因式分解复习课教学设计

合集下载

初中数学因式分解复习教案

初中数学因式分解复习教案

初中数学因式分解复习教案教案:初中数学因式分解的复习一、教学目标:1.知识目标:了解因式分解的基本概念和步骤,能够正确分解一元多项式。

2.技能目标:掌握因式分解的方法和技巧,能够灵活运用于解决实际问题。

3.过程目标:培养学生的思维逻辑能力和解决问题的能力。

二、教学内容:1.复习因式分解的基本概念和步骤。

2.复习因式分解的基本方法和技巧。

3.练习因式分解的实际应用题。

三、教学过程:1.复习因式分解的基本概念和步骤:(1)因式分解的基本概念:因式分解是将一个多项式写成几个简单的因式相乘的形式。

(2)因式分解的步骤:①找出最大公因式;②利用分配律进行因式的提取。

2.复习因式分解的基本方法和技巧:(1)提取公因式法:对于多项式中的每一项,找出它们的最大公因式,将公因式提取出来,然后将剩余部分写在括号内。

(2)公式法:在使用公式法进行因式分解时,首先要确定要分解的多项式是否符合公式的形式。

常见的因式分解公式有:①二次平方差公式:$a^2-b^2=(a+b)(a-b)$;② 二次平方和公式:$a^2 + 2ab + b^2 = (a+b)^2$;③ 二次立方和公式:$a^3 + 3a^2b + 3ab^2 + b^3 = (a+b)^3$。

3.练习因式分解的实际应用题:(1)例题一:将多项式$3x^3-6x^2-3x$进行因式分解。

解析:首先找出最大公因式,发现$3x$是每一项的公因式,因此将其提取出来,有$3x(x^2-2x-1)$。

(2)例题二:将多项式 $4x^2y + 12xy^2 - 8xy$ 进行因式分解。

解析:首先找出最大公因式,发现 $4xy$ 是每一项的公因式,因此将其提取出来,有 $4xy(x + 3y - 2)$。

四、教学小结:通过本次复习,我们回顾了因式分解的基本概念、步骤、方法和技巧。

因式分解是数学中的重要内容,我们要善于运用所学的知识解决实际问题。

希望同学们能够加强练习,提高因式分解的能力。

第4章因式分解复习教案

第4章因式分解复习教案
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《因式分解》这一章节。在开始之前,我想先问大家一个问题:“你们在解数学题时是否遇到过需要将复杂的多项式简化的情况?”例如,当我们遇到一个多项式x^2 - 9时,如何将其简化为我们熟悉的表达式。这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾因式分解的奥秘。
五、教学反思
在今天的因式分解复习课上,我尝试了多种教学方法和活动,目的是让学生能够更深入地理解和掌握因式分解的知识。通过这节课,我发现了一些值得注意的地方。
首先,导入新课环节,通过提问的方式引导学生回顾日常生活中可能遇到的因式分解情景,这一点起到了很好的热身效果。大部分学生能够迅速进入状态,联想到实际应用,这为后续的教学奠定了基础。
3.重点难点解析:在讲授过程中,我会特别强调提公因式法和公式法(平方差公式、完全平方公式)这两个重点。对于难点部分,如分组分解法和交叉相乘法,我会通过具体例题和步骤解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与因式分解相关的实际问题,如求解最大公因数等。
二、核心素养目标
1.培养学生逻辑推理能力:通过因式分解的复习,使学生能够理解和掌握数学概念之间的逻辑关系,提高他们在数学问题解决中的推理能力。
2.强化数学运算能力:通过多种因式分解方法的练习,增强学生对数学运算的熟练度和准确性,培养他们在复杂问题中运用恰当的数学方法。
3.培养数学抽象思维能力:引导学生从具体的数学问题中抽象出因式分解的一般方法,提升他们对数学问题本质的理解和把握。
在学生小组讨论环节,我发现开放性问题确实能够激发学生的思考,但同时也给了一些学生过多的发挥空间,导致讨论内容过于分散。针对这一点,我打算在以后的课堂中,适当调整问题的设置,使之更具针对性和引导性。

