e 1+e 2).]11.C [选一个特殊位置(如图),令OP 、OQ 分别在长、短正半轴上,由a 2=16,b 2=9得,|OP |=4,|OQ |=3,则|OH |=125.根据“在一般情况下成立,则在特殊情况下也成立”可知,选项C 正确.故选C.]12.B [由图象过点(0,0),⎝⎛⎭⎫1,32,(2,0),代入选项验证即可.] 13.B [根据题意可得函数图象,g (x )在点A (2,2)处的取值大于2,在点B (-2,-2)处的取值小于-2,可得g (2)=23+t =8+t >2,g (-2)=(-2)3+t =-8+t <-2,解得t ∈(-6,6),故选B.]14.A [f (π)=sin ⎝⎛⎭⎫2π-π3=-32,排除B 、D , f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫2×π6-π3=0,排除C.故选A.]15.A [作圆C 1关于x 轴的对称圆C ′1:(x -2)2+(y +3)2=1,则|PM |+|PN |=|PM |+|PN ′|,由图可知当点C 2、M 、P 、N ′、C ′1在同一直线上时,|PM |+|PN |=|PM |+|PN ′|取得最小值,即为|C ′1C 2|-1-3=52-4.]16.D [-f (-x )是f (x )的图象关于原点作变换,(x 0,f (x 0))是极大值点,那么(-x 0,-f (-x 0))就是极小值点.]17.B [如图所示,直线l 为抛物线y =2x 2的准线,F 为其焦点,PN ⊥l ,AN 1⊥l ,由抛物线的定义知,|PF |=|PN |,∴|AP |+|PF |=|AP |+|PN |≥|AN 1|,当且仅当A 、P 、N 三点共线时取等号.∴P 点的横坐标与A 点的横坐标相同即为1,则可排除A 、C 、D ,故选B.]18.B [当n =3时显然成立,故排除C ,D ;由正四面体的四个顶点,两两距离相等,得n =4时成立,故选B.]19.C [由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1. 当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23,故选C.] 20.D [y =3-4x -x 2变形为(x -2)2+(y -3)2=4(0≤x ≤4,1≤y ≤3),表示以(2,3)为圆心,2为半径的下半圆,如图所示.若直线y=x+b与曲线y=3-4x-x2有公共点,只需直线y=x+b在图中两直线之间(包括图中两条直线),y=x+b与下半圆相切时,圆心到直线y=x+b的距离为2,即|2-3+b|2=2,解得b=1-22或b=1+22(舍去),所以b的取值范围为1-22≤b≤3.故选D.]。
2019年高考英语一轮复习新人教版分层演练直击高考试题:Unit 1 Women of achievement 必修4

Unit 1 Women of achievementⅠ阅读理解A(2018·安徽合肥教学质量检测)Susan Brownell Anthony was a lady ahead of her time. She fought for women’s rights long before they became a popular issue.Susan was born on February 15, 1820, in Adams,Massachusetts. At that time, women had few rights. They could not own property. Money earned by a married woman belonged to her husband. Major decisions regarding children were made by the fathers. Women could not vote.At the age of 15, Susan became a schoolteacher. She taught for 15 years. Then she began organizing women’s groups to promote causes that were important to women. She helped gain better educational rights for women. She helped give married women possession of their earnings.After the Civil War, Susan became very involved in the women’s suffrage movement. After years of lecturing, writing, and appealing by Susan and other women, some parts of the United States changed their laws to give women the right to