广义函数与Sobolev空间
sobolev嵌入定理_概述及解释说明

sobolev嵌入定理概述及解释说明1. 引言1.1 概述:Sobolev嵌入定理是数学分析领域的一个重要结果,它描述了函数在不同强度和光滑度条件下的嵌入关系。
具体来说,该定理关注的是函数空间中的积分指标和偏导数指标之间的关系。
通过该定理,我们可以研究函数在更高阶导数下的性质,并将其应用于许多数学和物理问题的解决。
1.2 文章结构:本文将对Sobolev嵌入定理进行概述及解释说明。
首先,我们将介绍定理的基本概念和背景知识,包括其历史发展和相关定义。
随后,我们将详细探讨Sobolev 空间及其性质,为读者提供对该定理所涉及的函数空间有更加全面深入的认识。
接着,我们将介绍一些关于证明Sobolev嵌入定理的方法与技巧,包括Gagliardo-Nirenberg-Sobolev不等式的应用、逼近理论以及欧几里得域和流形上证明该定理时常用的技巧等。
然后,我们会探讨一些应用与拓展领域,例如偏微分方程解的存在性和唯一性结果的应用、函数空间与调和分析中的应用以及数值计算中的应用与算法发展。
最后,我们将总结文章并对未来关于Sobolev 嵌入定理研究方向进行展望。
1.3 目的:本文的目标是系统介绍和解释Sobolev嵌入定理,使读者了解该定理在数学分析领域中的重要性和广泛应用。
通过本文,读者可以深入理解Sobolev空间及其性质,掌握证明该定理的方法与技巧,并对其在偏微分方程、函数空间与调和分析以及数值计算等领域中的应用有更加全面深入的认识。
同时,我们也希望通过本文对未来关于Sobolev嵌入定理研究方向进行展望,激发读者进一步深入探索该领域并作出新的研究贡献。
2. Sobolev嵌入定理:2.1 定理介绍Sobolev嵌入定理是数学分析领域中的一个重要结果,它描述了函数在Sobolev 空间中的嵌入关系。
具体来说,该定理给出了当函数在某个Sobolev空间中具有一定的偏导数次数时,它也同时属于其他更高阶的函数空间。
(完整版)Sobolev空间的建立

Sobolev 空间一、定义:(一)弱导数的定义:设)(1Ω∈loc L u ,对于给定的重指标α,称为u 的α阶弱导数,如果存在函数)(1Ω∈loc L v ,使得对于)(Ω∈∀∞C ϕ成立 ⎰⎰ΩΩ-=dx uD vdx ϕϕαα||)1(.并记u D v α=.(二)Sobolev 空间的定义:对p ≥1,m 是非负整数,定义Sobolev 空间{}m L u D u L Wp p pm ≤Ω∈Ω=Ω∆||),(|)()(,αα{}m L u D L u u p p ≤Ω∈Ω∈=||),(),(|αα. 在)(,Ωp m W 中引入范数⎪⎪⎩⎪⎪⎨⎧∞=∞<≤==Ω∞≤≤ΩΩ≤Ω∑⎰∑p u D p u D dx u D umm pp p p mp p m ,max 1,)()||(,||||1,1||,,αααααα下面证明)(,Ωp m W 按范数⎪⎪⎩⎪⎪⎨⎧∞=∞<≤==Ω∞≤≤ΩΩ≤Ω∑⎰∑p u D p u D dx u D umm pp p p mp p m ,max 1,)()||(,||||1,1||,,αααααα是赋范空间. (i )非负性:当∞<≤p 1时,任意的)(,Ω∈pm Wu ,则0)||(||1,≥=⎰∑Ω≤mpppm dx u D uαα,且0,=pm u⇔0)||(||1=⎰∑Ω≤mppdx u D αα⇔0=u D α对任意m ≤||α均成立⇔0=u ;当∞=p 时,任意的)(,Ω∈p m W u ,则0m ax ||,≥=∞≤uD umpm αα,且0,=pm u⇔0m ax ||=≤u D mαα⇔0=u D α对任意m ≤||α均成立⇔0=u ;(ii )齐次性:当∞<≤p 1时,任意)(,Ω∈p m W u ,K ∈β,有==⎰∑Ω≤mppdx u D u ||1)|)(|(ααββ=⎰∑Ω≤mppdx u D ||1)||(ααβu β;当∞=p 时,任意)(,Ω∈p m W u ,K ∈β,有==≤)(m ax ||u D u mββαα=≤u D mααβ||m ax u β;(iii )三角不等式性:当∞<≤p 1时,任意)(,Ω∈p m W u ,)(,Ω∈p m W v ,有=+=+⎰∑Ω≤mppdx v u D v u ||1)|)(|(αα⎰∑Ω≤+mppp dx v D u D ||1)|||(|(ααα+≤⎰∑Ω≤mppdx u D ||1)||(αα=⎰∑Ω≤mppdx v D ||1)||(αα+u v ;当∞=p 时,任意)(,Ω∈p m W u ,)(,Ω∈p m W v ,有=+=+≤)(m ax ||v u D v u mαα≤+≤v D u D mααα||m ax +≤u D mαα||max =≤v D mαα||max +u v .所以,Sobolev 空间)(,Ωp m W 是一个赋范空间. 二、Sobolev 空间的主要性质:(一)完备性:)(,Ωp m W 是Banach 空间. 证明 只要证明)(,Ωp m W 是完备的. 