高考数学 常见题型 圆锥曲线中的最值与范围
高考数学二十二个必考问题讲解17

必考问题17 与圆锥曲线有关的定点、定值、最值、范围问题1.(2011·新课标全国)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( ).A .18B .24C .36D .48答案: C [不妨设抛物线的标准方程为y 2=2px (p >0),由于l 垂直于对称轴且过焦点,故直线l 的方程为x =p2.代入y 2=2px 得y =±p ,即|AB |=2p ,又|AB |=12,故p =6,所以抛物线的准线方程为x =-3,故S △ABP =12×6×12=36.]2.(2011·山东)设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( ).A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)答案:C [∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.]3.(2010·福建)若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P为双曲线右支上的任意一点,则O P →·F P →的取值范围为( ).A .[3-23,+∞)B .[3+23,+∞) C.⎣⎡⎭⎫-74,+∞D.⎣⎡⎭⎫74,+∞ 答案:B [如图,由c =2得a 2+1=4,∴a 2=3,∴双曲线方程为x23-y 2=1.设P (x ,y )(x ≥3),O P →·F P →=(x ,y )·(x +2,y )=x 2+2x +y 2 =x 2+2x +x 23-1=43x 2+2x -1(x ≥3).令g (x )=43x 2+2x -1(x ≥3),则g (x )在[3,+∞)上单调递增.g (x )m i n =g (3)=3+2 3.∴O P →·F P →的取值范围为[3+23,+∞).]4.(2012·浙江)定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =________.解析 因曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离为|0-(-4)|2- 2=2 2-2=2,则曲线C 1与直线l 不能相交,即x 2+a >x ,∴x 2+a -x >0.设C 1:y =x 2+a 上一点为(x 0,y 0), 则点(x 0,y 0)到直线l 的距离d =|x 0-y 0|2=-x 0+x 20+a2=⎝⎛⎭⎫x 0-122+a -142≥4a -14 2=2,所以a =94.答案 94本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查定点、定值、最值、范围问题或探索性问题,试题难度较大.复习时不能把目标仅仅定位在知识的掌握上,要在解题方法、解题思想上深入下去.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用韦达定理进行整体代入的解题方法;其次注意分类讨论思想、函数与方程思想、化归与转化思想等的应用,如解析几何中的最值问题往往需建立求解目标的函数,通过函数的最值研究几何中的最值.必备知识有关弦长问题有关弦长问题,应注意运用弦长公式及韦达定理,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用韦达定理,即作如下变形:|x2-x1|=(x1+x2)2-4x1x2;|y2-y1|=(y1+y2)2-4y1y2.(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.圆锥曲线中的最值(1)椭圆中的最值F1、F2为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O为坐标原点,则有①|OP|∈[b,a];②|PF1|∈[a-c,a+c];③|PF1|·|PF2|∈[b2,a2];④∠F1PF2≤∠F1BF2.(2)双曲线中的最值F1、F2为双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,P为双曲线上的任一点,O为坐标原点,则有①|OP|≥a;②|PF1|≥c-a.(3)抛物线中的最值点P为抛物线y2=2px(p>0)上的任一点,F为焦点,则有①|PF|≥p 2;②A(m,n)为一定点,则|P A|+|PF|有最小值.必备方法1.定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.2.解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.圆锥曲线中的定点、定值问题该类问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.难度较大.【例1】►(2012·湖南)在直角坐标系xOy中,曲线C1上的点均在圆C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.(1)求曲线C1的方程;(2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值.[审题视点][听课记录][审题视点] (1)直接根据曲线与方程的概念求解,或者转化为根据抛物线的定义求解均可;(2)首先建立圆的两条切线的斜率与点的坐标之间的关系,其次把圆的切线方程与抛物线方程联立消元,根据根与系数的关系得出纵坐标之和和纵坐标之积,最后从整体上消去参数(圆的切线斜率)即可得证.(1)解法一设M的坐标为(x,y),由已知得|x+2|=(x-5)2+y2-3.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0, 所以(x -5)2+y 2=x +5.化简得曲线C 1的方程为y 2=20x .法二 由题设知,曲线C 1上任意一点M 到圆心C 2(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)证明 当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0),又y 0≠±3,则过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.