vote. The first state was Wyoming in 1869. Othe r areas and states gradually followed Wyoming’s decision. It was not until 1920 that the U.S. Constitution was changed to give all women voting rights.Susan Brownell Anthony died in 1906 at the age of 86. She was elected to the Hall of Fame for Great Americans in 1950. She was the first American woman to have a likeness(肖像) of her face on a coin. It was the 1979 Susan Brownell Anthony dollar.【解题导语】本文主要介绍了美国历史上著名的女权运动领袖Susan Brownell Anthony。
新教材适用2024版高考语文二轮总复习第1部分考点精讲复习板块3语言文字运用考点练透2辨析修改蹭教师

2.因病施策
修改病句时,能够用调整语序的方法来修改就尽量不要增删词语,改一处可以解决问题就决不改两处,尽量保持句意的简洁、句式或陈述对象的一致。
(1)搭配不当——换,更换词语使之搭配恰当。
(2)语序不当——调,调整语序。
(3)成分赘余——删,删掉多余的成分。
A.中国印章运用铁刀精雕细刻时,既直接体现中国书法的运笔特征,也创造中国绘画的艺术美感。
B.中国印章运用铁刀精雕细刻时,既彰显中国绘画的艺术美感,也直接体现中国书法的运笔特征。
C.中国印章运用铁刀精雕细刻,既直接体现中国书法的运笔特征,也彰显中国绘画的艺术美感。
D.中国印章运用铁刀精雕细刻,既创造中国绘画的艺术美感,也直接体现中国书法的运笔特征。
【修改病句】文中画波浪线的句子有语病,请进行修改。
答:_汉字还衍生出各种表现形式和造型手段,更造就了中国特有的书法艺术,丰富了人们的精神追求和艺术生活。__
【解析】画横线句语病有二:一是“诞生出各种表现形式和造型手段”搭配不当,二是“特有的中国书法艺术”语序不当。
关联词
出现了如“虽然”“但是”“如果”“就”等关联词,往往容易造成语序不当的错误
判断词
句中出现判断词“是”,命题者往往会设置主语与宾语之间搭配不当的语病
抓“否则”
“否则”表示“如果不这样”的意思,表示从相反的方面说,命题者往往用“否则”一词制造成分赘余的语病
对点强化
1. (2023·浙江省温州市第三次适应性考试)阅读下面的文字,完成后面的题目。
楚辞是在楚国民歌的基础上,经过加工、提炼而发展起来的楚国地方特色,屈原及其后学宋玉是楚辞最主要的创作者,与《诗经》迥然不同。
第十章第2讲分层演练直击高考

第十章
统计与统计案例
12.(2016· 高考北京卷)某市居民用水拟实行阶梯水价.每人 月用水量不超过 w 立方米的部分按 4 元/立方米收费, 超出 w 立方米的部分按 10 元/立方米收费. 从该市随机调查了 10 000 位居民,获得了他们某月的用水量数据,整理得到如下频率 分布直方图:
第十章
第十章
统计与统计案例
A.30 辆 C.170 辆
B.300 辆 D.1 700 辆
第十章
统计与统计案例
D
[解析] 直方图中速度为 90~120 km/h 的频率为 0.03×10
+0.035×10+0.02×10=0.85. 用样本估计总体,可知 2 000 辆车中,以正常速度通过该处 的汽车约有 0.85×2 000=1 700(辆).故选 D.
统计与统计案例
(1)如果 w 为整数,那么根据此次调查,为使 80%以上居民 在该月的用水价格为 4 元/立方米,w 至少定为多少? (2)假设同组中的每个数据用该组区间的右端点值代替.当 w =3 时,估计该市居民该月的人均水费.
第十章
统计与统计案例
[解 ]
(1)由用水量的频率分布直方图知,
该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2, 2.5],(2.5,3]内的频率依次为 0.1,0.15,0.2,0.25,0.15. 所以该月用水量不超过 3 立方米的居民占 85%,用水量不超 过 2 立方米的居民占 45%. 依题意,w 至少定为 3.
第十章
统计与统计案例
(2)由用水量的频率分布直方图及题意,得居民该月用水费用 的数据分组与频率分布表: 组号 1 2 3 4 5 6 7 8
分组 [2,4] (4,6] (6,8] 频率 0.1 0.15 0.2
高考物理二轮突破课件:第1讲-选择题的特点及突破

[二轮备考讲义]
第二部分 第1讲
第12页
名师伴你行 · 高考二轮复习 · 物理
A.甲球下落的时间比乙球下落的时间长 B.甲球下落的时间比乙球下落的时间短 C.甲球的初速度比乙球初速度大 D.甲球的初速度比乙球初速度小 方法应用: 根据甲和乙的运动轨迹可比较二者竖直分位移和 水平分位移的关系,从而确定下落时间以及初速度的大小关系.
