人教版七年级数学上册同步提升训练:3.4实际问题与一元一次方程(三)

合集下载

人教版七年级上册3.4实际问题与一元一次方程同步练习(含答案)

人教版七年级上册3.4实际问题与一元一次方程同步练习(含答案)

行程问题1.基本公式:___2.基本类型:相遇问题、追及问题、环形跑道问题、航行问题、飞行问题。

3.航行问题的数量关系:(1)顺水航行的路程=逆水航行的路程(2)4.飞行问题基本等量关系:完成下面的题1.甲、乙两地路程为180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同时出发,相向而行,问经过多少时间两人相遇?解:易知摩托车的速度是每小时45千米。

设经过x小时两人相遇,依题意,得15x+45x=180解得x=3答:经过3小时两人相遇。

2. 甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且先出发2小时,问摩托车经过多少时间追上自行车?解:设摩托车经过x小时追上自行车,依题意,得45x—15(x+2)=180解得x=7答:摩托车经过7小时追上自行车3.一架直升机在A,B两个城市之间飞行,顺风飞行需要4小时,逆风飞行需要5小时.如果已知风速为30km/h,求A,B两个城市之间的距离.解:设飞机无风时的速度为x 千米/小时,依题意,得解得x=270所以(270+30)× 4=1200(千米)答:A,B两个城市之间的距离为1200千米。

4.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同.一地方同时出发同向而行...........,甲的速度为100米/分,乙的速度是甲速度的32倍,问(1)经过多少时间后两人首次相遇(2)第二次相遇呢?解:乙的速度是10032⨯=150米/分。

(1)设经过x分钟后两人首次相遇,依题意,得150100400x x-=解得x=8(2)设经过x分钟后两人第二次相遇,依题意,得150100800x x-=解得x=16答:(1)设经过8分钟后两人首次相遇;(2)设经过16分钟后两人第二次相遇。

人教版七年级数学上册3.4:实际问题与一元一次方程(三)

人教版七年级数学上册3.4:实际问题与一元一次方程(三)
分析: ①原数=十位数字×10+个位数字; ②十位数字=4×个位数字+1; ③新数=原数的个位数字×10+原数的十位数字;
例题讲解
例1 一个两位数,十位数字比个位数字的4倍多1. 将 这两个数字调换位置后所得新数比原数小63.求原数.
分析: ①原数=十位数字×10+个位数字;
②十位数字=4×个位数字+1;
巩固新知
练习 一个三位数,十位上的数字比百位上的数字大2, 个位上的数字比十位上的数字大2,对调个位数字与百 位数字,所得的新数比原数的2倍大150.求这个三位数 是多少?
提示
十位数字=百位数字+2;个位数字=十位数字+2.
巩固新知
练习 一个三位数,十位上的数字比百位上的数字大2, 个位上的数字比十位上的数字大2,对调个位数字与百 位数字,所得的新数比原数的2倍大150.求这个三位数 是多少?
解:设原数的个位数字为x,则原数的十位数字为(4x+1). 依题意,得 10x+(4x+1)=10(4x+1)+x-63, 解这个方程,得 10x+4x+1=40x+10+x-63, 27x=54, x=2. 4x+1=9.
答:原数是92.
例1 一个两位数,十位数字比个位数字的4倍多1.将
这两个数字调换位置后所得新数比原数小63.求原数.
例2 有一个三位数,它的百位数字是1,如果把1移 到最后,其他两位数字顺序不变,所得的三位数比 这个三位数的2倍少7,求这个三位数.
原数 新数
百位数字 十位数字 个位数字
1
b
c
b
c
1
三位数 100+10b+c 100b+10c+1

人教版数学七年级上册3.4《实际问题与一元一次方程》同步练习卷 含答案

人教版数学七年级上册3.4《实际问题与一元一次方程》同步练习卷   含答案

人教版七年级上册3.4《实际问题与一元一次方程》同步练习卷一.选择题1.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x2.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④3.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=4.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣25.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=6.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28D.(1+50%x)×80%=x+287.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场8.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元9.如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A.16cm2B.20cm2C.80cm2D.160cm2二.填空题10.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是元.11.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有人.12.某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为13.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得.14.某数的一半比它本身的大12,若设这个数为x,可列方程为.15.一商店将某种服装按成本价提高50%标价,又以9折优惠卖出,结果每件仍获利25元,这种服装每件的成本为多少元?设这种服装每件的成本为x元,根据题意列出的方程是.16.一个三位数,十位上的数字比个位上的数字大2,百位上的数字比个位上的数字小2,而这三个数位上的数字和的17倍等于这个三位数,如果设个位数字为x,列方程为.17.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x表示珐琅书签的销量,则可列出一元一次方程.18.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.19.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是.三.解答题20.根据下列问题,列出方程,不必求解.(1)把若干本书发给学生,如果每人发4本,还剩下2本;如果每人发5本,还差5本,问共有多少学生?(2)某班50名学生准备集体去看电影,电影票中有15元的和20元的,买电影票共花880元,问这两种电影票各买几张?(3)足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛负5场,共得19分,那么这个队胜了多少场?21.甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.(1)求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)(2)若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?22.苏宁电器商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若苏宁电器商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?23.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B 点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案一.选择题1.解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.2.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选:D.3.解:设有糖果x颗,根据题意得:=.故选:A.4.解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.5.解:设有x辆车,则可列方程:3(x﹣2)=2x+9.故选:A.6.解:标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%;∴可列方程为:(1+50%)x×80%=x+28,故选:B.7.解:设共胜了x场,则平了(14﹣5﹣x)场,由题意得:3x+(14﹣5﹣x)=19,解得:x=5,即这个队胜了5场.故选:C.8.解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.9.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x﹣4cm,宽是5cm,则4x=5(x﹣4),去括号,可得:4x=5x﹣20,移项,可得:5x﹣4x=20,解得x=204x=4×20=80(cm2)所以每一个长条面积为80cm2.故选:C.二.填空题10.解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.11.解:设宿舍有x间房,则:8x+12=9(x﹣2),解得x=30,∴8x+12=252.答:这个学校的住宿生有252人.故答案是:252.12.解:设春游的总人数是x人.根据题意所列方程为=,故答案为:=.13.解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故答案为:1000(26﹣x)=2×800x14.解:设这个数为x,根据题意,得:x﹣12=x.故答案是:x﹣12=x.15.解:设这种服装每件的成本价是x元,由题意得:(1+50%)x×90%=x+25,故答案为:(1+50%)x×90%=x+25.16.解:设个位数字为x,则十位上的数字为(x+2),百位上的数字为(x﹣2),由题意,得:17(x﹣2+x+2+x)=100(x﹣2)+10(x+2)+x,故答案为:17(x﹣2+x+2+x)=100(x﹣2)+10(x+2)+x.17.解:设珐琅书签的销售了x件,则文创笔记本销售了(2x﹣700)件,根据题意得:(2x﹣700)+x=5900.故答案为:(2x﹣700)+x=5900.18.解:设小华购买了x个笔袋,根据题意得:18(x﹣1)﹣18×0.9x=36,解得:x=30,∴18×0.9x=18×0.9×30=486.答:小华结账时实际付款486元.故答案为:486.19.解:根据题意得:0﹣(x+2)=x+2﹣x,解得:x=﹣4.故答案为:﹣4.三.解答题20.解:(1)设共有x名学生,4x+2=5x﹣5;(2)设票价为15元的x张,则票价为20元的(50﹣x)张,15x+20(50﹣x)=880;(3)设这个队胜了x场,3x+1×(14﹣5﹣x)+0×5=19.21.解:(1)设乙的速度是每分钟x米,则甲的速度是每分钟(x+200)米,依题意有3x+150=200×3,解得x=150,x+200=150+200=350.答:甲的速度是每分钟350米,乙的速度是每分钟150米.(2)(200×3﹣300×1.2)÷1.2=(600﹣360)÷1.2=240÷1.2=200(米),200﹣150=50(米).答:乙的速度至少要提高每分钟50米.22.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.①当选购A,B两种电视机时,B种电视机购(50﹣x)台,可得方程:1500x+2100(50﹣x)=90000,即5x+7(50﹣x)=300,解得:x=25,则B种电视机购50﹣25=25(台);②当选购A,C两种电视机时,C种电视机购(50﹣x)台,可得方程:1500x+2500(50﹣x)=90000,解得:x=35,则C种电视机购50﹣35=15(台);③当购B,C两种电视机时,C种电视机为(50﹣y)台,可得方程:2100y+2500(50﹣y)=90000,解得:y=,(不合题意,舍去)由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+200×25=8750(元),若选择(1)中的方案②,可获利150×35+250×15=9000(元),因为9000>8750,所以为了获利最多,选择第二种方案.23.解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.。