于是|5k +y 0+4k |k 2+1=3.整理得72k 2+18y 0k +y 20-9=0.①设过P 所作的两条切线P A ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根,故k 1+k 2=-18y 072=-y 04.②由⎩⎪⎨⎪⎧k 1x -y +y 0+4k 1=0,y 2=20x得k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根,所以y 1y 2=20(y 0+4k 1)k 1.④同理可得y 3y 4=20(y 0+4k 2)k 2.⑤于是由②,④,⑤三式得 y 1y 2y 3y 4=400(y 0+4k 1)(y 0+4k 2)k 1k 2=400[y 20+4(k 1+k 2)y 0+16k 1k 2]k 1k 2=400(y 20-y 20+16k 1k 2)k 1k 2=6 400.所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400.解圆锥曲线中的定点、定值问题可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定值、定点问题的选择题或填空题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.【突破训练1】 设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线L 与C 相交于A ,B 两点.(1)设L 的斜率为1,求|AB |的大小; (2)求证:OA →·OB →是一个定值.(1)解 ∵F (1,0),∴直线L 的方程为y =x -1,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x -1,y 2=4x 得x 2-6x +1=0,∴x 1+x 2=6,x 1x 2=1. ∴|AB |=(x 2-x 1)2+(y 2-y 1)2 =2·(x 1+x 2)2-4x 1x 2 =2·36-4=8.(2)证明 设直线L 的方程为x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,y 2=4x得y 2-4ky -4=0. ∴y 1+y 2=4k ,y 1y 2=-4,OA →=(x 1,y 1),OB →=(x 2,y 2).∵O A →·OB →=x 1x 2+y 1y 2=(ky 1+1)(ky 2+1)+y 1y 2 =k 2y 1y 2+k (y 1+y 2)+1+y 1y 2 =-4k 2+4k 2+1-4=-3. ∴OA →·OB →是一个定值. 圆锥曲线中的最值、范围问题该类试题设计巧妙、命制新颖别致,常求特定量、特定式子的最值或范围.常与函数解析式的求法、函数最值、不等式等知识交汇,成为近年高考热点.【例2】► (2012·浙江)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程. [审题视点] [听课记录][审题视点] (1)利用椭圆的离心率为12,其左焦点到点P (2,1)的距离为10求解.(2)由题意可知直线l 的斜率存在,设为y =kx +m ,结合椭圆方程,线段AB 被直线OP 平分可求k 值.然后以AB 为底,点P 到直线AB 的距离为高表示出S △ABP 的表达式,借助导数求最值.解 (1)设椭圆左焦点为F (-c,0),则由题意得⎩⎪⎨⎪⎧(2+c )2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2. 所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得 (3+4k 2)x 2+8kmx +4m 2-12=0,(1) 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎪⎨⎪⎧x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点M ⎝⎛⎭⎫-4km 3+4k 2,3m3+4k 2.因为M 在直线OP :y =12x 上,所以3m3+4k 2=-2km 3+4k 2. 得m =0(舍去)或k =-32.此时方程(1)为3x 2-3mx +m 2-3=0,则 Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2. 设点P 到直线AB 距离为d ,则 d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则S =12|AB |·d =36·(m -4)2(12-m 2). 其中m ∈(-2 3,0)∪(0,2 3).令u (m )=(12-m 2)(m -4)2,m ∈[-2 3,2 3], u ′(m )=-4(m -4)(m 2-2m -6) =-4(m -4)(m -1-7)(m -1+7). 所以当且仅当m =1-7,u (m )取到最大值. 故当且仅当m =1-7,S 取到最大值. 综上,所求直线l 方程为3x +2y +2 7-2=0.求最值或范围常见的解法:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,可考虑利用图形性质来解决;(2)代数法.若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求最值;(3)求函数最值常用的代数法有配方法、判别式法、导数法、基本不等式法及函数的单调性、有界性法等.【突破训练2】 (2012·陕西五校联考)已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为( ).A .-2B .-8116C .1D .0答案: A [由已知得A 1(-1,0),F 2(2,0).设P (x ,y )(x ≥1),则P A 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即P A 1→·PF 2→取最小值,最小值为-2.]