以元为单位的商品标价例题4
商品标价签填写规范

商品标价签填写规范篇一:商品标价签及POP填写规范“明码实价”示范店专用商品标价签明细及POP填写规范:一.“明码实价”商品标价签明细:1.明码实价正价商品标价签:(红色为食品超市专用)2.明码实价降价商品标价签:食品部专用配料商品降价商品标价签 3.开架商品使用:①标价枪专用不干胶贴:▲必须配合商品标价签同时使用;▲商品正价时:用正价不干胶贴(浅蓝色)配合正价商品标价签(蓝色或红色)同时使用;▲商品降价时:用降价不干胶贴(黄色)配合降价商品标价签(黄色)同时使用;1②条码签:“为此格式经成都市物价局监制”二、明码实价商品标价签填写规范:1.正价商品标价签填写说明:2.明码实价降价商品标价签填写说明:(除正价商品标价签填写内容以外)2三.IY使用涉及价格POP明细及填写和使用规范:1. IY现有的涉及价格的POP:2.涉及价格的POP的填写方法与标价签的填写要求一致(略)。
3三、POP使用案例及对应:1.“×元起”:(×)注意:▲指定款:在商品陈列时应有明显提示(区分) ▲在POP的底部:此处应标注“详见标价签”的字样2.“×元”:▲在POP的底部:此处应标注“详见标价签”的字样4(×)(√)(×)(√)4. “×元均一”:(×)注意:▲“×元均一”:应明确商品类别,否则易误导消费者认为所有商品都是9.9元5. “×折起”:5小桌布50*50cm(√)篇二:标价签规范一、明码标价制度的具体要求:1. 价签齐全:全部商品和收费都必须有标价签或价目表;2 . 标价准确:按规定准确标明价格或收费标准,不缺标、漏标、错标;3 . 字迹清晰:书写字体要清楚,工整、不乱画涂改;4 . 货签对位:标价签和商品放在一起、有货有签;5 . 一货一签:因产地、规格、等级、材质、花色、包装、商标不同的商品必须一货一签;6 . 标示醒目:标价签或价目表应摆放在醒目位置,做到整齐、美观;7 . 价格变动及时更换:做到货、价、签相符,严禁高于标价销售商品或收取费用。
初中数学打折销售问题的常见题型

初中数学打折销售问题的常见题型摘要:要解决商品打折销售题,首先要明确一些基本概念。
就一些商品打折销售的典型题型对这一问题进行分析。
关键词:打折销售问题;概念;常见题型北师大版七年级第五章第4节“应用一元一次方程――打折销售”,概念、公式比较多,很多学生反映不能正确理解这种题型。
要解决这类题,首先我们要明确一些基本概念。
一、基本概念1.成本价:购买一件商品的买入价叫做这件商品的成本价,也叫进价。
2.标价:商品出售时标出的价格叫商品的标价。
3.销售价:商品销售时实际的卖价,也叫成交价。
4.利润:商品的销售价减去成本,即商品销售时所赚(赔)的钱。
5.利润率:利润和成本的比,我们叫做商品的利润率。
6.折扣数:商品销售时售价占标价的百分比。
7.关键公式:(1)利润=销售价(卖出价)-成本(2)利润率= =(3)销售价=标价×折扣数二、常见的题型1.求商品进价商店将超级VCD按进价提高35%以后打出“九折酬宾,外送50元出租车费”的广告,结果每台超级VCD仍获利208元,那么每台超级VCD的进价为多少元?解:设这种VCD的进价为x元,则(1+35%)x×0.9-x-50=208,解得x=1200。
2.求商品标价某商品的进价是250元,按标价的9折销售时,利润率为15.2%,商品的标价是多少?解:设商品的标价是x元,根据题意得: =15.2%,解之得:x=320。
3.求折扣数某商品进价是1000元,标价是1500元,后由于商品积压,某商场要以利润率不低于5%的价格销售,问售货员最多可以打几折出售此商品?解:设售货员可打x折出售此商品,根据题意得:(1500・ -1000)÷1000=5%,解之得:x=7。
4.求利润率某商店将每台彩电先按进价提高40%标出售价,然后广告宣传将以八折的优惠价出售,结果每台彩电赚了300元,则经销这种彩电的利润率是多少?解:设该彩电的进价为x元,根据题意得:x×(1+40%)×80%-x=300。
小学六年级数学经济问题--利润类

经济类的问题知识点精讲:①折扣问题:购物的优惠方式。
几折就是百分之几。
打七五折:说明售价是定价的75%。
公式:折扣=售价÷定价。
定价×折扣=售价。
思考:优惠20%出售相当于打( )折。
②利润、利润率问题:有买卖就有利润和利润率。
成本:又叫进价,即商店商品的买价,有时也包括运费、人力等。
定价:商店给商品的标价;售价(卖价):卖出的价格。