人教版七年级上册数学3 4实际问题与一元一次方程(电费水费问题)同步练习(含简单答案)

人教版七年级上册数学3 4实际问题与一元一次方程(电费水费问题)同步练习(含简单答案)
(1)若某旅游团到该景区游玩,游客人数为 人,
①若在非节假日,应付票款___________元;
②若在节假日,应付票款___________元.
(2)阳光旅行社于今年5月1日(节假日)组织 团,5月10日(非节假日)组织 团到该景区旅游,两次共付门票款1840元,已知 、 两个团游客共计50人,问 、 两个团各有游客多少人?
(1)若某用户4月份用水20立方米,交水费46元,求 的值;
(2)若该用户7月份交水费71元,请问其7月份用水多少立方米?
18.西安某景区门票价格为50元/人,为吸引游客,特规定:非节假日时,门票打6折销售;节假日时按团队人数分段定价售票,即10人以下(含10人)的团队按原价售票,超过10人的团队,其中10人仍按原价售票,超过10人部分的游客打8折购票.
19.某市城市居民用电收费方式有以下两种:
甲、普通电价:全天0.53元/度;
乙、峰谷电价:峰时(早8:00﹣晚21:00)0.56元/度;谷时(晚21:00﹣早8:00)0.36元/度.
(1)小明家估计七月份总用电量为200度,其中峰时电量为50度,则小明家应选择哪种方式付电费比较合算?
(2)小明家八月份总用电量仍为200度,用峰谷电价付费方式比用普通电价付费方式省了14元,求八月份的峰时电量为多少度?
人教版七年级上册数学3.4实际问题与一元一次方程(电费水费问题)同步练习
一、单选题
1.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费 元;超过5吨,超过部分每吨加收3元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于 的方程正确的是()
A. B.
C. D.
2.某城市按以下规定收取每月的煤气费,用气不超过60立方米,按每立方0.8元收;如果超过60立方米,超过部分按每立方米1.2元收,已知小明家某月共缴纳煤气费72元,那么他家这个月共用()立方米的煤气?