圆锥曲线中探索性问题此类问题命题背景宽,涉及知识点多,综合性强,探究平分面积的线、平分线段的线,或探究等式成立的参数值.常与距离、倾斜角、斜率及方程恒成立问题综合,形成知识的交汇.【例3】► (2011·重庆卷改编)如图,椭圆的中心为原点O ,离心率e =22,且a 2c=2 2.(1)求该椭圆的标准方程;(2)设动点P 满足:OP →=OM →+2ON →,其中M 、N 是椭圆上的点,直线OM 与ON 的斜率之积为-12.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值?若存在,求F 1,F 2的坐标;若不存在,说明理由.[审题视点] [听课记录][审题视点] (1)利用e =22,a 2c=22求a ,c .(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),由OP →=OM →+2ON →可得x =x 1+2x 2,y =y 1+2y 2,又点M 、N 在椭圆x 2+2y 2=4上,可得x 21+2y 21=4,x 22+2y 22=4,再结合直线OM 与ON 的斜率之积为-12.可求得点P 满足方程x 2+2y 2=20.由椭圆的定义可求解.解 (1)由e =c a =22,a 2c =22,解得a =2,c =2,b 2=a 2-c 2=2,故椭圆的标准方程为x 24+y 22=1. (2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →,得(x ,y )=(x 1,y 1)+2(x 2,y 2)=(x 1+2x 2,y 1+2y 2),即x =x 1+2x 2,y =y 1+2y 2.因为点M 、N 在椭圆x 2+2y 2=4上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)设k OM ,k ON 分别为直线OM ,ON 的斜率,由题设条件知 k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20.所以P 点是椭圆x 2(25)2+y 2(10)2=1上的点,设该椭圆的左、右焦点为F 1,F 2,则由椭圆的定义|PF 1|+|PF 2|为定值,又因c =(25)2-(10)2=10,因此两焦点的坐标为F 1(-10,0),F 2(10,0).探究是否存在的问题,一般均是先假设存在,然后寻找理由去确定结论,如果真的存在,则能得出相应结论,如果不存在,则会由条件得出相互矛盾的结论.【突破训练3】 (2012·济南模拟)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A 、B ,是否存在常数k ,使得向量OP →+OQ →与AB →共线?如果存在,求k 的值;如果不存在,请说明理由.解 (1)由已知,得直线l 的方程为y =kx +2, 代入椭圆方程,得x 22+(kx +2)2=1,整理,得⎝⎛⎭⎫12+k 2x 2+22kx +1=0,① 直线l 与椭圆有两个不同的交点P 和Q 等价于 Δ=8k 2-4×⎝⎛⎭⎫12+k 2=4k 2-2>0, 解得k <-22或k >22, 即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.(2)设P (x 1,y 1),Q (x 2,y 2), 由方程①,得x 1+x 2=-42k1+2k 2,②又y 1+y 2=k (x 1+x 2)+2 2.③而A (2,0),B (0,1),AB →=(-2,1), 所以OP →+OQ →与AB →共线等价于将②③代入上式,解得k =22, 由(1)知k <-22或k >22,故没有符合题意的常数k .圆锥曲线“最”有应得椭圆、双曲线、抛物线的最值问题的解题方法较灵活,学生时常感到无从下手.常遇到面积最大最小问题,距离的最长最短问题,不定量的最大最小问题等等,下面给同学们提供两种解法,只要掌握了它们,就可以“最”有应得.一、几何法求最值【示例1】► 抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值.[满分解答] (1)根据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0).由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.(2分)设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以OA →+OB →=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y .(6分)(2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2).此时点P 到直线l 的距离d =|2·(-2)-(-2)-2|22+(-1)2=45=4 55.(9分)由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |= 1+k 2·(x 1+x 2)2-4x 1x 2=1+22·(-4)2-4·(-4)=4 10.于是,△ABP 面积的最大值为 12×4 10×4 55=8 2.(12分) 老师叮咛:当所求的最值是圆锥曲线上的点到某条直线的距离的最值问题时,可以通过作与这条直线平行的圆锥曲线的切线,则两条平行线间的距离,就是所求的最值,切点就是曲线上取得最值的点,这种求最值的方法称为切线法.切线法的基本思想是数形结合,其中求曲线的切线方程需要利用导数知识,判断切线与曲线的最值需要借助几何图形的直观性,通过图形来确定何时取得最大值,何时取得最小值.二、函数法求最值【示例2】► (2012·广东)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.[满分解答] (1)由e =ca=a 2-b 2a 2= 23,得a =3b , 椭圆C :x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2,设P (x ,y )为C 上任意一点,则|PQ |= x 2+(y -2)2= -2(y +1)2+3b 2+6,-b ≤y ≤b .