因式分解教案【借鉴8篇】

因式分解教案【借鉴8篇】

因式分解教案【优秀8篇】作为一位不辞辛劳的人民教师,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。

我们应该怎么写教案呢?读书破万卷下笔如有神,下面本文为您精心整理了8篇《因式分解教案》,如果能帮助到您,本文将不胜荣幸。

因式分解教案篇一课型复习课教法讲练结合教学目标(知识、能力、教育)1、了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数)。

2、通过乘法公式,的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力教学重点掌握用提取公因式法、公式法分解因式教学难点根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。

教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1、分解因式:把一个多项式化成的形式,这种变形叫做把这个多项式分解因式。

2、分解困式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

⑴运用公式法:平方差公式: ;完全平方公式: ;3、分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解。

(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。

4、分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准。

若有一项被全部提出,括号内的项1易漏掉。

分解不彻底,如保留中括号形式,还能继续分解等(二):【课前练习】1、下列各组多项式中没有公因式的是( )A.3x-2与6x2-4xB.3(a-b)2与11(b-a)3C.mxmy与nynxD.aba c与abbc2、下列各题中,分解因式错误的是( )3、列多项式能用平方差公式分解因式的是()4、分解因式:x2+2xy+y2-4 =_____5、分解因式:(1) ;(2);(3) ;(4);(5)以上三题用了公式二:【经典考题剖析】1、分解因式:(1);(2) ;(3) ;(4)分析:①因式分解时,无论有几项,首先考虑提取公因式。

精选因式分解教案(通用9篇)

精选因式分解教案(通用9篇)

因式分解教案精选因式分解教案(通用9篇)作为一位杰出的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的因式分解教案,供大家参考借鉴,希望可以帮助到有需要的朋友!因式分解教案篇1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2—b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。

判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)、2x(x—3y)=2x2—6xy整式乘法(3)、(5a—1)2=25a2—10a+1整式乘法(4)、x2+4x+4=(x+2)2因式分解(5)、(a—3)(a+3)=a2—9整式乘法(6)、m2—4=(m+4)(m—4)因式分解(7)、2πR+2πr=2π(R+r)因式分解2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。

分解因式要注意以下几点:(1)分解的对象必须是多项式。

(2)分解的结果一定是几个整式的乘积的形式。

(3)要分解到不能分解为止。

3、因式分解的方法提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。

因式分解教案3篇

因式分解教案3篇

因式分解教案3篇因式分解教案篇1教学目标1、会运用因式分解进行简单的多项式除法。

2、会运用因式分解解简单的方程。

二、教学重点与难点教学重点:教学重点因式分解在多项式除法和解方程两方面的应用。

教学难点:应用因式分解解方程涉及较多的推理过程。

三、教学过程(一)引入新课1、知识回顾(1)因式分解的几种方法:①提取公因式法: ma+mb=m(a+b)②应用平方差公式: = (a+b)(a—b)③应用完全平方公式:a 2ab+b =(ab)(2)课前热身:①分解因式:(x +4) y — 16x y(二)师生互动,讲授新课1、运用因式分解进行多项式除法例1 计算:(1)(2ab —8a b)(4a—b)(2)(4x —9)(3—2x)解:(1)(2ab —8a b)(4a—b) =—2ab(4a—b)(4a—b) =—2ab (2)(4x —9)(3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3一个小问题:这里的x能等于3/2吗?为什么?想一想:那么(4x —9)(3—2x)呢?练习:课本P162课内练习合作学习想一想:如果已知()()=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢?(让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A 和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、运用因式分解解简单的方程例2 解下列方程:(1) 2x +x=0 (2)(2x—1) =(x+2)解:x(x+1)=0 解:(2x—1)—(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2等练习:课本P162课内练习2做一做!对于方程:x+2=(x+2),你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4)—16x =0解:将原方程左边分解因式,得(x +4)—(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2)(x—2) =0接着继续解方程,5、练一练①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b)—c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a ﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c)﹤0 ,因此 a —2ab+b —c 小于零。