人教版七年级上册同步练习:3.4实际问题与一元一次方程 含答案

人教版七年级上册同步练习:3.4实际问题与一元一次方程   含答案

人教版七年级上册同步练习:3.4实际问题与一元一次方程一.选择题1.小明和小刚从相距25千米的两地同时相向而行,3小时后两人相遇,小明的速度是4千米/小时,设小刚的速度为x千米/小时,列方程得()A.4+3x=25B.12+x=25C.3(4+x)=25D.3(4﹣x)=25 2.今年哥哥的年龄是妹妹年龄的2倍,4年前哥哥的年龄是妹妹年龄的3倍,若设妹妹今年x岁,可列方程为()A.2x﹣4=3(x﹣4)B.2x=3(x﹣4)C.2x+4=3(x﹣4)D.2x+4=3x3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x﹣x=50B.80%×(1+45%)x﹣x=50C.x﹣80%×(1+45%)x=50D.80%×(1﹣45%)x﹣x=504.一次学科竞赛有20道题,答对一题得5分,不答或答错一题扣3分,问要得到84分需答对几道题?设答对x道题,由题意得()A.5x﹣3(20﹣x)=84B.100﹣3(20﹣x)=84C.5x﹣6(20﹣x)=84D.100+5x﹣3(20﹣x)=845.把一些铅笔分给某班学生使用,如果每人分3支,则剩余20支,如果每人分4支则还缺25支,这个班有()名学生.A.44B.45C.48D.526.某商人在一次买卖中均以60元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚8元B.赔8元C.不赚不赔D.无法确定7.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和可能为下列数中的()A.81B.100C.108D.216二.填空题8.某空调按标价的八折出售,仍可获利20%,若该空调的进价是每台2000元,则空调的标价是元.9.运动场的跑道一圈长400米,小健练习骑自行车,平均每分骑350米;小康练习跑步,平均每分跑250米.两人从同一处同时同向出发,经过秒两人首次相遇.10.某项工程,甲队单独完成要30天,乙队单独完成要20天,若甲队先做若干天后,由乙队接替完成剩余的任务,两队共用25天,求甲队单独工作的天数,设甲队单独工作的天数为x,则可列方程为.11.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.若设共有小朋友x人,则可列方程为.12.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是.13.一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为米.14.线段AB=8cm,动点P从点A出发,以3cm/s的速度沿A→B→A运动;同时动点Q从点B出发,以1cm/s的速度沿B→A运动.其中一点到达终点时,另一点也停止运动.则点P出发秒时,P、Q两点重合.三.解答题15.某商店以每盏20元的价格采购了一批节能灯,运输过程中损坏了2盏,然后以每盏25元售完,共获利150元,该商店共购进了多少盏节能灯?16.A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品只差4个就能装满6箱.每台A型机器比每台B 型机器一天少生产2个产品,求每箱装多少个产品?17.《九章算术》中有“盈不足术”的问题,原文如下:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出5文,则差45文;每人出7文,则差3文.(1)设人数为x,则用含x的代数式表示羊价为或;(2)求人数和羊价各是多少?18.某班主任暑假期间带领该班学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠.”乙旅行社说:“教师在内全部按票价的6折优惠.”若全票价是240元.(1)如果有10名学生,应参加哪个旅行社,并说明理由;(2)该班级如何选择旅行社会更合算?说明理由.19.已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一.选择题1.解:设小刚的速度为x千米/小时,3(4+x)=25.故选:C.2.解:设妹妹今年x岁.2x﹣4=3(x﹣4).故选:A.3.解:设这种自行车每辆的进价是x元,80%×(1+45%)x﹣x=50.故选:B.4.解:设答对x道题,由题意得:5x﹣3(20﹣x)=84.故选:A.5.解:设这个班有x名学生,∴3x+20=4x﹣25,解得:x=45,故选:B.6.解:设赚了25%的衣服是x元,则(1+25%)x=60,解得x=48,则实际赚了6048=12(元);设赔了25%的衣服是y元,则(1﹣25%)y=60,解得y=80元,则赔了80﹣60=20(元);∵20>12;∴赔大于赚,在这次交易中,该商人是赔了20﹣12=8(元).即:该商人在这次交易中赔了8元.故选:B.7.解:设中间的数为x,则左右两边数为x﹣1,x+1,上行邻数为(x﹣7),下行邻数为(x+7),左右上角邻数为(x﹣8),(x﹣6),左右下角邻数为(x+6),(x+8),根据题意得x+x﹣1+x+1+x﹣7+x+7+x﹣8+x﹣6+x+6+x+8=9x,则圈出的9个数的和为9的倍数.观察选项,只有选项A符合题意.故选:A.二.填空题8.解:设空调的标价为x元,根据题意得:0.8x﹣2000=2000×20%,解得:x=3000.答:空调的标价为3000元.故答案为:3000.9.解:设经过x分两人首次相遇,则小健骑自行车的路程是350x米,小康跑步的路程为250x米,据题意得:350x﹣250x=400,解得:x=4,4分=240秒答:经过240秒两人首次相遇.故答案为240.10.解:设甲队单独工作的天数为x,则可列方程为:+=1,故答案为:+=1.11.解:设共有x位小朋友,由题意得:2x+8=3x﹣12,故答案为:2x+8=3x﹣12.12.解:设个位上的数为a,则十位上的数为由题意得:a=9,解得:a=6,=3,所以,这个两位数是36.13.解:设火车的长度为x米,则火车的速度为,依题意得:45×=600+x,解得x=300故答案是:300.14.解:设点P出发x秒时,P、Q两点重合,∵点P从A到B,再从B到A用的总的时间为:(8+8)÷3=5s,点Q从B到A用的时间为8÷1=8s,∵5<8,∴到点P从B回到A时,P、Q都停止运动,(3+1)x=8,解得,x=23x﹣x=8,解得,x=4,故答案为:2或4.三.解答题15.解:设该商店共进了x盏节能灯,由题意得:20x+150=25(x﹣2),解得:x=40,答:该商店共进了40盏节能灯.16.解;设每箱装x个产品,得:+2=.解得:x=54.答:每箱装54个产品.17.(1)设人数为x,则用含x的代数式表示羊价为5x+45或7x+3.故答案是:5x+45;7x+3;(2)解:设人数为x,则5x+45=7x+35x﹣7x=3﹣45﹣2x=﹣42x=2121×5+45=105+45=150(枚)21×7+3=147+3=150(枚)答:人数21人,羊价150元.18.解:(1)当学生人数为10人,乙旅行社的费用为:144×(10+1)=1584(元).甲旅行社的费用为:120×10+240=1440(元);因为1440<1584,所以参加甲旅行社.(2)设学生人数为x,根据题意得:144(x+1)=120x+240,解得:x=4.答:当学生多于4人时参加甲旅行社合算;当学生少于4人时参加乙旅行社合算.19.解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵P A=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为P A的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。