答案:BC
[二轮备考讲义]
第二部分 第1讲
第13页
名师伴你行 · 高考二轮复习 · 物理
解析:由题图可知,甲下落的竖直高度较小,根据 t=
2h g
可知甲球下落的时间比乙球下落的时间短,选项 A 错误,B 正 确; 根据图可知, 当甲、 乙落到同一高度时, 甲的水平位移较大, 故根据 x=vt 及 t= 项 C 正确,D 错误. 2h g 可知甲球的初速度比乙球初速度大,选
[二轮备考讲义]
第二部分 第1讲
第14页
名师伴你行 · 高考二轮复习 · 物理
1-2.(2014· 江苏南京一模 )如图所示,实线表示电场线,虚 线表示带电粒子运动的轨迹.带电粒子只受电场力的作用,运动 过程中电势能逐渐减小, 它运动到 b 处时的运动方向与受力方向 可能的是( )
[二轮备考讲义]
名师伴你行 · 高考二轮复习 · 物理
[二轮备考讲义]
[二轮备考讲义]
第二部分 第1讲
第 1页
名师伴你行 · 高考二轮复习 · 物理
第二部分 热考题型专题突破
[二轮备考讲义]
第二部分 第1讲
第 2页
名师伴你行 · 高考二轮复习 · 物理
第 1讲
选择题的特点及突破方略
[二轮备考讲义]
第二部分 第1讲
(江苏专版)高考数学一轮复习第二章第2讲函数的定义域与值域分层演练直击高考文

第2讲 函数的定义域与值域1.函数f (x )=x -4|x |-5的定义域为________.[解析] 由⎩⎪⎨⎪⎧x -4≥0,|x |-5≠0,得x ≥4且x ≠5.[答案] {x |x ≥4,且x ≠5}2.若x 有意义,则函数y =x 2+3x -5的值域是________. [解析] 因为x 有意义,所以x ≥0.又y =x 2+3x -5=⎝ ⎛⎭⎪⎫x +322-94-5,所以当x =0时,y min =-5. [答案] [-5,+∞) 3.函数y =1x 2+2的值域为________. [解析] 因为x 2+2≥2,所以0<1x 2+2≤12. 所以0<y ≤12.[答案] ⎩⎨⎧⎭⎬⎫y |0<y ≤124.(2018·南京四校第一学期联考)函数f (x )=x 2-5x +6lg (2x -3)的定义域为________.解析:要使f (x )有意义,必须⎩⎪⎨⎪⎧2x -3>0lg (2x -3)≠0x 2-5x +6≥0,所以⎩⎪⎨⎪⎧x >32x ≠2x ≥3或x ≤2,所以函数f (x )的定义域为⎝ ⎛⎭⎪⎫32,2∪[3,+∞).答案:⎝ ⎛⎭⎪⎫32,2∪[3,+∞)5.若函数y =f (x )的定义域是[0,2 014],则函数g (x )=f (x +1)x -1的定义域是________.[解析] 令t =x +1,则由已知函数y =f (x )的定义域为[0,2 014]可知,0≤t ≤2 014,故要使函数f (x +1)有意义,则0≤x +1≤2 014,解得-1≤x ≤2 013,故函数f (x +1)的定义域为[-1,2 013].所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 013,x -1≠0,解得-1≤x <1或1<x ≤2 013.故函数g (x )的定义域为[-1,1)∪(1,2 013]. [答案] [-1,1)∪(1,2 013]6.函数y =x -x (x ≥0)的最大值为________. [解析] y =x -x =-(x )2+x =-⎝⎛⎭⎪⎫x -122+14, 即y max =14.[答案] 147.(2018·南昌模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.[解析] 由题意知,f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈(1,2],当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6].故当x ∈[-2,2]时,f (x )∈[-4,6].[答案] [-4,6]8.已知集合A 是函数f (x )=1-x 2+x 2-1x的定义域,集合B 是其值域,则A ∪B 的子集的个数为________.[解析] 要使函数f (x )的解析式有意义,则需⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0,x ≠0,解得x =1或x =-1,所以函数的定义域A ={-1,1}.而f (1)=f (-1)=0,故函数的值域B ={0},所以A ∪B ={1,-1,0},其子集的个数为23=8.[答案] 89.已知二次函数f (x )=ax 2-x +c (x ∈R )的值域为[0,+∞),则c +2a +a +2c的最小值为________.[解析] 由二次函数的值域是[0,+∞),可知该二次函数的图象开口向上,且函数的最小值为0,因此有a >0,4ac -14a =0,从而c =14a >0.又c +2a +a +2c =⎝ ⎛⎭⎪⎫2a +8a +⎝ ⎛⎭⎪⎫14a 2+4a 2≥2×4+2=10,当且仅当⎩⎪⎨⎪⎧2a =8a ,14a 2=4a 2,即a =12时取等号,故所求的最小值为10.[答案] 1010.函数y =2x -1-13-4x 的值域为________. [解析] 法一:(换元法)设13-4x =t , 则t ≥0,x =13-t24,于是y =g (t )=2·13-t24-1-t=-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数, 所以g (t )≤g (0)=112,因此函数的值域是⎝⎛⎦⎥⎤-∞,112. 