售价=成本+利润利润:所赚的钱称为利润;即:利润=售价-成本利润率:利润占成本的百分之几叫做利润率。
利润率=利润÷成本×100%【核心公式】理解记忆(核心1)常用:利润=售价-成本。
常用:售价=成本+利润常用:利润率=利润÷成本成本×利润率=利润。
推导公式:(1)售价=成本×(1推导公式:(2)成本=售价÷(1+注意1:利润率的单位“1”都是成本。
只能用:成本×利润率=利润,而不能用售价×利润率=利润。
注意2:提价或降价20%,盈利或亏本20%,这两个20%是谁的20%?( ) 所以这两个20%的单位1都是( )。
比如1:商家进了一批杯子,进货价是10元/个,当商家以15元/个的价格卖出时,每个的利润是( ),每个的利润率是( )。
比如2:超市以每个100元的价格进购一批篮球,要想获得50%的利润,每个篮球的定价应为( )。
比如3:某超市以180元的价格出售了一个足球,获得了50%的利润,每个足球的进价是( )。
※解题的方法:找单位1,列数量关系,可用方程解题。
(核心2)【经典例题呈现】例1:一件商品定价800元出售,可获得25%的利润,则成本价是多少元?利润是多少元?利润率是百分之几?例2:一件原价1000元的衣服,如果以六折出售,仍可以获得20%的利润;如果以原价出售,可以获得百分之几的利润?例:3:某商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则标价为多少元?例4:服装店以120元的相同价格卖出两件不同的衣服,其中一件盈利20%,另一件亏损20%。
六年级数学上册知识讲义-4.3 一元一次方程的应用:销售问题(附练习及答案)-鲁教版(五四学制)

学习目标一、考点突破弄清楚销售问题中的数量关系,能够根据进价、售价、标价、利润、销售量、利润率之间的关系找到相等关系列方程,用一元一次方程解决现实生活中的销售问题。
二、重难点提示重点:熟悉销售问题中的各种数量关系。
难点:分清商品的进价、成本价、售价、标价、折扣价,以及它们之间的关系。
考点精讲1. 销售问题中常出现的量有:进价(成本价)、售价、标价、利润等。
2. 销售问题中的数量关系:(1)商品利润=商品售价-商品成本价;(2)商品利润率=×100%;(3)商品销售额=商品销售价×商品销售量;(4)商品的销售利润=(销售价-成本价)×销售量;(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。
典例精讲例题1(无锡)某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元,若设铅笔卖出x支,则依题意可列得的一元一次方程为()A. 1.2×0.8x+2×0.9(60+x)=87B. 1.2×0.8x+2×0.9(60-x)=87C. 2×0.9x+1.2×0.8(60+x)=87D. 2×0.9x+1.2×0.8(60-x)=87思路分析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,据此列出方程即可。
答案:设铅笔卖出x支,由题意,得1.2×0.8x+2×0.9(60-x)=87,故选B。
技巧点拨:本题考查了由实际问题抽象出一元一次方程,根据描述找到等量关系是解题的关键。
人教版数学七年级上册《实际问题与一元二次方程》解答题巩固练习

人教版数学七年级上册 3.4实际问题与一元一次方程解答题巩固练习(一)1.双十一购物节.某网络商城推出了“每满300减40”的活动,某品牌微波炉按进价提高50%后标价,再按标价的八折销售,顾客在双十一期间购买该微波炉,最终付款640元.(1)将表格补充完整;应付金额(元)0≤x<300 600≤x<900 900≤x<1200 减免金额(元)0 40 120(2)商家卖一个微波炉赚多少元?2.为了培育和践行社会主义核心价值观,丰富学生生活,培养学生爱国主义情怀,学校某天组织七年级学生和带队教师共450人外出参加研学游活动,已知学生人数的一半比带队教师人数的10倍还多15人.求参加活动的七年级学生和带队教师各有多少人?3.某天,信美超市用360元钱按批发价从水果批发市场购买了苹果和香蕉共200kg,然后按零售价出售,苹果和香蕉当天的批发价和零售价如下表所示:品名苹果香蕉批发价(单位:元/kg) 2.0 1.5零售价(单位:元/kg) 2.4 1.8(1)这一天该超市购买苹果和香蕉各多少kg?(2)如果苹果和香蕉全部以零售价售出,该超市当天卖这些苹果和香蕉共赚了多少钱?4.