人教版数学七年级上册同步练习:3.4实际问题与一元一次方程 含详解

人教版数学七年级上册同步练习:3.4实际问题与一元一次方程  含详解

2020年(秋)人教版数学七年级上册同步练习3.4实际问题与一元一次方程一.选择题(共8小题)1.某铁路桥长1200m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.则火车的长度为()A.180m B.200m C.240m D.250m2.某商店以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,那么商店卖出这两件衣服总的是()A.亏损10元B.不赢不亏C.亏损16元D.盈利10元3.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里4.甲、乙两人分别从A、B两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达B地后立刻以原路和提高后的速度向A地返行,乙到达A地后也立刻以原路和提高后的速度向B地返行.甲、乙两人在开始出发后的5小时36分钟又再次相遇,则A、B两地的距离是()A.24千米B.30千米C.32千米D.36千米5.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1B.3C.4D.66.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x元,则可列方程为()A.x+x+1964=x B.x+x+1964=xC.x+x+1964=x D.x+x+1964=3x7.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+28.如图,根据图中的信息,可得正确的方程是()A.π×()2x=π×()2×(x﹣5)B.π×()2x=π×()2×(x+5)C.π×82x=π×62×(x+5)D.π×82x=π×62×5二.填空题(共6小题)9.列方程:“a的2倍与5的差等于a的3倍”为:.10.一件商品如果按原价的八折销售,仍可获得15%的利润.已知该商品的成本价是50元,设该商品原价为x元,那么根据题意可列方程.11.小明的妈妈在银行里存入人民币5000元,存期两年,到期后可得人民币5150元,如果设这项储蓄的年利率是x,根据题意,可列出方程是.12.服装店销售某款服装,一件服装的标价为200元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价是元.13.在一张普通的月历中,相邻三行里同一列的三个日期数之和为27,则这三个数分别是.14.暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元三.解答题(共6小题)15.2020年5月份,省城太原开展了“活力太原•乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.16.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.17.有一旅客携带了30千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客购买的飞机票和行李票共920元.(1)该旅客需要购买千克的行李票;(2)该旅客购买的飞机票是多少元?18.列一元一次方程解应用题:元旦晚会是南开中学“辞旧岁,迎新年”的传统活动.晚会当天,小明组织班上的同学出去买气球来布置教室.已知买气球的男生有23人,女生有16人,且每个女生平均买的气球数比每个男生平均买的气球数多1个.回到学校后他们发现,男生买的气球总数比女生气球总数的还少1个,请问每个女生平均买几个气球?19.已知数轴上点A、点B、点C所对应的数分别是﹣6,2,12.(1)点M是数轴上一点,点M到点A、B、C三个点的距离和是35,直接写出点M对应的数;(2)若点P和点Q分别从点A和点B出发,分别以每秒3个单位和每秒1个单位的速度向点C运动,P点到达C点后,立即以同样的速度返回点A,点Q到达点C即停止运动,求点P和点Q运动多少秒时,点P和点Q相距2个单位长度?20.已知数轴上A,B两点对应的数分别为﹣2和8,P为数轴上一点,对应的数为x.(1)线段P A的长度可表示为(用含x的式子表示).(2)在数轴上是否存在点P,使得P A﹣PB=6?若存在,求出x的值;若不存在,请说明理由;(3)当P为线段AB的中点时,点A,B,P同时开始在数轴上分别以每秒3个单位长度,每秒2个单位长度,每秒1个单位长度沿数轴正方向运动?试问经过几秒,PB=2P A?参考答案一.选择题(共8小题)1.解:设火车的长度为xm,依题意,得:=,解得:x=240.故选:C.2.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:120﹣x=20%x,120﹣y=﹣20%y,解得:x=100,y=150,∴120﹣x+120﹣y=﹣10.故选:A.3.解:设第六天走的路程为x里,则第五天走的路程为2x里,依此往前推,第一天走的路程为32x里,依题意,得:x+2x+4x+8x+16x+32x=378,解得:x=6.32x=192,6+192=198,答:此人第一和第六这两天共走了198里,故选:D.4.解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=5(小时)由题意可得:2×2x=(5﹣2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.5.解:由题意,可得8+x=2+7,解得x=1.故选:A.6.解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.7.解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.8.解:依题意,得:π×()2x=π×()2×(x+5).故选:B.二.填空题(共6小题)9.解:由题意可得:2a﹣5=3a.故答案为:2a﹣5=3a.10.解:由题意可得,0.8x﹣50=50(1+15%),故答案为:0.8x﹣50=50(1+15%).11.解:设这项储蓄的年利率是x,依题意得:5000+5000x×2=5150.故答案为:5000+5000x×2=5150.12.解:设这款服装每件的进价为x元,由题意,得200×0.8﹣x=60,解得:x=100.故答案是:100.13.解:设三个数中最小的数为x,则另外两个数分别为(x+7),(x+14),依题意,得:x+x+7+x+14=27,解得:x=2,∴x+7=9,x+14=16.故答案为:2,9,16.14.解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.三.解答题(共6小题)15.解:设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+50%)x 元,根据题意,得80%×(1+50%)x﹣128=568,解得x=580.答:该电饭煲的进价为580元.16.解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.17.解:(1)30﹣20=10(千克).故答案为:10.(2)设该旅客购买的飞机票是x元,依题意,得:x+10×1.5%x=920,解得:x=800.答:该旅客购买的飞机票是800元.18.解:设每个女生平均买x个气球,则每个男生平均买(x﹣1)个气球,由题意可得:×16×x﹣1=23×(x﹣1)解得:x=2,答:每个女生平均买2个气球.19.解:设点M对应的数为x,当点M在点A左侧,由题意可得:12﹣x+2﹣x+(﹣6)﹣x=35,解得x=﹣9,当点M在线段AB上,由题意可得:12﹣x+2﹣x+x﹣(﹣6)=35,解得:x=﹣15(不合题意舍去);当点M在线段BC上时,由题意可得12﹣x+x﹣2+x+6=35,解得:x=19(不合题意舍去);当点M在点C右侧时,由题意可得:x﹣12+x﹣2+x+6=35,解得:x=,综上所述:点M对应的数为﹣9或;(2)设点P运动x秒时,点P和点Q相距2个单位长度,点P没有到达C点前,由题意可得:|3x﹣(8+x)|=2,解得:x=5或3;点P返回过程中,由题意可得:3x﹣18+8+x+2=18或3x﹣18+8+x=18+2,解得:x=或;综上所述:当点P运动5或3秒或或时,点P和点Q相距2个单位长度.20.解:(1)∵A点对应的数为﹣2,P点对应的数为x,∴P A=|x﹣(﹣2)|=|x+2|.故答案为:|x+2|.(2)当x<﹣2时,﹣x﹣2﹣(8﹣x)=6,方程无解;当﹣2≤x≤8时,x+2﹣(8﹣x)=6,解得:x=6;当x>8时,x+2﹣(x﹣8)=6,方程无解.答:存在符合题意的点P,此时x的值为6;(3)∵P点为线段AB的中点,∴P点对应的数为3.当运动时间为t秒时,A点对应的数为3t﹣3,B点对应的数为2t+8,P点对应的数为t+3,∴P A=|t+3﹣(3t﹣3)|=|6﹣2t|,PB=|t+3﹣(2t+8)|=t+5.∵PB=2P A,∴t+5=2|6﹣2t|,即t+5=12﹣4t或t+5=4t﹣12,解得:t=或t=.答:经过秒或秒,PB=2P A.。