法二:(单调性法)函数的定义域是⎩⎨⎧⎭⎬⎫x |x ≤134,当自变量x 增大时,2x -1增大,13-4x 减小, 所以2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是单调递增函数, 所以当x =134时,函数取得最大值f ⎝ ⎛⎭⎪⎫134=112,故函数的值域是⎝ ⎛⎦⎥⎤-∞,112.[答案] ⎝⎛⎦⎥⎤-∞,11211. (1)求函数f (x )=lg (x 2-2x )9-x2的定义域. (2)已知函数f (2x)的定义域是[-1,1],求f (x )的定义域.[解] (1)要使该函数有意义,需要⎩⎪⎨⎪⎧x 2-2x >0,9-x 2>0,则有⎩⎪⎨⎪⎧x <0或x >2,-3<x <3,解得-3<x <0或2<x <3, 所以所求函数的定义域为(-3,0)∪(2,3).(2)因为f (2x)的定义域为[-1,1], 即-1≤x ≤1,所以12≤2x≤2,故f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2. 12.已知函数g (x )=x +1, h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.[解] (1)f (x )=x +1x +3,x ∈[0,a ](a >0). (2)函数f (x )的定义域为⎣⎢⎡⎦⎥⎤0,14, 令x +1=t ,则x =(t -1)2,t ∈⎣⎢⎡⎦⎥⎤1,32,f (x )=F (t )=tt 2-2t +4=1t +4t-2, 当t =4t 时,t =±2∉⎣⎢⎡⎦⎥⎤1,32,又t ∈⎣⎢⎡⎦⎥⎤1,32时,t +4t 单调递减,F (t )单调递增,F (t )∈⎣⎢⎡⎦⎥⎤13,613.即函数f (x )的值域为⎣⎢⎡⎦⎥⎤13,613.1.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),则a =________,b =________.[解析] 因为f (x )=12(x -1)2+a -12,所以其对称轴为x =1.即[1,b ]为f (x )的单调递增区间. 所以f (x )min =f (1)=a -12=1,①f (x )max =f (b )=12b 2-b +a =b ,②由①②解得⎩⎪⎨⎪⎧a =32,b =3.[答案] 3232.(2018·徐州质检)已知一个函数的解析式为y =x 2,它的值域为{1,4},这样的函数有________个.[解析] 列举法:定义域可能是{1,2}、{-1,2}、{1,-2}、{-1,-2}、{1,-2,2}、{-1,-2,2}、{-1,1,2}、{-1,1,-2}、{-1,1,-2,2}.[答案] 93.已知函数f (x )=log 13(-|x |+3)的定义域是[a ,b ](a 、b ∈Z ),值域是[-1,0],则满足条件的整数对(a ,b )有________对.[解析] 由f (x )=log 13(-|x |+3)的值域是[-1,0],易知t (x )=|x |的值域是[0,2],因为定义域是[a ,b ](a 、b ∈Z ),所以符合条件的(a ,b )有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5对.[答案] 54.(2018·常州调研)设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是________.[解析] 令x <g (x ),即x 2-x -2>0,解得x <-1或x >2;令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2,故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f ⎝ ⎛⎭⎪⎫12≤f (x )≤f (-1),即-94≤f (x )≤0,故函数f (x )的值域是⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞).[答案] ⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞) 5.若函数f (x )= (a 2-1)x 2+(a -1)x +2a +1的定义域为R ,求实数a 的取值范围.[解] 由函数的定义域为R ,可知对x ∈R ,f (x )恒有意义,即对x ∈R ,(a 2-1)x 2+(a -1)x +2a +1≥0恒成立. ①当a 2-1=0,即a =1(a =-1舍去)时,有1≥0,对x ∈R 恒成立,故a =1符合题意;②当a 2-1≠0,即a ≠±1时,则有⎩⎪⎨⎪⎧a 2-1>0,Δ=(a -1)2-4(a 2-1)×2a +1≤0,解得1<a ≤9. 综上,可得实数a 的取值范围是[1,9].6.已知二次函数f (x )=ax 2+bx (a 、b 为常数,且a ≠0)满足条件:f (x -1)=f (3-x ),且方程f (x )=2x 有等根.(1)求f (x )的解析式;(2)是否存在实数m 、n (m <n ),使f (x )定义域和值域分别为[m ,n ]和[4m ,4n ]?如果存在,求出m 、n 的值;如果不存在,说明理由.[解] (1) f (x )=-x 2+2x .(2)由f (x )=-x 2+2x =-(x -1)2+1,知f (x )max =1,所以4n ≤1,即n ≤14<1.