如图,在数轴上有A、B两点,点C是线段AB的中点,AB=12,OA=8.(1)求点C所表示的数;(2)动点P、Q分别从A、B同时出发,沿着数轴的正方向运动,点P、Q的运动速度分别是每秒3个单位和每秒2个单位(当P与Q相遇,运动停止),点M是线段PQ的中点,设运动时间为t秒,请用含t的式子表示CM的长;(3)在(2)的条件下,试问t为何值时,CM=PC.5.已知数轴上两点A、B对应的数分别为﹣1、5,点P为数轴上一动点,其对应的数为X.(1)若点P到点A点B的距离相等,求点P对应的数是X=;(2)数轴上是否存在点P,使点P到点A,点B的距离之和为8?若存在,请求出X的值;若不存在,说明理由;(3)现在点A,点B分别以2个单位长度每分和1个单位长度每分的速度同时向右运动,点P以6个单位长度每分的速度从O点向左运动,当遇到A时,点P以原来的速度向右运动,并不停得往返于A与B之间,求当A遇到B重合时,P所经过的总路程.6.农历六月六日水龙节是土家族等少数民族重要的民俗文化活动之一,在今年水龙节即将到来之前,德江县城一商店用1200元购进甲、乙两种型号的儿童玩具水枪共100支,两种儿意玩具水枪的进价和售价如下表.型号进价(元/支)售价(元/支)甲型10 20乙型20 35 (1)求购进甲、乙两种儿童玩具水枪各为多少支?(2)若全部售完这100支儿童玩具水枪,该商场获利润多少元?7. 2020年在“抗击新冠,声援武汉”捐款活动中,某校六年级两个班级共85名学生积极参与,踊跃捐款,已知六年一班有30人每人捐了10元,其余每人捐了5元;六年二班有20人每人捐了10元,其余每人捐了4元,设六年一班共有x人.(1)用含x的整式表示该校六年级捐款总额,并进行化简;(2)若该校六年级捐款总额为655元,求六年二班共有多少名学生?8.甲、乙两地相距3千米,小王从甲地出发步行到乙地,小李从乙地出发步行到甲地.两人同时出发,20分钟后两人相遇.已知小王的速度比小李的速度每小时快1千米,求两人的速度.9.某新能源汽车生产车间有两条生产线,第一条生产线有20人,第二条生产线有28人,根据市场需求情况,要将第二条生产线的人数调整为第一条生产线人数的一半,问应从第二条生产线调多少人到第一条生产线?10.已知数轴上点A表示的数为12,点B表示的数为﹣8.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,同时动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)当点P与点Q关于原点O对称时,求t的值;(2)是否存在t的值,使得点P与点Q之间的距离为3个单位长度?若存在,请求出t 的值;若不存在,请说明理由.11.“今有善行者行一百步,不善行者行六十步”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步,假定两者步长相等,若不善行者先行200步,善行者追之,不善行者再行600步,请问谁在前面,两人相隔多少步?12.为了有效控制新型冠状病毒(世界卫生组织正式将其命名为2019﹣nCoV)的传播,某市在推广疫苗之前,利用网络调查的方式,对不同的医药集团生产的G、K两种生物新冠灭活疫苗进行了接受程度的匿名调查.在收集上来的有效调查的m人的数据中,能接受G 的市民占调查人数的60%,其余不接受G;且接受K的比接受G的多30人,其余不接受K.另外G、K都不接受的市民比对G、K都能接受的市民的还多10人.下面的表格是对m人调查的部分数据:疫苗种类都能接受不接受G集团a bK集团330人c(1)请你写出表中a、b、c的人数:a=,b=,c=;(2)求对G、K两个医药集团的疫苗都能接受的人数.13.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?14.已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,动点P从A 点出发,以每秒3个单位长度的速度沿数轴向左匀速运动.设运动时间为t秒.(1)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q 同时出发,当P、Q之间的距离恰好等于8个单位长度,求t的值;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,当P、Q之间的距离小于8个单位长度,求t的取值范围.15.