人教版七年级数学上册 3-4 实际问题与一元一次方程 同步练习(数字、和差倍分问题)【含答案】

人教版七年级数学上册 3-4 实际问题与一元一次方程 同步练习(数字、和差倍分问题)【含答案】

人教版七年级数学上册 3.4 实际问题与一元一次方程 同步练习(数字、和差倍分问题)一、选择题1.把夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,如图所示,它的每行、每列、每条对角线上三个数之和均相等,则幻方中的a ,b 之和为( )A .9B .10C .11D .122.我国的《洛书》中记载着世界上最古老的一个幻方:将1-9这九个数字填入33⨯的方格内,使得处于同一横行、同一竖列、同一斜对角线上的三个数之和都相等.在如图所示的幻方中,字母m 所表示的数是( )A .2B .7C .8D .93.一个五位数,个位数为5,这个五位数加上6120后所得的新的五位数的万位、千位、百位、十位、个位的数恰巧分别为原来五位数的个位、万位、千位、百位、十位上的数,则原来的五位数为( )A .48755B .47585C .37645D .364754.如果某一年的5月份中,有5个星期五,它们的日期之和为80,那么这个月的4日是( )A .星期一B .星期二C .星期五D .星期日5.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-6.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队,如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .96+x =13(72﹣x ) B .13(96﹣x )=72﹣x C .13(96+x )=72﹣x D .13×96+x =72﹣x 7.课外兴趣小组的女生人数占全组人数的13,再加入6名女生后,女生人数就占原来人数的一半,课外兴趣小组原有多少人?若设原有x 人,则下列方程正确的是( )A .1132x x =B .11+632x x =C .11+632x x =D .11(6)23x += 8.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .()4x 12x 8-=+ B .()4x 12x 8+=- C .x x 8142++= D .x x 8142--= 9.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=10.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物人出八,盈三;人出七,不足四问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元问人数是多少?若设人数为x,则下列关于x 的方程符合题意的是( )A .8x+3=7x -4B .8x -3=7x+4C .8(x -3)=7(x+4)D .17x+4=18x -3 二、填空题11.已知m ,n 都是质数,若关于x 的方程597mx n +=的解是3,则4m n -=__________..12.小明分发一堆水果分给好朋友,第1个朋友取走一半加1个,第2个朋友取走剩下的一半加1个,第3个朋友再取走剩下的一半加1个,……,直到第7个朋友再取走剩下的一半加1个时,恰好给小明留下了1个水果,则这堆水果一共有_______个.13.一个两位数,十位数字是a ,个位数字比十位数字的2倍少2,交换它的十位数字与个位数字,则新的两位数与原两位数的和为77,那么原两位数为__________.14.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x 个人共同出钱买鸡,根据题意,可列一元一次方程为_____________.15.《算法统宗》中记有“李白沽酒”的故事.诗云:今携一壶酒,游春郊外走.逢朋加一倍,入店饮半斗.相逢三处店,饮尽壶中酒.试问能算士:如何知原有?(古代一斗是10升)大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的5升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.则李白的酒壶中原有______升酒.三、解答题16.把99拆成4个数,使得第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相等,应该怎样拆?17.一个四位数,它的个位数字是8,若把这个数字调到千位上,其他数字向后顺移,得到新的四位数比原来的四位数大117,求原来的四位数.18.对任意一个三位数m ,将m 的各个数位上的数字分别加2得到一个新的三位数m ′,并且在这一过程中各个数位均不产生进位,则称m 为“真牛数”,m '为m 的“猛牛数”.把“真牛数”m 与“猛牛数”m '的和与37的商记为F (m ).例如:n =315是一个“真牛数”,理由如下:3+2=5<9,1+2=3<9,5+2=7<9.∴315是一个“真牛数”,它F (n )=37n n '+=315537852=3737+; (1)判断678 (填“是”或者“不是”“真牛数”:计算F (370)= ;(2)若s 、t 都是“真牛数”,s 的百位数字为1,t 的百位数字为3,t 的个位数字是s 个位数字的3倍,则F (s )+F (t )=36,求s 的值.19.妈妈擦干我第一滴眼泪,永远慈祥美丽的妈妈,我真的不想让你失望,因为我的梦想在远方.2020年小明同学的年龄比她妈妈小26岁,今年她妈年龄正好是小明同学的年龄的3倍少2岁.(1)小明同学今年多少岁?(2)经过多少年后妈年龄是小明同学的年龄的2倍?20.学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m 人去两处支援,其中90100m <<,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人21.定义:对于整数n ,在计算n +(n +1)+(n +2)时,结果能被15整除,则称n 为15的“亲和数”,如4是15的“亲和数”,因为4+5+6=15,15能被15整除;﹣7不是15的“亲和数”,因为(﹣7)+(﹣6)+(﹣5)=﹣18,﹣18不能被15整除.(1)填空:﹣16 15的“亲和数”(填“是”还是“不是”);(2)求出1到2021这2021个整数中,是15的“亲和数”的个数;(3)当n 在﹣10到10之间时,直接写出使2n +3是15的“亲和数”的所有n 的值.22.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题: (1)每本书的厚度为______cm ,课桌的高度为______cm ;(2)当课本数为x (本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离为__________cm (用含x 的代数式表示);(3)若桌面上有26本相同的数学课本整齐叠放成一摞,现从中取走a (a≤26)本,求余下的数学课本高出地面的距离; (4)若桌面上有50本相同规格的数学课本整齐的叠成一摞,现从中取走a (a≤50)本放在旁边另叠成一摞,发现两摞课本的高度相差2cm ,则a=______ .23.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标准,超出记为正,不足记为负),如表所示:(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位) (2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?1.A 2.C 3.A 4.D 5.C 6.C 7.B 8.A 9.A 10.B11.1312.38213.3414.911616x x -=+15.8.7516.20,24,11,4417.875818.(1)不是,26;(2)s 可能为101,111,121,131,141.19.(1)14岁;(2)12年后20.(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人21.(1)是;(2)404个;(3)n =2-或-7或3或8.22.(1)0.5;(2)850.5x +;(3)余下的数学课本高出地面的距离为() 980.5a -cm ;(4)23或2723.(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元。