因式分解复习教学设计

因式分解复习教学设计

因式分解复习教学设计第一篇:因式分解复习教学设计《因式分解复习》教学设计抚顺市第二十六中学柴春杨因式分解是代数式的一种重要恒等变形,它是学习分式的基础,又在代数式的运算、解方程和函数中有广泛的应用。

本课是在学完因式分解新课后安排的一节复习课,因为之前一部分学生基础较差,整式的四则运算基础不过关,搞不清因式分解与多项式的逆变形,混淆公式,分解不彻底等。

教学目标:1.能理解因式分解的概念并能正确判别,培养学生运用数学知识解决实际问题的意识,掌握因式分解的方法及一般步骤。

2.学会逆向思维,渗透化归的思想方法.通过“彻底分解”养成细心观察、缜密思考、综合分析的能力。

3.通过因式分解的学习,使学生体会数学美,根据自己解决问题的过程,让学生获得成功的体验,培养团队合作交流意识。

教学重点:熟练运用两种方法来进行因式分解。

教学难点:因式分解两种方法的综合运用。

教学过程:一.课前展示:(教师寄语:温故而知新,复习后再做题!)下列代数式的变形当中哪些是因式分解,哪些不是.A.6x2y=3xy·2xB.a2-b2+1=(a+b)(a-b)+1C.-m2-mn=-m(m+n)D.(x+3)(x -3)= x2-91E.a+1=a(1+)a设计意图:(1)弄清因式分解的对象和结果。

(2)因式分解与整式乘法是相反方向的变形.(3)因式分解是恒等变形,因此可以用整式乘法来检验.解题密码:因式分解是把一个________化成几个__________的形式二.激趣导入:司马光砸缸:当小孩掉入缸里时,其他小朋友想的是如何捞人,而司马光想的却是砸缸,使水流出,这种逆向思维的方法在我们数学中也经常用到:比如因式分解和整式的乘法。

设计意图:使学生联系生活实际,在轻松愉悦的氛围中学习并知道了因式分解和整式的乘法的这种互逆关系。

三.探究新知1.提公因式法因式分解:公因式的概念和找公因式的方法多项式中各项都含有的相同因式,称之为公因式.温馨提示:一看系数,找_______________ 二看字母,找________________ 三看指数,找________________(教师寄语:勤思考,善动脑,天天会进步!)展示汇报:先找出下列各多项式中的公因式,(再用提公因式法分解因式):(1)8x+64(2)12m2n3-3n2m3(3)p(a2+b2)-q(a2+b2)(4)2a(y-z)-3b(z-y)(5)-24x3-12x2 +28x(6)4p(1-q)3+2(q-1)2设计意图:设置问题串,分散难点,小组合作,交流解题思路,带动学困生,小组之间矫正互批。

因式分解教案【优秀5篇】

因式分解教案【优秀5篇】

因式分解教案【优秀5篇】在教学工作者开展教学活动前,时常会需要准备好教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

那么问题来了,教案应该怎么写?下面是小编辛苦为大家带来的因式分解教案【优秀5篇】,在大家参照的同时,也可以分享一下给您最好的朋友。

因式分解教案篇一15.1.1 整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示ⅠABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示ⅠABC的周长,需要知道它的各边边长.要表示ⅠABC的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么ⅠABC的周长可以表示为a+b+c;ⅠABC的面积可以表示为?c?h.2.小王的平均速度是.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、ch、是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅰ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项.3x+5y+2z的项分别是3x、5y、2z.ab-3.12r2的项分别是ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅰ.随堂练习1.课本P162练习Ⅰ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.Ⅰ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》15.1.2 整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。