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,点M是线段PA上靠近于点A的四等分点,点N为线段PB上靠近于点P的三等分点,求PM﹣BN的值.16.某商店对A,B两种商品开展促销活动,方案如下:商品A B标价(单位:元)200 400每件商品出售价格按标价降价20% 按标价降价a%(1)商品B降价后的标价为元.(用含a的式子表示)(2)小艺购买A商品20件,B商品10件,共花费6000元,试求a的值.17.在数轴上,已知点A表示的数是﹣20,点B表示的数是10,原点为O.机器人甲从点A 出发,速度为每秒3个单位长度,机器人乙从B点出发,速度为每秒1个单位长度,两机器人同时出发.(1)A、B两点的距离为;线段AB的中点表示的数为.(2)如果机器人甲、乙相向而行,假设它们在点C处相遇,求点C所表示的数;(3)如果机器人甲、乙同向向右而行,①用含t的代数式表示:t秒后,机器人甲所表示的数为;机器人乙所表示的数为.②问几秒时机器人甲与原点的距离是机器人乙与原点的距离的2倍?18.某县2021以来受持续干旱影响,河道来水偏少,已严重影响生产和生活用水,自来水厂推行阶梯水价,引导人们节约用水,调整后的用水价格如下表:每月用水量(吨)单价(元/吨)不超过20的部分 1.5超过20不超过30的部分 2超过30的部分 3(1)小明家5月份的用水量为23吨,小明家5月份的水费是多少?(2)小明家1月份水费的均价为1.75元/吨,求小明家1月份的用水量?(3)小明家3、4两个月的总用水量为56吨(4月份用水较少),3、4两个月的水费合计93元,请问小明家3、4月份的用水量分别是多少?19.某店以一共500元进价购得甲、乙两件商品,然后将甲、乙两件商品分别按50%和40%的利润标定出售价.(1)如果按上述进价和售价进行交易,那么该店买卖这两件商品能否盈利260元?为什么?(2)如果该店按原定售价八折促销,某顾客同时购买了甲、乙两种商品,实际付款584元,那么甲、乙两商品原进价各多少元?20.新冠病毒爆发期间,武汉某医院住院部有27个重症病房和若干个普通病房,其中一个重症病房需要1名医生,1名护士,5个普通病房需要1名医生,2名护士,某省第三批援鄂医疗队126名医护人员刚好接管该医院住院部所有病房.(1)该批援鄂医疗队中医生、护士各有多少人?(2)该医院住院部普通病房有多少个?参考答案1.【解答】解:(1)∵商城推出了“每满300减40”的活动,∴当300≤x<600时,减免40元;当600≤x<900时,减免40×2=80(元).故答案为:300≤x<600;80.(2)设微波炉的进价为m元,则商家卖一个微波炉赚(640﹣m)元,依题意得:0.8×(1+50%)m﹣80=640,解得:m=600,∴640﹣m=640﹣600=40.答:商家卖一个微波炉赚40元.2.【解答】解:设带队教师人数为x人,则参加活动的七年级学生有2(10x+15)人,依题意有x+2(10x+15)=450,解得x=20,则2(10x+15)=2×(200+15)=430.故参加活动的七年级学生有430人,带队教师有20人.3.【解答】解:(1)设这一天该超市购买苹果xkg,则购买香蕉(200﹣x)kg,依题意得:2x+1.5(200﹣x)=360,解得:x=120,∴200﹣x=200﹣120=80.答:这一天该超市购买苹果120kg,香蕉80kg.(2)(2.4﹣2)×120+(1.8﹣1.5)×80=0.4×120+0.3×80=48+24=72(元).答:该超市当天卖这些苹果和香蕉共赚了72元钱.4.【解答】解:(1)∵点C是线段AB的中点,∴AC=BC=AB=6,∴OC=OA﹣AC=8﹣6=2,OB=BC﹣OC=6﹣2=4,∴点C所表示数为﹣2;(2)∵OA=8,OB=4,∴点A所表示的数为﹣8,点B所表示的数为4,设运动时间为t秒,由题意可得,点P在运动过程中所表示的数为﹣8+3t,点Q在运动过程中所表示的数为4+2t,又∵点M是PQ的中点,∴点M在运动过程中所表示的数为,∴CM=|﹣(﹣2)|=,即线段CM的长为;(3)①当点P位于C点左侧时,PC=﹣2﹣(﹣8+3t)=6﹣3t,,解得:t=;②当点P位于C点右侧时,PC=﹣8+3t﹣(﹣2)=3t﹣6,,解得:t=3,综上,当t=或3时,CM=.5.【解答】解:(1)∵点P到点A、点B的距离相等,∴点P是线段AB的中点,∵点A、B对应的数分别为﹣1、5,∴点P对应的数是2;故答案为:2;(2)存在修改为在数轴上存在点P,使点P到点A、点B的距离之和为8.