人教版数学七年级上同步训练:3.4《实际问题与一元一次方程》【含答案】

人教版数学七年级上同步训练:3.4《实际问题与一元一次方程》【含答案】

3.4 实际问题与一元一次方程5分钟训练(预习类训练,可用于课前)1.某人以8折的优惠价买了一套服装省了25元,那么买这套服装实际用了()A.31.25B.60C.125D.100思路解析:设这套服装原价为x元,则x-0.8x=25,解得x=125.所以实际用了125-25=100元.答案:D2.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2 400元,则彩电标价是()A.3 200元B.3 429元C.2 667元D.3 168元思路解析:设标价为x,根据题意有0.9x=(1+0.2)×2 400,解得x=3 200.答案:A3.球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3∶5,要求出黑皮、白皮的块数,若设黑皮的块数为x,则列出的方程正确的是()A.3x=32-xB.3x=5(32-x)C.5x=3(32-x)D.6x=32-x思路解析:因为黑、白皮块的数目比为3∶5,若设黑皮的块数为x,则白皮块数为32-x,由此得方程为5x=3(32-x).答案:C10分钟训练(强化类训练,可用于课中)1.我国政府为解决老百姓看病难,决定下调药品价格,某种药品在2003年涨价30%后,年降价70%调至a元,则这种药品在2003年涨价前的价格为()A.10039a元 B.39100a元 C.a(1-40%)元 D.140%a元思路解析:设在2003年涨价前的价格为x元,则有(1+0.3)(1-0.7)x=a,解得x=10039a.答案:A2.某区中学生足球赛共赛8轮(即每队均需参赛8场),胜一场得3分,平一场得1分,负一场得0分.在这次足球联赛中,猛虎队踢平的场数是所负场数的2倍,共得17分,该队共胜多少场?思路解析:首先要利用一个未知数,表示胜、负、平的场数,再利用总分列出方程.解:设踢成负的场数是x,则踢平的场数是2x,踢胜的场数是8-x-2x=8-3x,则有2x+3(8-3x)=17,解得x=1.所以踢胜的场数为8-3=5场.3.一件夹克,按成本加5成作为售价,后因季节关系,按售价的8折出售,降价后每件卖60元,问这批夹克每件成本是多少元.降价后每件是赔还是赚,赔或赚多少元?(生活中处处有数学,我们应当善于用数学的眼光去看世界,用数学的方法去分析和解决问题)思路解析:列表:解:设一件夹克的成本为x元,根据题意有(1+50%)x×80%=60,解得x=50.所以60-x=60-50=10(元).答:一件夹克的成本为50元,降价后每件仍可赚10元.4.商场出售的A型冰箱每台售价2 190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但每日耗电量却为0.55度.商场如果将A型冰箱打9折出售(打一折后的售价为原价的110),消费者购买合算吗?(按使用期为10每年365天,每度电0.40元计算)若不合算,商场至少打几折,消费者购买才合算?思路解析:问题1可以通过计算出A型冰箱和B型节能冰箱10年各自的费用来判断是否合算,问题2可以用方程来解.解:A型10年费用:2 190×910+365×10×1×0.4=3 431(元),B型10年费用:2 190×(1+10%)+365×10×0.55×0.4=3 212(元),所以消费者购买A型冰箱不合算.设商场打x折消费者购买才合算,根据题意,得2 190x+365×10×1×0.4=3 212.解得x=0.8.所以,商场至少打8折,消费者购买才合算.快乐时光都有名字了在一家工厂,我那位朋友正在有条不紊地指挥生产,稀疏的头发想方设法地覆盖在脑袋上.“你已经使之成为一门科学了.”我赞叹道.“每一根头发都做了安排.”“是啊,”朋友苦笑着说,“过去它们只有一个总数,可现在它们都有自己的名字了.”30分钟训练(巩固类训练,可用于课后)1.某商场同时卖出两件上衣,每件都以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次卖出的两件上衣是赔了还是赚了.思路解析:要求出两件上衣的进价,可分别根据售出的价格求出.解:设两件上衣的成本分别为x 、y 元,根据题意,得(1+25%)x=135,(1-25%)y=135. 分别解这两个方程,得x=108,y=180.108+180=288>270.答:所以这次出售是亏损,并且亏损了18元.2.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车量数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10 000辆.”乙同学说:“四环路比三环路车流量每小时多2 000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.” 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.思路解析:此题关键在于理解题意,抽象出数学式子.解:设三环路的流量为每小时x (辆),则四环路的流量为每小时2 000+x (辆),3x-2 000-x=20 000,解得x=11 000,所以高峰时车流量为三环路11 000辆,四环路13 000辆.3.随着科技的进步,高科技产品的成本价在降低.某种品牌的电脑成本降低8%,而零售价不变,那么利润将由目前的x%增加到(x+10)%,求x 的值.思路解析:题目中没有成本价,而解题时要用到成本价,故可设成本价为a (或设为单位1).解:设成本价为a ,则原售价为a (1+100x ),成本降低8%后新成本为a (1-8%),根据售价不变,利润增加到(x+10)%,有a (1-8%)[1+(x+10)%]=a (1+100x ),解得x=15. 4.某工业园区用于甲、乙两个不同项目的投资共2 000万元.甲项目的年收益率为5.4%,乙项目的年收益率为8.28%,该工业园区仅以上两个项目可获得收益1 224 000元.问该工业园区对两个项目的投资各是多少万元.思路解析:本题可采用间接设未知数法,抓住相等关系:“甲项目的收益+乙项目的收益=总收益”列方程.解:设对甲项目投资为x 万元,则对乙项目投资为(2 000-x)万元.根据题意,得5.4%x+8.28%(2 000-x)=122.4.解得x=1 500.从而2 000-x=2 000-1 500=500. 答:该工业园区对甲项目投资为1 500万元,对乙项目投资为500万元.5.某牛奶加工厂现有鲜奶9吨,若在市场直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获利1 200元;制成奶片销售,每吨可获利2 000元,该加工厂的生产能力是:如制成酸奶,每天可加工3吨,制成奶片,每天可加工1吨,受条件限制两种加工方式不可同时进行,受气温影响牛奶必须在4天内销售或加工完毕,为此,该加工场设计了两种生产、销售方案:方案一:尽可能地制成奶片,其余直接销售鲜牛奶.方案二:一部分制成奶片,其余全部加工成酸奶,并保证在四天内完成.分别计算两种方案的利润,你认为哪种方案利润高?思路解析:方案一的利润易求.方案二中必须先知4天中用几天制奶片,用几天加工酸奶.故设用x天加工奶片,则用(4-x)天加工酸奶,依题意有1·x+3·(4-x)=9.∴x=1.5.此时利润可求.答案:方案二获得利润高些.6.江苏宿迁模拟某公司有2位股东,20名工人.从2000年至2002公司每年股东的总利润和每年工人的工资总额如图3-4-1所示.图3-4-1(1)填写下表:(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一股东的平均利润是工人的平均工资的8倍?思路解析:(1)直接由图可填.(2)由图可知:每位工人年平均工资增长1 250元,每位股东年平均利润增长12 500元,设经过x年每位股东年平均利润是每位工人年平均工资的8倍.股东的平均利润为25 000+12 500x,每位工人年平均工资为5 000+1 250x,由题意可得方程(5 000+1 250x)×8=25 000+12 500x,解出即可.答案:(1)(2)设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1 250元,每位股东年平均利润增长12 500元,所以(5 000+1 250x)×8=25 000+12 500x.解得x=6.答:到2010年每位股东年平均利润是每位工人年平均工资的8倍.7.