若b <1,则-b >-1,当y =-b 时,|PQ |max = -2(-b +1)2+3b 2+6=3,又b >0,得b =1(舍去),若b ≥1,则-b ≤-1,当y =-1时,|PQ |max = -2(-1+1)2+3b 2+6=3,得b =1.∴椭圆C 的方程为x 23+y 2=1.(6分)(2)法一 假设存在这样的点M (m ,n )满足题意,则有m 23+n 2=1,即n 2=1-m 23,-3≤m ≤ 3.由题意可得S △AOB =12|OA |·|OB |sin ∠AOB =12sin ∠AOB ≤12,当∠AOB =90°时取等号,这时△AOB 为等腰直角三角形, 此时圆心(0,0)到直线mx +ny =1的距离为22, 则1m 2+n2=22,得m 2+n 2=2,又m 23+n 2=1,解得m 2=32,n 2=12,即存点M 的坐标为⎝⎛⎭⎫62,22,⎝⎛⎭⎫62,-22,⎝⎛⎭⎫-62,22,⎝⎛⎭⎫-62,-22满足题意,且△AOB 的最大面积为12.(12分)法二 假设存在这样的点M (m ,n )满足题意,则有m 23+n 2=1,即n 2=1-m 23,-3≤m ≤3,又设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧mx +ny =1x 2+y 2=1,消去y 得(m 2+n 2)x 2-2mx +1-n 2=0,①把n 2=1-m 23代入①整理得(3+2m 2)x 2-6mx +m 2=0,则Δ=8m 2(3-m 2)≥0,∴⎩⎪⎨⎪⎧x 1+x 2=6m 3+2m 2,x 1x 2=m 23+2m2,②而S △AOB =12|OA |·|OB |sin ∠AOB =12sin ∠AOB ,当∠AOB =90°,S △AOB 取得最大值12,此时OA →·OB →=x 1x 2+y 1y 2=0,又y 1y 2=1-mx 1n ·1-mx 2n =3-3m (x 1+x 2)+3m 2x 1x 23-m 2,∴x 1x 2+3-3m (x 1+x 2)+3m 2x 1x 23-m2=0,即3-3m (x 1+x 2)+(3+2m 2)·x 1x 2=0, 把②代入上式整理得2m 4-9m 2+9=0, 解得m 2=32或m 2=3(舍去),∴m =±62,n =±1-m 23=±22,∴M 点的坐标为⎝⎛⎭⎫62,22,⎝⎛⎭⎫62,-22,⎝⎛⎭⎫-62,22,⎝⎛⎭⎫-62,-22,使得S △AOB 取得最大值12.(12分)老师叮咛:当所求的最值可以表示成某个变量的函数关系式时,我们常常先建立对应的函数关系式,然后利用函数方法求出对应的最值,称这种方法为函数法,这是解析几何问题中求最值的常用方法.函数法是研究数学问题的一种最重要的方法,用这种方法求解圆锥曲线的最值问题时,除了重视建立函数关系式这个关键点外,还要密切注意所建立的函数式中的变量是否有限制范围,这些限制范围恰好制约了最值的取得,因此在解题时要予以高度关注.【试一试】 抛物线y =-x 2上的点到直线4x +3y -8=0的距离的最小值是( ). A.43 B.75 C.85D .3 答案: A [可知过抛物线点的切线与直线4x +3y -8=0平行时,所求的距离最小,y ′=-2x .令-2x =-43,解得x =23,从而切点坐标为⎝⎛⎭⎫23,-49,切线方程为y +49=-43⎝⎛⎭⎫x -23,即4x +3y -43=0,由两平行线间距离公式,得点到直线的距离的最小值为d =⎪⎪⎪⎪-8-⎝⎛⎭⎫-4342+324=3.故选A.]。
浅议高考中圆锥曲线的最值问题

令  ̄1 一 一t则 S 一( +2) ( —2) 下面求 S /6 , 2 7 t 7 t,
的最 大 值 .
方法 1 由三次均值有 : :
和直线 z 的距离之 和的最小值是 ( 。
A. 2
B. 3
) .
1
S 一( +2)( ~2) 。 7 t 7 t 一÷ ( +2) 7 t(4 t 7 t ( +2) 1 —4)
利用基本不 等式求 最值 时 , 定要关 注等号 成立 的 一 条件. 利用基本不等式求最 值 , 则必 须关 注三个 条件“ 一 正、 二定 、 三相等 ” 所 谓一 正 , , 即正 值 , 是 运用 此 方法 这 的前提条件 , 解题 中应 予 以说 明论 述 ; 在 二定 , 即定值 , 它须通过恒等变换包括必要 的技 巧方能解 决 , 运用此 是 方法 的关键条件也是难 点 ; 三相 等 , 即等值 , 当且仅 当 是 满足 等号成 立 的条 件 时 , 可求 出 自变量 的值 , 最后还 应 注意 的是最值 , 应为和 的最值 ( 此时积 为定值 ) 或积 的最 值( 此时和为定值 ) .
【Ⅱ 】 侈 2 (09 全 国 )Ⅱ 20 , 女
, ,
围 , 到最值 , 得 再将其代 回原式 解 ., 2 最终 求 出其 对应 自 7 变量的值 . 【 3 已知定点 P 3 2 和直线 如: 例 】 ( ,) 一2 , z 试在直 线 如上求一点 Q, 使过 P Q的直线 与直线 z 以及 z轴在 。 第一象 限内围成的三角形面积最小. 解 : 如上的点 Q( oy ) 由直线 两点方程 得 : : 设 x ,o ,
一
 ̄z )C x , Vx )D( 2 z ) /1、 (2~ 2 、 z , 2.
2025高考数学一轮复习-圆锥曲线中的最值、范围问题-专项训练【含解析】