理由如下:①当点P在A左边时,﹣1﹣x+5﹣x=8,解得:x=﹣2;②点P在B点右边时,x﹣5+x﹣(﹣1)=8,解得:x=6,即存在x的值,当x=﹣2或6时,满足点P到点A、点B的距离之和为8;(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得x=6,则6x=36,答:点P所经过的总路程是36个单位长度.6.【解答】解:(1)设购进甲种儿童玩具水枪x支,则购进乙种儿童玩具水枪(100﹣x)支,依题意得:10x+20(100﹣x)=1200,解得:x=80,∴100﹣x=100﹣80=20.答:购进甲种儿童玩具水枪80支,乙种儿童玩具水枪20支.(2)(20﹣10)×80+(35﹣20)×20=10×80+15×20=800+300=1100(元).答:全部售完这100支儿童玩具水枪,该商场获利润1100元.7.【解答】解:(1)根据题意知:10×30+5(x﹣30)+10×20+4(85﹣x﹣20)=x+610.(2)根据题意,得x+610=655.解得x=45.则85﹣45=40(名).答:六年二班共有40名学生.8.【解答】解:设小李的速度为每小时x千米,根据题意得:,解得:x=4,小王的速度为x+1=4+1=5(千米/小时).答:小李的速度为每小时4千米,小王的速度为每小时5千米.9.【解答】解:设应从第二条生产线调x人到第一条生产线,根据题意得,28﹣x=(20+x),解得x=12.答:应从第二条生产线调12人到第一条生产线.10.【解答】解:当运动时间为t秒时,点P表示的数为12﹣5t,点Q表示的数为﹣8﹣3t.(1)依题意得:12﹣5t+(﹣8﹣3t)=0,解得:t=.答:当点P与点Q关于原点O对称时,t的值为.(2)依题意得:|12﹣5t﹣(﹣8﹣3t)|=3,即20﹣2t=3或20﹣2t=﹣3,解得:t=或t=.答:存在t值,当t=或秒时,点P与点Q间的距离为3个单位长度.11.【解答】解:设当走路慢的人再走600步时,走路快的人走x步,由题意得x:600=100:60,解得x=1000,则1000﹣600﹣200=200(步)答:善行者在前面,两人相隔200步.12.【解答】解:(1)因为“接受K的比接受G的多30人”,所以a=330﹣30=300(人).因为“能接受G的市民占调查人数的60%”,所以m==500(人).因为“能接受G的市民占调查人数的60%,其余不接受G”,所以b=500﹣300=200(人).因为“接受K的比接受G的多30人,其余不接受K”,所以c=500﹣330=170(人).故答案是:300;200;170;(2)设对G、K两个医药集团的疫苗都能接受的人数为x人,根据题意,得,解得x=210.答:对G、K两个医药集团的疫苗都能接受的人数为210人.13.【解答】解:(1)设乙工程队每天能完成x平方米的绿化改造面积,则甲工程队每天能完成(x+200)平方米的绿化改造面积,依题意得:x+200+x=800,解得:x=300,∴x+200=300+200=500.答:甲工程队每天能完成500平方米的绿化改造面积,乙工程队每天能完成300平方米的绿化改造面积.(2)选择方案①所需施工费用为600×=14400(元);选择方案②所需施工费用为400×=16000(元);选择方案③所需施工费用为(600+400)×=15000(元).∵14400<15000<16000,∴选择方案①的施工费用最少.14.【解答】解:(1)∵数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB =28,∴点B表示的数为﹣20,由题意可得:|8﹣3t﹣(﹣20+2t)|=8,解得:t=4或,∴t的值为4或;(2)由题意可得:|8﹣3t﹣(﹣20﹣2t)|<8,解得:20<t<36,∴t的取值范围为20<t<36.15.【解答】解:(1)t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.故答案为:﹣2+3t;8﹣2t;(2)根据题意得:|(﹣2+3t)﹣(8﹣2t)|=×10,|5t﹣10|=6,解得:t=或,∴当t=或时,PQ=AB;(3)根据题意得PM=,BN=BP=(AP﹣AB)=×(3t﹣10)=2t﹣,∴PM﹣BN=t﹣(2t﹣)=.16.