故f (x )在[m ,n ]上为增函数,所以⎩⎪⎨⎪⎧f (m )=4m ,f (n )=4n ,解得⎩⎪⎨⎪⎧m =-2,n =0,所以存在m =-2,n=0,满足条件.7.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. [解] (1)因为函数的值域为[0,+∞), 所以Δ=16a 2-4(2a +6)=0 ⇒2a 2-a -3=0⇒a =-1或a =32.(2)因为对一切x ∈R 函数值均为非负数, 所以Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32.所以a +3>0.所以g (a )=2-a |a +3|=-a 2-3a +2 =-⎝ ⎛⎭⎪⎫a +322+174⎝ ⎛⎭⎪⎫a ∈⎣⎢⎡⎦⎥⎤-1,32. 因为二次函数g (a )在⎣⎢⎡⎦⎥⎤-1,32上单调递减, 所以g ⎝ ⎛⎭⎪⎫32≤g (a )≤g (-1),即-194≤g (a )≤4.所以g (a )的值域为⎣⎢⎡⎦⎥⎤-194,4.。
【教育资料】第2讲 分层演练直击高考学习精品

1.函数f (x )=x1-x在( )A .(-∞,1)∪(1,+∞)上是增函数B .(-∞,1)∪(1,+∞)上是减函数C .(-∞,1)和(1,+∞)上是增函数D .(-∞,1)和(1,+∞)上是减函数解析:选C .函数f (x )的定义域为{x |x ≠1}.f (x )=x 1-x =11-x -1,根据函数y =-1x 的单调性及有关性质,可知f (x )在(-∞,1)和(1,+∞)上是增函数.2.已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C .因为f (x )在R 上为减函数,且f ⎝⎛⎭⎫1|x |<f (1),所以1|x |>1,即0<|x |<1, 所以0<x <1或-1<x <0.3.若函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是( ) A .(-∞,8]B .[40,+∞)C .(-∞,8]∪[40,+∞)D .[8,40]解析:选C .法一:由题意知函数f (x )=8x 2-2kx -7的图象的对称轴为x =k8,因为函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,所以k 8≤1或k8≥5,解得k ≤8或k ≥40,所以实数k 的取值范围是(-∞,8]∪[40,+∞).故选C .法二:取k =0,则函数f (x )=8x 2-7在[1,5]上为单调递增函数,所以排除B 、D ;取k =40,则函数f (x )=8x 2-80x -7在[1,5]上为单调递减函数,所以排除A .故选C .4.(2019·贵阳检测)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C .由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2,因为f (x )=x -2在[-2,1]上是增函数,所以f (x )≤f (1)=-1,因为f (x )=x 3-2在(1,2]上是增函数, 所以f (x )≤f (2)=6, 所以f (x )max =f (2)=6.5.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B .因为函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.6.(2019·湖北八校联考(一))设函数f (x )=2xx -2在区间[3,4]上的最大值和最小值分别为M ,m ,则m 2M=________.解析:易知f (x )=2x x -2=2+4x -2,所以f (x )在区间[3,4]上单调递减,所以M =f (3)=2+43-2=6,m =f (4)=2+44-2=4,所以m 2M =166=83.答案:837.函数f (x )=|x -1|+x 2的值域为________.解析:因为f (x )=|x -1|+x 2=⎩⎪⎨⎪⎧x 2+x -1,x ≥1x 2-x +1,x <1,所以f (x )=⎩⎨⎧⎝⎛⎭⎫x +122-54,x ≥1⎝⎛⎭⎫x -122+34,x <1, 作出函数图象如图,由图象知f (x )=|x -1|+x 2的值域为⎣⎡⎭⎫34,+∞. 答案:⎣⎡⎭⎫34,+∞8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎨⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)9.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,因为x 1>x 2>0,所以x 1-x 2>0,x 1x 2>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以f (x )在(0,+∞)上是增函数. (2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上为增函数, 所以f ⎝⎛⎭⎫12=1a -2=12, f (2)=1a -12=2,解得a =25.10.已知函数f (x )=2x -ax 的定义域为(0,1](a 为实数).(1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.