课时过关检测(五十四)圆锥曲线中的最值、范围问题【原卷版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.2.已知抛物线C :y 2=4x ,点F 是C 的焦点,O 为坐标原点,过点F 的直线l 与C 相交于A ,B 两点.(1)求向量OA ―→与OB ―→的数量积;(2)设FB ―→=λAF ―→,若λ∈[9,16],求l 在y 轴上的截距的取值范围.3.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,E 的左顶点为A ,上顶点为B ,点P 在椭圆上,且△PF 1F 2的周长为4+23.(1)求椭圆E 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M ,N ,且线段MN 的垂直平分线过定点G (1,0),求k 的取值范围.4.已知椭圆E :x 2a 2+y 2b 21(a >b >0)的左、右焦点分别为F 1,F 2,椭圆E 的离心率为32,且通径长为1.(1)求E 的方程;(2)直线l 与E 交于M ,N 两点(M ,N 在x 轴的同侧),当F 1M ∥F 2N 时,求四边形F 1F 2NM 面积的最大值.课时过关检测(五十四)圆锥曲线中的最值、范围问题【解析版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.解:(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E的标准方程为x2a2+y2b2=1(a>b>0),焦距为2c,则b=c,∴a2=b2+c2=2b2,∴椭圆E的标准方程为x22b2+y2b2=1.又椭圆E,∴12b2+12b2=1,解得b2=1.∴椭圆E的标准方程为x22+y2=1.(2)由于点(-2,0)在椭圆E外,所以直线l的斜率存在.设直线l的斜率为k,则直线l:y=k(x+2),设M(x1,y1),N(x2,y2).k(x+2),y2=1,消去y得,(1+2k2)x2+8k2x+8k2-2=0.由Δ>0得0≤k2<12,从而x1+x2=-8k21+2k2,x1x2=8k2-21+2k2,∴|MN|=1+k2|x1-x2|=21+k22-4k2(1+2k2)2.∵点F2(1,0)到直线l的距离d=3|k|1+k2,∴△F2MN的面积为S=12|MN|·d=3k2(2-4k2)(1+2k2)2.令1+2k2=t,则t∈[1,2),∴S=3(t-1)(2-t)t2=3-t2+3t-2t2=3-1+3t-2t2=3当1t=34即t[1,S有最大值,S max=324,此时k=±66.∴当直线l的斜率为±66时,可使△F2MN的面积最大,其最大值324.2.已知抛物线C:y2=4x,点F是C的焦点,O为坐标原点,过点F的直线l与C相交于A,B两点.(1)求向量OA―→与OB―→的数量积;(2)设FB―→=λAF―→,若λ∈[9,16],求l在y轴上的截距的取值范围.解:(1)设A,B两点的坐标分别为(x1,y1),(x2,y2).由题意知直线l的斜率不可能为0,F(1,0),设直线l的方程为x=my+1.=my+1,2=4x,得y2-4my-4=0,Δ=16m2+16>0,1+y2=4m,1y2=-4.∴OA―→·OB―→=x1x2+y1y2=y21y2216+y1y2=1616-4=-3.∴向量OA―→与OB―→的数量积为-3.(2)由(1)1+y2=4m,1y2=-4.∵FB―→=λAF―→,∴y2=-λy1.将y2=-λy11+y2=4m,1y2=-4,1-λ)y1=4m,λy21=-4,-λ)2y21=16m2,λy21=-4,∴(1-λ)2-λ=-4m2,∴4m2=(1-λ)2λ=λ+1λ-2.令f(λ)=λ+1λ-2,易知f(λ)在[9,16]上单调递增,∴4m2∈649,22516,∴m2∈169,22564,∴m∈-158,-43∪43,158.∴l在y轴上的截距-1m的取值范围为-34,-815∪815,34.3.已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,E的左顶点为A,上顶点为B,点P在椭圆上,且△PF1F2的周长为4+23.(1)求椭圆E的方程;(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M,N,且线段MN的垂直平分线过定点G(1,0),求k的取值范围.解:(1)a+2c=4+23,=ca=32,=2,=3,则b2=a2-c2=1,∴椭圆E的方程为x24+y2=1.(2)设M(x1,y1),N(x2,y2),弦MN的中点D(x0,y0),kx+m,y2=1,消去y整理得,(1+4k2)x2+8kmx+4m2-4=0,∵直线l:y=kx+m(k≠0)与椭圆交于不同的两点,∴Δ=64k2m2-4(1+4k2)(4m2-4)>0,即m2<1+4k2,1+x2=-8km1+4k2,1·x2=4m2-41+4k2,则x0=x1+x22=-4km1+4k2,y0=kx0+m=m1+4k2,所以直线DG的斜率为k DG=y0x0-1=-m4km+1+4k2,又由直线DG和直线MN垂直可得-m4km+1+4k2·k=-1,则m=-1+4k23k,代入m2<1+4k2可得<1+4k2,即k2>15,解得k>55或k<-55.故所求k∞4.已知椭圆E:x2a2+y2b21(a>b>0)的左、右焦点分别为F1,F2,椭圆E的离心率为32,且通径长为1.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M∥F2N时,求四边形F1F2NM 面积的最大值.解:(1)c2,=2,=1,=3,故椭圆的方程为x24+y2=1.(2)假设M,N两点在x轴上侧,如图所示,延长MF1交E于点M0,由F1M∥F2N知M0与N关于原点对称,从而有|F1M0|=|F2N|,由(1)可知F1(-3,0),F2(3,0),设M(x1,y1),M0(x2,y2),设MF1的方程为x=my-3,由my-3,y2=1得(m2+4)y2-23my-1=0,Δ=12m2+4(m2+4)>0,故1+y2=23mm2+4,1y2=-1m2+4.设F1M与F2N的距离为d,四边形F1F2NM的面积为S,则S=12(|F1M|+|F2N|)d=12(|F1M|+|F1M0|)d=12|MM0|d=S△MF2M0,又因为S△MF2M0=12·|F1F2|·|y1-y2|=12×23×|y1-y2|=3(y1+y2)2-4y1y2=3·12m2(m2+4)2+4m2+4=43m2+1m2+4=43m2+1+3m2+1≤4323=2,当且仅当m2+1=3m2+1,即m=±2时,等号成立,故四边形F1F2NM面积的最大值为2.。
高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)

设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.
①
将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.