【解答】解:(1)B商品标价是400元,出售价格按标价降低a%,那么降价后的标价是400×(1﹣a%)元,故答案为:400×(1﹣a%);(2)由题意得:20×200×(1﹣20%)+10×400(1﹣a%)=6000,化简:1﹣a%=0.7,解得:a=30,∴a的值是30.17.【解答】解:(1)A、B两点的距离为10﹣(﹣20)=30;线段AB的中点表示的数为.故答案为:30;﹣5;(2)设t秒时,两机器人相遇,由题意得,3t+t=30,解得t=7.5,所以点C在数轴上对应的数为:10﹣7.5=2.5;(3)①t秒后,机器人甲所表示的数为:3t﹣20;机器人乙所表示的数为:10+t;故答案为:3t﹣20;10+t;②设t秒时机器人甲与原点的距离是机器人乙与原点的距离的2倍.当甲位于原点左侧时,可得:2(10+t)=20﹣3t,解得t=0(舍去);当甲位于原点右侧时,可得,2(10+t)=3t﹣20,解得t=40.答:40秒时机器人甲与原点的距离是机器人乙与原点的距离的2倍.18.【解答】解:(1)20×1.5+3×2=36(元).答:小明家5月份的水费是36元.(2)设小明家1月份的用水量为x吨,用水量为30吨时的均价为(元).∵,∴x>30,∴20×1.5+10×2+(x﹣30)×3=1.75x.解方程,得x=32.答:小明家1月份的用水量为32吨.(3)设小明家4月份的用水量为y(0<y<28)吨,依题意则其3月份的用水量为(56﹣y)吨.①当0<y≤20时,则56﹣y>301.5y+[20×1.5+10×2+(56﹣y﹣30)×3]=93.化简得 1.5y=35,解得,这与0<y≤20矛盾.②当20<y<28时,则28<56﹣y<56.a.当28<56﹣y≤30时,[20×1.5+(y﹣20)×2]+[20×1.5+(56﹣y﹣20)×2]=93,化简得:(2y﹣10)+(102﹣2y)=93.该方程无解;b.当30<56﹣y<56时,[20×1.5+(y﹣20)×2]+[20×1.5+10×2+(56﹣y﹣30)×3]=93,化简得:(2y﹣10)+(128﹣3y)=93.解得y=25.y=25同时满足20<y<28和30<56﹣y<56.所以56﹣y=56﹣25=31.综上所述,小明家3、4月份的用水量分别为31吨和25吨.19.【解答】解:(1)500×50%=250(元),250<260,∴该店买卖这两件商品不可能盈利260元.(2)设甲商品的原进价为x元,则乙商品的原进价为(500﹣x)元,依题意得:80%×[(1+50%)x+(1+40%)(500﹣x)]=584,解得:x=300,∴500﹣x=200.答:甲商品的原进价为300元,乙商品的原进价为200元.20.【解答】解:(1)设该批援鄂医疗队中医生有x人,则护士有(126﹣x)人,根据题意得:2(x﹣27)=126﹣x﹣27,解得x=51,则126﹣x=126﹣51=75.答:该批援鄂医疗队中医生有51人,护士有75人;(2)∵负责普通病房的医生有51﹣27=24人,而5个普通病房需要1名医生,∴普通病房有24×5=120(个),答:该医院住院部普通病房有120个.。
【典型例题系列】人教版六年级数学下册典型例题系列之第二单元利润问题专项练习

2021-2022学年六年级数学下册典型例题系列之第二单元:利润问题专项练习1. 某商品的标价为165元,若降价以9折出售(即优惠10%),仍可获利10%(相对于进价),那么该商品的进价是多少?【答案】135元【解析】【分析】先求出打九折后的实际售价,然后根据实际利润率求出成本。
⨯=元【详解】16590%148.5÷+148.5110%=÷148.5 1.1=(元)135答:该商品的进价是135元。
【点睛】本题关键还是应用经济问题的公式,根据已知条件套用公式求解。
现价原价折扣=⨯成本售价(利润率)=1+÷2. 某商场售货员同时卖出两件上衣,每件都以135元售出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次售货员是赔了还是赚了?【答案】赔了18元【解析】【分析】分别计算出两件商品的成本,比较总售价与总成本的大小,确定到底是盈利还是亏损。
÷+【详解】135(125%)=÷135 1.25=(元)108135(125%)÷-=÷1350.75180=(元)+=(元)总售价:135135270+=(元)总成本:108180288-=(元)28827018答:这次售货员赔了,赔了18元。