北京模拟夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1 ℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高 1 ℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1 ℃后两种空调每天各节电多少度.思路解析:本题文字比较多,条件也比较多,要注意抓主要问题,即“两种空调每天共节电405度”,如果设只将温度调高1 ℃后,乙种空调每天节电x度,则甲种空调每天节电(x+27)度.这样可得方程1.1x+x+27=405,解出即可.解:设只将温度调高1 ℃后,乙种空调每天节电x度,则甲种空调每天节电(x+27)度.依题意,得1.1x+x+27=405.解得x=180,∴x+27=207.答:只将温度调高1 ℃后,甲种空调每天节电207度,乙种空调每天节电180度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步提升训练:3.4实际问题与一元一次方程(三)1.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.2.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90 超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.00 0.90 (说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)3.周末小彬和小明相约骑自行车去图书馆,事先决定早晨7:00从家里出发,预计每小时行7.5km,上午9:00可到达目的地.出发前他们又决定上午8:30到达目的地,那么每小时要行多少千米?4.某建筑工地计划租用甲、乙两辆车淸理建筑垃圾,已知甲车单独运完需要15天,乙车单独运完需要30天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.(1)甲、乙两车合作还需要多少天运完垃圾?(2)已知甲车每天的租金比乙车多100元,运完垃圾后建筑工地共需支付租金3950元.则甲、乙车每天的租金分别为多少元?5.列方程解应用题:冬季来临,某电器商城试销A,B两种型号的电暖器,两周内共销售50台,销售收入14400元,A型号电暖器每台300元,B型号电暖器每台280元.试销期间A,B两种型号的电暖器各销售了多少台?6.如图,点A,B,C在数轴上表示的数分别是﹣3,3和1.动点P,Q两同时出发,动点P 从点A出发,以每秒6个单位的速度沿A→B→A往返运动,回到点A停止运动;动点Q 从点C出发,以每秒1个单位的速度沿C→B向终点B匀速运动.设点P的运动时间为t (s).(1)当点P到达点B时,求点Q所表示的数是多少;(2)当t=0.5时,求线段PQ的长;(3)当点P从点A向点B运动时,线段PQ的长为(用含t的式子表示);(4)在整个运动过程中,当P,Q两点到点C的距离相等时,直接写出t的值.7.为了促进全民健身运动的开展,某市组织了一次足球比赛.如表记录了比赛过程中部分代表队的积分情况.代表队场次(场)胜(场)平(场)负(场)积分(场)A 6 5 1 0 16B 6 6 0 0 18C 6 3 2 1 11D 6 3 1 2 10(1)本次比赛中,胜一场积分;(2)参加此次比赛的F代表队完成10场比赛后,只输了一场,积分是23分.请你求出F代表队胜出的场数.8.已知数轴上有两点A、B,点A表示的数是4,点B表示的数是﹣11,点C是数轴上一动点.(1)如图1,若点C在点B的左侧,且BC:AB=3:5,求点C到原点的距离.(2)如图2,若点C在A、B两点之间时,以点C为折点,将此数轴向右对折,当A、B 两点之间的距离为1时,求C点在数轴上对应的数是多少?(3)如图3,在(1)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R 从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度的2倍少5个单位长度/秒.经过4秒,点P、Q之间的距离是点Q、R之间距离的一半,求动点Q的速度.9.已知多项式﹣2m3n3+4中,含字母的项的系数为a,多项式的次数为b,且a、b分别是点A、B在数轴上的对应的数,如图所示:(1)点A表示的数为,点B表示的数为;(2)一小球甲从点A处以1个单位/秒的速度向左运动,同时另一小球乙从点B处以2个单位/秒的速度也向左运动,设运动的时间为t(秒):①甲小球所在的点表示的数为,乙小球所在的点表示数为(用含t的代数式表示);②求经过多长时间甲、乙小球相距2个单位长度?③试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请求出甲,乙两小球到原点的距离相等时经历的时间.10.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?11.小明和父母打算去某火锅店吃火锅,该店在网上出售“25元抵50元的全场通用代金券”(即面值50元的代金券实付25元就能获得),店家规定代金券等同现金使用,一次消费最多可用3张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为145元,那么用代金券方式买单,他们最多可以优惠多少元;(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式:除锅底不打折外,其余菜品全部6折.小明一家点了一份50元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付15元.问小明一家实际付了多少元?12.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段达到节水的目的,如表是调控后的价目表.价目表每月用水量单价不超过6吨的部分2元/吨超出6吨不超出10吨的部分4元/吨超出10吨的部分8元/吨注:水费按月结算.(1)若该户居民8月份用水8吨,则该用户8月应交水费元;若该户居民9月份应交水费26元,则该用户9月份用水量为吨;(2)若该户居民10月份应交水费30元,求该用户10月份用水量;(3)若该户居民11月、12月共用水18吨,共交水费52元,求11月、12月各应交水费多少元?13.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?14.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?15.某班级想购买若干个篮球和排球,某文具店篮球和排球的单价之和为35元,篮球的单价比排球的单价的2倍少10元.(1)求篮球和排球的单价各是多少元;(2)该文具店有两种让利活动,购买时只能选择其中一种方案.方案一:所有商品打7.5折销售;方案二:全场购物每满100元,返购物券30元(不足100元不返券),购物券全场通用,若该班级需要购买15个篮球和10个排球,则哪一种方案更省钱,并说明理由.16.某超市计划购进一批甲、乙两种玩具,已知甲种玩具的进价比乙种玩具的进价多3元,且购买2件甲种玩具与3件乙种玩具的进价和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请判断超市购进哪种玩具省钱.17.列方程解应用题:某水果店计划购进A、B两种水果下表是A、B这两种水果的进货价格:水果品种A B进货价格(元/kg)10 15(1)若该水果店要花费600元同时购进两种水果共50kg,则购进A、B两种水果各为多少?(2)若水果店将A种水果的售价定为14元/kg,要使购进的这批水果在完全售出后达到50%的利润率,B种水果的售价应该定为多少?18.某地下停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场的小型汽车数量是中型汽车的3倍,这些车共缴纳停车费270元,则小型汽车有多少辆?19.为打造运河风光带,现有一段河道治理任务由A、B两个工程队完成.A工程队单独治理该河道需16天完成,B工程队单独治理该河道需24天完成,现在A工程队单独做6天后,B工程队加入合作完成剩下的工程,问B工程队工作了多少天?20.武汉大洋百货经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为,乙种服装每件进价为元;(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉大洋百货实行“满1000元减500元的优惠”(比如:某顾客购物1200元,他只需付款700元).