圆锥曲线中的最值和取值范围

2解得X"或…泞,则AM k28k2 -63 4k2=1 k2123 4k2因为AM _AN,所以圆锥曲线中的最值和范围圆锥曲线是高考数学压轴题之一,是有效区分学生层次不可或缺的一个题型,能否解决圆锥曲线问题,对提高学生的数学成绩某种程度上至关重要。
回顾几年高考中的圆锥曲线试题,其核心问题大概有两大类型,一是定值、定点、存在性问题,二是最值和范围问题。
本文就第二问题进行归纳和分析。
最值和范围一般有两个求解方法:一是几何方法,所求最值量具有明显几何意义时可利用几何性质结合图形直观求解;二是代数方法,选择适当变量,建立函数模型,按照求最值的方法求解,求最值方法中:利用基本不等式、函数单调性、分离常数、配方法等是常用方法。
对目标函数的的整理和恰当变形是难点。
所涉及的量有斜率、面积、离心率、线段长度等。
一.近几年高考试题回顾。
X y21.(2017全国2)已知椭圆E: 1的焦点在x轴上,A是E的左顶点,斜率为k(k 0)的t 3直线交E于A, M两点,点N在E上,MA丄NA. (I)当t =4 , AM| | AN时,求△ AMN的面积;(II)当2 AM二AN时,求k的取值范围•2 2X y【解析】⑴当t =4时,椭圆E的方程为 1 , A点坐标为-2 , 0,4 3则直线AM的方程为y =k X • 2 .'2 2£ I 二1联立 4 3 " 并整理得, 3 4k2 x2 16k2x 16k2 -1^0y -k X 2厂匚2 12厂〒2 12因为 AM 二 AN , k 0,所以 1 kFTk^= 1 k3I 7^,k整理得k -1 4k —k ・4产0 , 4k 2_k ・4=0无实根,所以k.⑵直线AM 的方程为y 二k x • ..t ,r 22x y1联立 t 3并整理得,3 tk 2 x 2 2x t 2k ^3^-0 y =k (X + JT )解得 3 2 ::: k ::: 2 .2.(2015高考真题山东理21 )在平面直角坐标系 xOy 中,F 是抛物线C:x 2=2py (p 0) 的焦点,M 是抛物线C 上位于第一象限内的任意一点,过 M,F,0三点的圆的圆心为 Q ,点Q 到抛物线C 的准线的距离为 3 .[来源学科网](I)求抛物线 C 的方程;(n)是否存在点 M , 4使得直线MQ 与抛物线C 相切于点M ?若存在,求出点 M 的坐标;若不存在,说明理由; (川)若点M 的横坐标为 2 ,直线l : ^kx 4与抛物线C 有两个不同的交点 A, B , l 与 圆Q 有两个不同的交点 D, E ,求当g 乞k 乞2时,|AB|2J DE|2的最小值 分析:(I )由题意,OF 为圆Q 的弦,y^— , ••• yQ — = 3 =o抛物线方程x 2 =2y4 2 41 2所以△ AMN 的面积为| AM | =144 79解得 ^-F 或x =曲昇,3 +tk 2所以 AM23 tk26 tAN = 1 亠 k 2—―—"k E 所以3k 」k因为2 AM | | AN 所以 2T k6・口隹,整理得,k3 tk2t 6k -3k t3k -2因为椭圆E 的焦点在x 轴,所以t 3,即1 k —2 k3_2 ::(n)设存在点2X。
新高考方案二轮-数学(新高考版)大题专攻(二) 第1课时 圆锥曲线中的最值、范围、证明问题

(2)已知 O 为坐标原点,M,N 为椭圆上不重合两点,且 M,N 的中点 H
落在直线 y=12x 上,求△MNO 面积的最大值.
[解题微“点”]
(1)利用―A→G ·―B→G =0 及 e= 23构建方程组求 a,b, 即得椭圆方程; 切入点 (2)设出点 M,N 与 H 的坐标,表示出直线 MN 的方 程,与椭圆联立,利用弦长公式和点到直线的距离 公式表示△MNO 的面积后求最大值 障碍点 不要漏掉 Δ>0,利用此条件可求参数的取值范围
解:(1)依题意,2c=6,则 b= 9-5=2,
则双曲线 C:x52-y42=1,B1(0,-2),F2(3,0).
设直线 l:4x+3y+m=0,将 B1(0,-2)代入解得 m=6,
此时 l:4x+3y+6=0,F2 到 l 的距离为 d=158.
(2)设双曲线上的点 P(x,y)满足―PB→1 ·―PB→2 =-2, 即 x2+y2=b2-2,又xa22-by22=1⇒y2=ba22x2-b2,
[对点训练] (2021·济南三模)已知抛物线C:x2=4y,过点P(1,-2)作斜率为k(k>0)的直线l1与 抛物线C相交于A,B两点. (1)求k的取值范围; (2)过P点且斜率为-k的直线l2与抛物线C相交于M,N两点,求证:直线AM、BN 及y轴围成等腰三角形.
解:(1)由题意设直线 l1 的方程为 y+2=k(x-1), 由xy+2=24=y,kx-1, 得到:x2-4kx+4k+8=0, 由题意知 Δ>0,所以 k2-k-2>0,即 k<-1 或 k>2. 因为 k>0,所以 k 的取值范围为(2,+∞).