【点睛】如果两件商品售价相同,且其中一件盈利,一件亏损,并且盈利或亏损的百分率相同,那么总的来看一定是亏损的,具体亏损多少,需要比较总售价与总成本的大小。
3. 一件商品按照30%的利润出售,后来又打八折,最后的利润是520元,那么这件商品的成本价是多少元?【答案】13000元【解析】【分析】根据题干,设这件商品的成本是x元,把成本价看做单位“1”,定价是(1+30%)x元,八折是指现价是定价的80%,根据:售价-成本=利润,列出方程即可解答问题。
【详解】解:设这件商品的成本是x元。
(1+30%)x×0.8-x=5201.04x-x=5200.04x=520x=13000答:这件商品的成本价是13000元。
10道关于价格问题的应用题及答案

10道关于价格问题的应用题及答案例 1 某种商品的进价是300元,如果按标价打七五折出售,仍能获得8%的利润。
这种商品的标价是多少元?解析:获得8%的利润,是以进价为单位“1”,售价就是进价的(1+8%),根据求一个数的几分之几或百分之几是多少用乘法计算。
(已知单位“1”用乘法)可以求出售价:300×(1+8%)=324(元)按标价打七五折出售,是以标价为单位“1”,标价的75%就是售价324元。
根据已知一个数的几分之几或百分之几是多少,求这个数,用除法计算。
(求单位“1”,用除法)可以求出标价:324÷75%=432(元)。
也可以用方程解答。
答案如下:解:设这种商品的标价是x元。
75%x=300×(1+8%)75%x=324x=432答:商品的标价是432元。
例2某服装店老板为了提高销售额,先将所有商品按进价提价50%,而后再打八折销售。
请你算一算,按他的这种方法,一件进价400元的服装卖多少钱?解析:将所有商品按进价提价50%,是以进价为单位“1”,按进价提价50%后的价格就是进价的(1+50%)。
根据求一个数的几分之几或百分之几是多少用乘法计算。
(已知单位“1”用乘法),可以求出按进价提价50%后的价格:400×(1+50%)=400×1.5=600(元),而后再打八折销售,是以按进价提价50%后的价格为单位“1”。
同理,用乘法计算。
600×80%=480(元)答:一件进价400元的服装卖多少钱。
例3某商品按定价卖出可获得50元的利润,若按定价打七五折出售则亏损75元,该商品的定价是多少元?解析:按定价打七五折出售是以定价为单位“1”,是未知的,用除法或方程。
根据题意可知商品的进价是不变的。
从而找出等量关系式:售价-利润=售价+亏损解:设该商品的定价是x元。
x-50=75%x+75x=75%x+1250.25x=125x=500答:商品的定价是500元。
人教版七年级上册-一元一次方程实际应用题-打折销售问题(含答案)

人教版七年级上册 一元一次方程实际应用题-打折销售问题(含答案)一、单选题1.一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则设销售员出售此商品最低可打x 折,由题意列方程,得( )A.()3000x 200015%=-B.3000x 20005%2000-= C.()x 3000200015%10⋅=⋅- D.()x 3000200015%10⋅=⋅+ 2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .元3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱 4.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为( )A.盈利16元B.亏损24元C.亏损8元D.不盈不亏5.某商店购进甲、乙两种商品共160件,甲每件进价为15元,售价20元;乙每件进价为35元,售价45元;售完这批商品利润为l100元,设甲为x 件,则购进甲商品的件数满足方程( ) +15(160-x)=1100(160-x)+10x=1100 +25(160-x)=1100 +10(160-x)=l1006.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款( )A.288元 B.332元 C.288元或316元 D.332元或363元$二、填空题7.某商场将一件玩具按进价提高60%后标价,销售时按标价打折销售,结果相对于进价仍获利20%,则这件玩具销售时打的折扣是_____.8.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.