因式分解教案9篇

因式分解教案9篇

因式分解教案9篇因式分解教案篇1教学目标:1、理解运用平方差公式分解因式的方法。

2、掌握提公因式法和平方差公式分解因式的综合运用。

3、进一步培养学生综合、分析数学问题的能力。

教学重点:运用平方差公式分解因式。

教学难点:高次指数的转化,提公因式法,平方差公式的灵活运用。

教学案例:我们数学组的观课议课主题:1、关注学生的合作交流2、如何使学困生能积极参与课堂交流。

在精心备课过程中,我设计了这样的自学提示:1、整式乘法中的平方差公式是___,如何用语言描述把上述公式反过来就得到_____,如何用语言描述2、下列多项式能用平方差公式分解因式吗若能,请写出分解过程,若不能,说出为什么①-2+y2 ②-2-y2 ③4-92④ (+y)2-(-y)2 ⑤ a4-b43、试总结运用平方差公式因式分解的条件是什么4、仿照例4的分析及旁白你能把3y-y因式分解吗5、试总结因式分解的步骤是什么师巡回指导,生自主探究后交流合作。

生交流热情很高,但把全部问题分析完已用了30分钟。

生展示自学成果。

生1: -2+y2能用平方差公式分解,可分解为(y+)(y-)生2: -2+y2=-(2-y2)=-(+y)(-y)师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

生3:4-92 也能用平方差公式分解,可分解为(2+9)(2-9)生4:不对,应分解为(2+3)(2-3),要运用平方差公式必须化为两个数或整式的平方差的形式。

生5: a4-b4可分解为(a2+b2)(a2-b2)生6:不对,a2-b2 还能继续分解为a+b)(a-b)师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。

反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:下列多项式能用平方差公式因式分解吗为什么可能效果会更好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解复习课教学设计
教学目标:
1.掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.
2.经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.
教学重、难点:用提公因式法和公式法分解因式.
教学过程:
一、引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.也叫做把多项式分解因式。

二、知识点详解
知识点1 因式分解的定义
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
【说明】(1)弄清因式分解的对象和结果。

(2)因式分解与整式乘法是相反方向的变形.(3)因式分解是恒等变形,因此可以用整式乘法来检验.
小练笔:下列变形是否是因式分解?为什么?
(1)3x2y-xy+y=y(3x2-x+1); (2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1); (4)x n(x2-x+1)=x n+2-x n+1+x n.
怎样把一个多项式分解因式?
知识点2 提公因式法
多项式m a+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.m a+mb+mc=m(a+b+c)就是把m a+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是
m a+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4a b+2a=2a(4a b-2b+1).
典例剖析师生互动
例1 用提公因式法将下列各式因式分解.
(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);
分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a 化成-(a-b),然后再提取公因式.
小结运用提公因式法分解因式时,要注意下列问题:
(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能
再分解.
(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。

这时注意到(a-b)n=(b-a)n(n为偶数).
(3)因式分解最后如果有同底数幂,要写成幂的形式.
学生做一做把下列各式分解因式.
(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2
知识点3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的差的积.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).
(2)完全平方公式:a2±2a b+b2=(a±b)2.其中,a2±2a b+b2叫做完全平方式.即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.
例2下列变形是否正确?为什么?
(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.例3 把下列各式分解因式.
(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.
分析:本题旨在考查用完全平方公式分解因式.
学生做一做把下列各式分解因式.
(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).
综合运用
例4 分解因式.
(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);
分析:本题旨在考查综合运用提公因式法和公式法分解因式.
小结解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式. 是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止.
探索与创新题
例5 若9x2+kxy+36y2是完全平方式,则k= .
分析:完全平方式是形如:a2±2a b+b2即两数的平方和与这两个数乘积的2倍的和(或差).
学生做一做若x2+(k+3)x+9是完全平方式,则k= .
课堂小结
用提公因式法和公式法分解因式,会运用因式分解解决计算问题.
各项有“公”先提“公”,首项有负常提负,某项提出莫漏“1”,括号里面分到“底”。

自我评价知识巩固
1.若x2+2(m-3)x+16是完全平方式,则m的值等于( )
A.3
B.-5
C.7.
D.7或-1
2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n的值是( )
A.2
B.4
C.6
D.8
3.分解因式:4x2-9y2= .
4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.
5.把多项式1-x2+2xy-y2分解因式
思考题分解因式(x4+x2-4)(x4+x2+3)+10.。

相关文档
最新文档