[提分技巧] 解决范围问题的常用方法
利用待求量的几何意义,确定出极端位置后,利 数形结合法
第3讲 大题专攻——圆锥曲线中的最值、范围、证明问题 2023高考数学二轮复习课件

当t∈(2,3)时,u′>0,u=4t3-t4单调递增,
当t∈(3,4)时,u′<0,u=4t3-t4单调递减,
所以当
t=3
时,u
取得最大值,则
S
也取得最大值,最大值为3 4
3.
目录
圆锥曲线中的范围问题
【例2】 已知抛物线E:x2=2py(p>0)的焦点为F,点P在抛物线E上,点P 的横坐标为2,且|PF|=2. (1)求抛物线E的标准方程; 解 法一:依题意得 F0,2p,设 P(2,y0),则 y0=2-p2,因为点 P 是抛 物线 E 上一点,所以 4=2p2-2p,即 p2-4p+4=0,解得 p=2.所以抛物 线 E 的标准方程为 x2=4y. 法二:依题意,设 P(2,y0),代入抛物线 E 的方程 x2=2py 可得 y0=2p,由 抛物线的定义可得|PF|=y0+p2,即 2=2p+p2,解得 p=2.所以抛物线 E 的 标准方程为 x2=4y.
4 1+k2· k2+b.
因为x2=4y,即y=x42,所以y′=x2,则抛物线在点A处的切线斜率为
x1 2
,在
点A处的切线方程为y-x421=x21(x-x1),即y=x21x-x421,
目录
同理得抛物线在点B处的切线方程为y=x22x-x422,
联立得yy= =xx2212xx--xx442212, ,则xy==xx114x+22=x2-=b2,k, 即P(2k,-b).
+ 2, 圆心O(0,0)到MN的距离d= m22+1=1⇒m2=1.
联立xx= 2+m3yy+2=32,⇒(m2+3)y2+2 2my-1=0⇒4y2+2 2my-1=0,
|MN|=
1+m2·
8m2+16= 4
微专题-圆锥曲线中的最值问题(解析版)

专题30 圆锥曲线中的最值问题【考情分析】与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。
江苏高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。
圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展【备考策略】与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。
(4)利用代数基本不等式。
代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;【激活思维】1.已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是[2,)+∞2. P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为73.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是434.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 32 .5.已知点M (-2,0),N (2,0),动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W . (Ⅰ)求W 的方程;(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,所求方程为:22x y 122-= (x >0)(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,此时A (x 0,2x 2-),B (x 0,-20x 2-),OAO B ⋅ =2当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,代入双曲线方程22x y 122-=中,得:(1-k 2)x 2-2kbx -b 2-2=0 依题意可知方程1︒有两个不相等的正数根,设A (x 1,y 1),B (x 2,y 2),则2222122212244(1)(2)0201201k b k b kb x x k b x x k ⎧⎪∆=--∙--≥⎪⎪+=>⎨-⎪⎪+=>⎪-⎩解得|k |>1, 又OA OB ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=2222k 242k 1k 1+=+-->2 综上可知OA OB ⋅的最小值为2【典型示例】求抛物线2y x =-上的点到直线4380x y +-=距离的最小值? 分析一:设抛物线上任一点坐标为P(0x ,-x20),由点到直线的距离公式得P 到直线的距离d(0x )=5|834|200--x x =5320)32(320+-x 34≥, 当0x =32时,d(0x )取得最大值34,分析二:设抛物线上点P(0x ,-x20)到直线4x+3y-8=0距离最小,则过P 且与抛物线相切的直线与4x+3y-8=0平行,故y '( 0x )=-2 0x =-34,∴0x =32,∴P(32,-94), 此时d=5|8943324|--⨯+⨯)(=34,. 分析三:设直线方程为4x+3y+C=0则当l 与抛物线相切时l 与4x+3y-8=0间的距离为所求最小,由⎪⎩⎪⎨⎧=++-=0342C y x y x 得4x-3x 2+C=0,∴△=16+12C=0, ∴c=-34,此时d=345|348|=---)(【分类解析】例1:已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求5||||4PA PB +的最小值;(2)求||||PA PB +的最小值和最大值 分析:(1)A 为椭圆的右焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由y=yx11x, y=x-2,
解得点M的横坐标为xM=
x12-x1y1=
2x1 x1-x412
=4-8 x1. 同理,点N的横坐标xN=4-8 x2. 所以|MN|= 2|xM-xN|= 2|4-8 x1-4-8 x2|
=8
2|x1x2-4x1x-1+x2x2+16|=8
2 k2+1 |4k-3| .
最小值等于直线x+y+5=0与x+y+
1 2
=0间的距离,即等于Leabharlann |5-12|=9 24
2 .
【答案】
92 4
例2 (2013·浙江文)已知抛物线C的顶点为O(0,0),焦点 为F(0,1).
(1)求抛物线C的方程; (2)过点F作直线交抛物线C于A,B两点,若直线AO,BO 分别交直线l:y=x-2于M,N两点,求|MN|的最小值.
【解析】 (1)由题意可设抛物线C的方程为x2= 2py(p>0),则p2=1,所以抛物线C的方程为x2=4y.
(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1. 由yx=2=k4xy+,1, 消去y,整理,得x2-4kx-4=0. 所以x1+x2=4k,x1x2=-4. 从而|x1-x2|=4 k2+1.