三、解答题9.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个$10.某水果批发市场苹果的价格如表(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果_____千克,第二次购买_____千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克(列方程解应用题)`11.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标12.某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:^⑴超市如何进货,进货款恰好为46000元.⑵为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折13.13.马刚家附近有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场折,乙超市购物①不超过200元,不给予优惠;②超过200元而不超过500元,打9折;③超过500元,其中的500元仍打9折,超过500元的部分打8折.(假设两家超市相同商品的标价都一样)(1)当一次性购物标价总额是300元时,甲乙两个超市实付款分别是多少(2)当标价总额是多少元时,甲乙超市实付款一样#14.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1)问投资者选择哪种购铺方案,5年后所获得的投资收益率更高为什么(注:投资收益率=投资收益实际投资额×100%)>(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差万元.问甲乙两人各投资了多少万元15.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件$16.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.17.列方程解应用题:“双十一”期间,某电商决定对网上销售的商品一律打8折销售,黄芳购买一台某种型号的手机时发现,每台手机比打折前少支付400元,求每台该种型号的手机打折前的售价.)18.列方程解应用题某文具店一支铅笔的售价为元,一支圆珠笔的售价为2元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60支,卖得87元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支19.列方程...解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的一半多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中购进甲种商品的件数不变,购进的乙种商品的件数是第一次购进乙种商品件数的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售20.某蔬菜经营户,用1200元从菜农手里批发了长豆角和番茄共450千克,长豆角和番茄当天的批发价和零售价如表:(1)这天该经营户批发了长豆角和番茄各多少千克《(2)当天卖完这些番茄和长豆角能盈利多少元21.某文教店购进一批钢笔,按进价提高40%后标价,为了增加销量,文教店决定按标价打八折出售,这时每支钢笔的售价为28元.(1)求每支钢笔的进价为多少元;(2)该文教店卖出这批钢笔的一半后,决定将剩下的钢笔以每3支80元的价格出售,很快销售完毕,销售这批钢笔文教店共获利2800元,求该文教店共购进这批钢笔多少支(22.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉2台,电磁炉x台(x>2).(1)若该客户按方案一购买,需付款___元.(用含x的代数式表示)若该客户按方案二购买,需付款___元.(用含x的代数式表示)(2)若x=5时,通过计算说明此时按哪种方案购买较为合算!(3)当x=5时,你能给出一种更为省钱的购买方案吗试写出你的购买方法.23.“丰收1号”油菜籽的平均每公顷产量为2400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点。