解:(1)当a =1时,f (x )=2x -1x ,任取1≥x 1>x 2>0,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝⎛⎭⎫1x 1-1x 2=(x 1-x 2)⎝⎛⎭⎫2+1x 1x 2.因为1≥x 1>x 2>0,所以x 1-x 2>0,x 1x 2>0. 所以f (x 1)>f (x 2),所以f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值2-a ; 当a <0时,f (x )=2x +-a x ,当-a2≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ;当-a2<1,即a ∈(-2,0)时,y =f (x )在⎝⎛⎦⎤0, -a 2上单调递减,在⎣⎡⎦⎤-a 2,1上单调递增,无最大值,当x =-a2时取得最小值2-2a .1.已知函数f (x )=⎩⎪⎨⎪⎧3(a -3)x +2,x ≤1,-4a -ln x ,x >1,对于任意的x 1≠x 2,都有(x 1-x 2)[f (x 2)-f (x 1)]>0成立,则实数a 的取值范围是( )A .(-∞,3]B .(-∞,3)C .(3,+∞)D .[1,3)解析:选D.由(x 1-x 2)[f (x 2)-f (x 1)]>0,得(x 1-x 2)·[f (x 1)-f (x 2)]<0,所以函数f (x )为R 上的单调递减函数,则⎩⎪⎨⎪⎧a -3<0,3(a -3)+2≥-4a ,解得1≤a <3.故选D.2.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值,则函数f (x )=min{4x +1,x +4,-x +8}的最大值是( )A .2B .4C .6D .8解析:选C .在同一直角坐标系中分别作出函数y =4x +1,y =x +4,y =-x +8的图象后,取位于下方的部分得函数f (x )=min{4x +1,x +4,-x +8}的图象,如图所示,不难看出函数f (x )在x =2时取得最大值6.3.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0,3]C .[0,1]D .[1,3]解析:选D.因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x2, 由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].4.已知函数f (x )=x |2x -a |(a >0)在区间[2,4]上单调递减,则实数a 的值是________.解析:f (x )=x |2x -a |=⎩⎨⎧x (2x -a ),x >a2,-x (2x -a ),x ≤a2(a >0),作出函数图象(图略)可得该函数的递减区间是⎣⎡⎦⎤a 4,a2,所以⎩⎨⎧a4≤2,a2≥4,解得a =8. 答案:85.已知函数f (x )=ax +1a (1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解:f (x )=⎝⎛⎭⎫a -1a x +1a, 当a >1时,a -1a >0,此时f (x )在[0,1]上为增函数,所以g (a )=f (0)=1a;当0<a <1时,a -1a <0,此时f (x )在[0,1]上为减函数,所以g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.所以g (a )=⎩⎪⎨⎪⎧a ,0<a <11a ,a ≥1,所以g (a )在(0,1)上为增函数,在[1,+∞)上为减函数,又a=1时,有a =1a=1,所以当a =1时,g (a )取最大值1.6.已知f (x )是定义在(0,+∞)上的减函数,且满足f (x )+f (y )=f (xy ). (1)求证:f (x )-f (y )=f ⎝⎛⎭⎫x y ;(2)若f (4)=-4,解不等式f (x )-f ⎝⎛⎭⎫1x -12≥-12.解:(1)证明:由条件f (x )+f (y )=f (xy ) 可得f ⎝⎛⎭⎫x y +f (y )=f ⎝⎛⎭⎫x y ·y =f (x ),所以f (x )-f (y )=f ⎝⎛⎭⎫x y .(2)因为f (4)=-4,所以f (4)+f (4)=f (16)=-8,f (4)+f (16)=f (64)=-12.由(1)可得f (x )-f ⎝ ⎛⎭⎪⎫1x -12=f (x (x -12)).又f (x )是定义在(0,+∞)上的减函数,⎩⎪⎨⎪⎧x >0,1x -12>0⇒x >12,由f (x )-f ⎝ ⎛⎭⎪⎫1x -12≥-12,即f (x (x -12))≥f (64),所以x 2-12x -64=(x -16)(x +4)≤0, 得-4≤x ≤16,又x >12,所以x ∈(12,16]. 故原不等式的解集为{x |12<x ≤16}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.下列各式中不能化简为PQ →的是( ) A .AB →+(P A →+BQ →) B .