到了晚上八点后,又推出“先打折”,再参与“满1000元减500元”的活动.张先生买了一件标价为3200元的羽绒服,张先生发现竟然比没打折前多付了20元钱问大洋百货商场晚上八点后推出的活动是先打多少折之后再参加活动?参考答案1.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)2.解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11当17<y<20时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.3.解:设每小时行驶x千米,由题意可得:x×1.5=7.5×2解得:x=10答:每小时要行10千米.4.解:(1)设甲、乙两车合作还需要x天运完垃圾,依题意,得:+=1,解得:x=8.答:甲、乙两车合作还需要8天运完垃圾.(2)设乙车每天的租金为y元,则甲车每天的租金为(y+100)元,依题意,得:(8+3)(y+100)+8y=3950,解得:y=150,∴y+100=250.答:甲车每天的租金为250元,乙车每天的租金为150元.5.解:设A型号的电暖器销售了x台,则B型号的电暖器销售了(50﹣x)台,依题意有300x+280(50﹣x)=14400,解得x=20,50﹣x=50﹣20=30.故A型号的电暖器销售了20台,B型号的电暖器销售了30台.6.解:(1)[3﹣(﹣3)]÷6×1+1=2.故点Q所表示的数是2;(2)(1×0.5+1)﹣(﹣3+6×0.5)=1.5.故线段PQ的长是1.5;(3)①点P在点Q的左边时,即t<0.8s时,PQ=1+t﹣(﹣3+6t)=4﹣5t;②点P在点Q的右边时,即0.8s≤t<1s时,PQ=﹣3+6t﹣(1+t)=5t﹣4;综上所述,线段PQ的长为4﹣5t或5t﹣4.(4)①第一次相遇前,依题意有1﹣(﹣3+6t)=t,解得t=;②第一次相遇,依题意有(6﹣1)t=3﹣(﹣1),解得t=;③第二次相遇,依题意有(6+1)t=3﹣(﹣3)+3﹣1,解得t=;④第二次相遇后,依题意有6t﹣(3+3+3﹣1)=t,解得t=.综上所述,t的值为或或或s.故答案为:4﹣5t或5t﹣4.7.解:(1)本次比赛中,胜一场积:18÷6=3(分),故答案为:3;(2)设F代表队胜出x场,则平了(10﹣x﹣1)场,输了1场,由(1)知,胜一场积分为3分,则平一场积分为:16﹣3×5=1(分),则负一场积分为:11﹣3×3+1×2=0(分),3x+1×(10﹣x﹣1)+1×0=23,解得,x=7,答:F代表队胜出7场.8.解:(1)设点C表示的数为a,∵BC:AB=3:5,∴(﹣11﹣a):(4+11)=3:5,∴a=﹣20,∴点C到原点的距离为20;(2)设点C表示的数为x,根据题意得:(4﹣x)﹣(x+11)=1,或(x+11)﹣(4﹣x)=1,∴x=﹣4或﹣3,∴C点在数轴上对应的数是﹣4或﹣3;(3)设点R的速度为y个单位长度/秒,则点P的速度3y个单位长度/秒,点Q的速度是(2y﹣5)个单位长度/秒,由题意得:|(﹣20+4×3y)﹣[4+4(2y﹣5)]|=×4×(y+2y﹣5)解得:y=3或1.4,∴2y﹣5=1或﹣2.2(不合题意舍去)答:动点Q的速度为1个单位长度/秒.9.解:(1)∵多项式﹣2m3n3+4中,含字母的项的系数为a,多项式的次数为b,且a、b 分别是点A、B在数轴上的对应的数,∴a=﹣2,b=6,∴点A表示的数为﹣2,点B表示的数为6;(2)①甲小球所在的点表示的数为﹣2﹣t,乙小球所在的点表示数为6﹣2t;②甲在左边时,依题意有6﹣2t﹣(﹣2﹣t)=2,解得t=6;乙在左边时,依题意有﹣2﹣t﹣(6﹣2t)=2,解得t=10.故经过6秒或10秒长时间甲、乙小球相距2个单位长度;③原点是甲乙的中点时,依题意有﹣(﹣2﹣t)=6﹣2t,解得t=;甲乙相遇时,依题意有﹣2﹣t﹣(6﹣2t)=0,解得t=8.故甲、乙两小球到原点的距离可能相等,甲,乙两小球到原点的距离相等时经历的时间秒或8秒.10.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.11.解:(1)∵145<150.最多购买并使用两张代金券,∴最多优惠50元.(2)设小明一家应付总金额为x元,当50≤x<100时,由题意得,x﹣25﹣[50+(x﹣50)×0.6]=15.解得:x=150(舍去).当100≤x<150时,由题意得,x﹣50﹣[50+(x﹣50)×0.6]=15.解得:x=212.5(舍去).当x≥150时,由题意得,x﹣75﹣[50+(x﹣50)×0.6]=15.解得:x=275,275﹣75﹣15=185(元).答:小明一家实际付了185元.12.解:(1)6×2+(8﹣6)×4=20,答:该用户8月应交水费20元;设该用户9月份用水量为x吨,2×6=12,2×6+(10﹣6)×4=28,∵12<26<28,∴6<x<10,则6×2+4(x﹣6)=26,x=9.5,答:该用户9月份用水量为9.5吨;故答案是:20;9.5;(2)该用户10月份用水量为y吨,则y>10,根据题意得:6×2+(10﹣6)×4+8(y﹣10)=30,y=10.25;(3)设11月份用水x吨,12月份用水(18﹣x)吨,①当0≤x≤6时,18﹣a>12,由题意得:2x+2×6+4×4+8[(18﹣x)﹣10]=52.即:﹣6x+92=52,解得x=,不合题意,舍去.②当6<a≤8时,18﹣a≥10,2×6+4(x﹣6)+2×6+4×4+8[(18﹣x)﹣10]=52,解得x=7,18﹣x=11.故11月份的水费是:6×2+1×4=16(元)12月份的水费是:6×2+4×4+1×8=36(元).答:11月份交16元,12月份交36元.13.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.14.解:(1)设这批校服共有x件,依题意,得:﹣=20,解得:x=960.答:这批校服共有960件.(2)设甲工厂加工了y天,则乙工厂加工了(2y+4)天,依题意,得:16y+24y+24×(1+25%)(y+4)=960,解得:y=12,∴2y+4=28.答:乙工厂加工28天.15.解:(1)设排球的单价是x元,则篮球的单价是(2x﹣10)元,依题意,得:x+2x﹣10=35,解得:x=15,∴2x﹣10=20.答:篮球的单价是20元,排球的单价是15元.(2)选择方案一更省钱,理由如下:选择方案一所需费用为(20×15+15×10)×=337.5(元);选择方案二所需最低费用为20×15+15×10﹣×30=360(元).∵337.5<360,∴选择方案一更省钱.16.解:(1)设每件乙种玩具的进价是x元,则每件甲种玩具的进价是(x+3)元,由题意得:2(x+3)+3x=141,解得:x=27,∴甲种玩具每件的进价是30元,乙种玩具每件的进价是27元.(2)设购进玩具x件(x>20),则购进甲种玩具需要的费用:30×20+30×0.7×(x﹣20)=21x+180元;购进乙种玩具需要的费用:27x元;当21x+180=27x,解得:x=30.①当购进玩具多于20且少于30件时,选择购乙种玩具省钱;②当购进玩具正好30件时,选择购两种玩具的费用相同;③当购进玩具超过30件时,选择购甲种玩具省钱.17.解:(1)设购进A水果x千克,则购进B水果(50﹣x)千克,依题意有10x+15(50﹣x)=600,解得:x=30,50﹣x=20.故购进A水果30千克,购进B水果20千克;(2)设B种水果的售价应该定为y元/千克,依题意有(14﹣10)×30+(y﹣15)×20=600×50%,解得:y=24.故B种水果的售价应该定为24元/千克.18.解:设中型汽车有x辆,则小型汽车有3x辆,根据题意,得6x+4×3x=270解得x=15.则3x=45(辆).答:小型汽车有45辆.19.解:设B工程队工作了x天,由题意得:,解这个方程得:x=6经检验:x=6符合题意.答:B工程队工作了6天.20.解:(1)∵甲种服装每件进价500元,售价800元,∴每件甲种服装利润率为=60%.∵乙种服装商品每件售价1200元,可盈利50%.∴乙种服装每件进价为=800(元),故答案为:60%,800;(2)设甲种服装进了x件,则乙种服装进了(40﹣x)件,由题意得,500x+800(40﹣x)=27500,解得:x=15.商场销售完这批服装,共盈利15×(800﹣500)+25×(1200﹣800)=14500(元).答:商场销售完这批服装,共盈利14500元.(3)设打了y折之后再参加活动.=3200﹣3×500+20.解得:y=8.5.答:先打八五折再参加活动.。

相关文档
最新文档