36,短轴一个端点到右焦点的距离为 3. (1)求椭圆C的方程; (2)设存在斜率的直线l与椭圆C交于A,B两点,坐标原
点O到直线l的距离为 23,求△AOB面积的最大值.
【解析】 (1)设椭圆的半焦距为c,依题意ac= 36, a= 3,
∴b=1,∴所求椭圆方程为x32+y2=1. (2)设A(x1,y1),B(x2,y2)①当AB⊥x轴时,|AB|= 3. 当AB与x轴不垂直时,设直线AB的方程为y=kx+m. 由已知 1|m+| k2= 23,得m2=34(k2+1).
圆锥曲线中的最值与范围
题型一 最值问题 例1 已知P为抛物线y=14x2上的动点,点P在x轴上的射 影为M,点A的坐标是(2,0),则|PA|+|PM|的最小值是 ________.
【解析】
如图,抛物线y=
1 4
x2,即x2=4y的焦点为
F(0,1),记点P在抛物线的准线l:y=-1上的投影为P′,根
=3+9k2+12k12+6(k≠0)
≤3+2×132+6=4.
当且仅当9k2=k12,即k=± 33时等号成立. 当k=0时,|AB|= 3,综上所述|AB|max=2. ∴当|AB|最大时,△AOB面积取最大值
S=12×|AB|max×
23=
3 2.
题型二 范围问题
例3 (2015·福建福州质检)如图所示,直线y=m与抛物线 y2=4x交于点A,与圆(x-1)2+y2=4的实线部分交于点B,F为 抛物线的焦点,则△ABF的周长的取值范围是________.
令4k-3=t,t≠0,则k=t+4 3.
当t>0时,|MN|=2 2· 2t25+6t +1>2 2;
当t<0时,|MN|=2 2· 5t +352+1265≥85 2. 综上所述,当t=- 235 ,即k=- 43 时,|MN|的最小值是 85
2.
对点训练 椭圆C:ax22+by22=1(a>b>0)的离心率为
∴13<1-e<12,解得12<e<23.
【答案】 (12,23)
例4 已知点G是△ABC的重心,A(0,-1),B(0,1),在 x轴上有一点M,满足|M→A|=|M→C|,G→M=λA→B(λ∈R).
(1)求点C的轨迹方程; (2)若斜率为k的直线l与点C的轨迹交于不同两点P,Q, 且满足|A→P|=|A→Q|,试求k的取值范围.
【解析】 由抛物线和圆的对称性知,当A,B重合时, 三角形ABF的周长达到最小值的极限,此时,值为4;当A为 抛物线的顶点,B在x轴上时,三角形ABF的周长达到最大值 的极限,此时,值为6.故△ABF的周长的取值范围是(4,6).
【答案】 (4,6)
点评:求范围时注意椭圆、双曲线、抛物线的有界性, 还要注意判别式对范围的影响.
把y=kx+m代入椭圆方程,整理,得(3k2+1)x2+6kmx +3m2-3=0.
∴x1+x2=3-k26+km1,x1x2=33mk22+-11. ∴|AB|2=(1+k2)(x2-x1)2 =(1+k2)33k62k+2m122-123km2+2-11 =12k2+13k23+k21+21-m2=3k2+3k12+91k22+1 =3+9k4+126kk22+1
对点训练 过椭圆C:ax22+by22=1(a>b>0)的左顶点A
且斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射
影恰好为右焦点F,若
1 3
<k<
1 2
,则椭圆离心率的取值范围为
________.
【解析】 由题意知:B(c,ba2), b2
∴k=c+a a=a-a c=1-e.又13<k<12,
【解析】 (1)设C(x,y),则G(3x,3y). 因为G→M=λA→B(λ∈R),所以GM∥AB. 又M是x轴上一点,则M(3x,0). 又|M→A|=|M→C|, 所以 3x2+0+12= 3x-x2+y2, 整理得x32+y2=1(x≠0),此即为点C的轨迹方程.
据抛物线的定义知,|PP′|=|PF|,则|PP′|+|PA|=|PF|+
|PA|≥|AF|= 22+-12 = 5 .所以(|PA|+|PM|)min=(|PA|+
|PP′|-1)min= 5-1.
【答案】 5-1
点评:圆锥曲线中最值的求法有两种: (1)几何法:若题目的条件和结论能明显体现几何特征及 意义,则考虑利用图形性质来解决,这就是几何法. (2) 代 数 法 : 若 题 目 的 条 件 和 结 论 能 体 现 一 种 明 确 的 函 数,则可首先建立起目标函数,再求这个函数的最值,求函 数最值的常用方法有配方法、判别式法、重要不等式法及函 数的单调性法等.
对点训练 已知点P在直线x+y+5=0上,点Q在抛
物线y2=2x上,则|PQ|的最小值等于________.
【解析】 设与直线x+y+5=0平行且与抛物线y2=2x
相切的直线方程是x+y+m=0,则由
x+y+m=0, y2=2x,
消去
x,得y2+2y+2m=0.令Δ=4-8m=0,得m=
1 2
,因此|PQ|的