(AB →+PC →)+(BA →-QC →) C .QC →-QP →+CQ →D .P A →+AB →-BQ →解析:选D .AB →+(P A →+BQ →)=AB →+BQ →+P A →=P A →+AQ →=PQ →;(AB →+PC →)+(BA →-QC →)=(AB →+BA →)+(PC →-QC →)=PC →+CQ →=PQ →;QC →-QP →+CQ →=PC →+CQ →=PQ →; P A →+AB →-BQ →=PB →-BQ →, 显然由PB →-BQ →得不出PQ →, 所以不能化简为PQ →的式子是D .2.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A .a 与λa 的方向相反 B .a 与λ2a 的方向相同 C .|-λa |≥|a |D .|-λa |≥|λ|a解析:选B .对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.3.(2018·浙江省新高考学科基础测试)设点M 是线段AB 的中点,点C 在直线AB 外,|AB →|=6,|CA →+CB →|=|CA →-CB →|,则|CM →|=( ) A .12 B .6 C .3D .32解析:选C .因为|CA →+CB →|=2|CM →|,|CA →-CB →|=|BA →|,所以2|CM →|=|BA →|=6, 所以|CM →|=3,故选C .4.已知向量a ,b ,c 中任意两个都不共线,并且a +b 与c 共线,b +c 与a 共线,那么a +b +c 等于( ) A .a B .b C .cD .0解析:选D .因为a +b 与c 共线,所以a +b =λ1c .① 又因为b +c 与a 共线,所以b +c =λ2a . 由①得b =λ1c -a .所以b +c =(λ1+1)c -a =λ2a ,所以⎩⎪⎨⎪⎧λ1+1=0,λ2=-1,即⎩⎪⎨⎪⎧λ1=-1,λ2=-1,所以a +b +c =-c +c =0.5.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ⇒q , 若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线, 即a =λb ,且λ>0,故q ⇒/ p . 所以p 是q 的充分不必要条件,故选A .6.(2018·温州市普通高中模考)已知A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ>0,μ>0),则λ+μ的取值范围是( ) A .(0,1) B .(1,+∞) C .(1, 2 ]D .(0, 2 )解析:选B .由题意可得OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线,所以kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),选项B 正确.7.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示). 解析:如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b . 答案:b -a -a -b8.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是________.解析:BC →=AC →-AB →,当AB →,AC →同向时,|BC →|=8-5=3;当AB →,AC →反向时,|BC →|=8+5=13;当AB →,AC →不共线时,3<|BC →|<13.综上可知3≤|BC →|≤13. 答案:[3,13]9.(2018·温州质检)如图所示,在△ABC 中,BO 为边AC 上的中线,BG →=2GO →,设CD →∥AG →,若AD →=15AB →+λAC →(λ∈R ),则λ的值为 ________.解析:因为BG →=2GO →,所以AG →=13AB →+23AO →=13AB →+13AC →,又CD →∥AG →,可设CD →=mAG →,从而AD →=AC →+CD →=AC →+m 3AB →+m 3AC →=⎝⎛⎭⎫1+m 3AC →+m 3AB →.因为AD →=15AB →+λAC →,所以m 3=15,λ=1+m 3=65.答案:6510.(2018·杭州中学高三月考)已知P 为△ABC 内一点,且5AP →-2AB →-AC →=0,则△P AC 的面积与△ABC 的面积之比等于________. 解析:因为5AP →-2AB →-AC →=0, 所以AP →=25AB →+15AC →,延长AP 交BC 于D ,则53AP →=23AB →+13AC →=AD →,从而可以得到D 是BC 边的三等分点,且CD =23CB ,设点B 到边AC 的距离为d ,则点P 到边AC 的距离为23×35d =25d ,所以△P AC 的面积与△ABC 的面积之比为25.答案:2511.经过△OAB 重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,求1n +1m的值.解:设OA →=a ,OB →=b ,则OG →=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=13(a +b )-m a =⎝⎛⎭⎫13-m a +13b . 由P ,G ,Q 共线得,存在实数λ使得PQ →=λPG →, 即n b -m a =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ,得1n +1m=3.12.在△ABC 中,D 、E 分别为BC 、AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →. 解:AD →=12(AB →+AC →)=12a +12b .AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →)=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b .1.(2018·广州市综合测试(一))设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( ) A .13 B .12C .23D .34解析:选B .因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.2.(2018·福建省普通高中质量检查)已知D ,E 是△ABC 边BC 的三等分点,点P 在线段DE 上,若AP →=xAB →+yAC →,则xy 的取值范围是( ) A .⎣⎡⎦⎤19,49 B .⎣⎡⎦⎤19,14 C .⎣⎡⎦⎤29,12D .⎣⎡⎦⎤29,14解析:选D .由题意,知P ,B ,C 三点共线,则存在实数λ使PB →=λBC →⎝⎛⎭⎫-23≤λ≤-13,所以AB →-AP →=λ(AC →-AB →),所以AP →=-λAC →+(λ+1)AB →,则⎩⎪⎨⎪⎧y =-λx =λ+1,所以x +y =1且13≤x ≤23,于是xy =x (1-x )=-⎝⎛⎭⎫x -122+14,所以当x =12时,xy 取得最大值14;当x =13或x =23时,xy 取得最小值29,所以xy 的取值范围为⎣⎡⎦⎤29,14,故选D . 3.(2018·浙江名校协作体高三联考)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 的延长线,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n =________.解析:作BG ∥AC ,则BG ∥NC ,|BG ||AN |=|BM ||AM |.因为O 是BC 的中点,所以△NOC ≌△GOB , 所以|BG |=|NC |,又因为|AC |=n |AN |, 所以|NC |=(n -1)|AN |,所以|BG ||AN |=n -1. 因为|AB |=m |AM |,所以|BM |=(1-m )|AM |, 所以|BM ||AM |=1-m ,所以n -1=1-m ,m +n =2.答案:24.(2018·温州市四校高三调研)给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°,如图所示,点C 在以O 为圆心的圆弧AB ︵上变动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.解析:如图,OC →=OE →+OD →.因为OA →,OB →,OC →都是单位向量,故|OE →|=x |OA →|<1,|OD →|=y |OB →|<1,∠CEO =60°, 所以cos 60°=x 2+y 2-12xy ,x 2+y 2-1=xy ,所以(x +y )2-1=3xy ≤3⎝⎛⎭⎫x +y 22, 所以14(x +y )2≤1,所以(x +y )2≤4,所以x +y ≤2,故x +y 的最大值是2. 答案:25.如图,EF 是等腰梯形ABCD 的中位线,M ,N 是EF 上的两个三等分点,若AB →=a ,BC →=b ,AB →=2DC →.(1)用a ,b 表示AM →; (2)证明A ,M ,C 三点共线.解:(1)AD →=AB →+BC →+CD →=a +b +⎝⎛⎭⎫-12a =12a +b , 又E 为AD 中点, 所以AE →=12AD →=14a +12b ,因为EF 是梯形的中位线,且AB →=2DC →, 所以EF →=12(AB →+DC →)=12⎝⎛⎭⎫a +12a =34a , 又M ,N 是EF 的三等分点,所以EM →=13EF →=14a ,所以AM →=AE →+EM →=14a +12b +14a=12a +12b . (2)证明:由(1)知MF →=23EF →=12a ,所以MC →=MF →+FC →=12a +12b =AM →,又MC →与AM →有公共点M ,所以A ,M ,C 三点共线.6.已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ).求证:A ,P ,B 三点共线的充要条件是m +n =1.证明:充分性:若m +n =1,则OP →=mOA →+(1-m )OB →=OB →+m (OA →-OB →), 所以OP →-OB →=m (OA →-OB →), 即BP →=mBA →, 所以BP →与BA →共线.又因为BP →与BA →有公共点B ,则A ,P ,B 三点共线.必要性:若A ,P ,B 三点共线,则存在实数λ,使BP →=λBA →, 所以OP →-OB →=λ(OA →-OB →). 又OP →=mOA →+nOB →.故有mOA →+(n -1)OB →=λOA →-λOB →, 即(m -λ)OA →+(n +λ-1)OB →=0.因为O ,A ,B 不共线,所以OA →,OB →不共线,所以⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0.所以m +n =1.所以A ,P ,B 三点共线的充要条件是m +n =1.。