任取)(,Ωp m W 中的Cauchy 序列{}j f ,则),(0,∞→→-j k f f pm j k .而∑≤-=-mpp L j k pm jk pf f D f f ||1,))((αα∑≤-=mppL j k p f D f D ||1))(ααα ⇒ ),(0∞→→-j k f D f D pL jk αα.即{})|(|m f D j ≤αα是)(Ωp L 中的Cauch 列,由)(Ωp L 的完备性知,存在)|)(|(m L g p≤Ω∈αα,使得∞→→j g f D pL j ,αα.在弱收敛的意义下,ααg f D j →,即对任意)111)((=+Ω∈qp L p ϕ,有 ⎰⎰ΩΩ∞→→)(j dx g dx f D j ϕϕαα.特别对任意)(0Ω∈∞C ϕ,有 ⎰⎰ΩΩ∞→→)(j dx g dx f D j ϕϕαα.这是因为⎰⎰ΩΩ→||dx g dx f D j ϕϕαα⎰Ω⋅-≤dx g f D j ||||ϕαα0→⋅-≤qpL L j g f D ϕαα(应用Holder 不等式)令0=α得⎰⎰⎰ΩΩ∆Ω=→dx f dx g dx f j ϕϕϕ0.其中)(0Ω∈∞C ϕ. 在利用弱导数的定义得,对于任意∞→Ω∈∞j C ),(0ϕ时有⎰⎰ΩΩ⋅-=dx D f dx f D j j ϕϕααα)1(⎰⎰ΩΩ⋅=⋅-→dx f D dx D f ϕϕααα||)1(.即当∞→j 时,j f D α在)(Ωp L 内弱收敛于f D α,记成))((Ω−−−→−p j L f D f D αα弱收敛由极限的唯一性,得)(Ω∈=p L g f D αα )|(|m ≤α 且))((Ω→p j L f D f D αα )(∞→j .这就说明,若{}j f 是)(,Ωp m W 中的Cauchy 序列,则必存在)(,Ω∈p m W f ,使得))((,Ω→p m j W f f )(∞→j .即,)(,Ωp m W 是完备的. 从而)(,Ωp m W 是Banach 空间.(二)可分性:当∞<≤p 1时,)(,Ωp m W 是可分的.证明 只要证明当∞<≤p 1时,Q p L ))((Ω是可分的,也就是说Q p L ))((Ω中存在稠密的可列集.事实上,对每个正整数k ,作⎭⎬⎫⎩⎨⎧<>Ω∂Ω∈=Ωk x k x dist x x k ||,1),(,|.设P 表示所有有理数多项式全体,{}P f f P kk ∈=Ω|χ,k k P P ∞==1~ ,则P ~在)(Ωp L 中稠密. 事实上,对)(Ω∈p L f ,任意的0>ε,由)(0ΩC 在)(Ωp L 中稠密知,存在)(0Ω∈C g ,使得2)(ε<-Ωp L gf .另外容易看出,)()(010k k C C Ω=Ω∞= .故g 属于某个)(0m C Ω,利用weierstrass 定理知,m P 在)(0m C Ω中稠密,也就是说,存在m P h ∈,使得pm h g 1||2||-Ω<-ε,m x Ω∈∀.因为m Ω有界,故有⎰ΩΩ-=-ppL h g h g p 1)()||(||||2)||(1ε<-=⎰Ωmpp h g故ε<-Ω)(||||p L h f .其中,k k P P h ∞==∈1~.这就说明P ~在)(Ωp L 中稠密,且P ~是一个可列集,因而P P P P Q ~~~~1⨯⨯⨯=∏ 是Q p L ))((Ω可列的稠密集,即)1())((∞<≤Ωp L Q p 是可分的,从而)(,Ωp m W 也是可分的.(三)自反性:设∞<<p 1,则)(,Ωp m W 是自反空间. 三、Sobolev 空间的嵌入定理: (一)设Ω具有锥性质k Ω表示Ω与n R 中一上k 维平面的交集,n k ≤≤1,m 为正整数,j 为非负整数,∞<≤p 1,则有下列嵌入关系情形A 假设n mp <且n k mp n ≤<-则)()(,ΩΩq p m L W ,mp n npq p -≤≤ )()(,,ΩΩ+q j p m j W W ,mp n npq p -≤≤ )()(,,k q j p m j W W ΩΩ+ ,mpn kpq p -≤≤. 情形B 假设n mp =,则对n k ≤≤1,有)()(,,k q j p m j W W ΩΩ+ ,∞<≤q p .特别)()(,ΩΩq p m L W ,∞<≤q p .若1=p ,则n m =,这时当∞=q 时,上两式仍成立. 情形C 假设n mp >,则)()(,ΩΩ+j B p m j C W .(二)设Ω具有强局部Lipschitz 性质 情形C ' 假设p m n mp )1(->>,则)()(,,ΩΩ+αj p m j C W ,pn m -≤<α0. 情形C '' 假设p m n )1(-=,则)()(,,ΩΩ+αj p m j C W ,10≤<α.若1,1-==m n p ,则上式对1=α也成立. 四、建立Sobolev 空间的意义:随着科技的不断发展,在工程中提出了许多形式各样的偏微分方程,其中有相当一部分在古典理论上是不存在解的. 但实际背景表明,它们是存在唯一解的,这时,偏微分广义解的提出,很大程度上解决了这一数学与实际相冲突的问题. 广义解的另一优点是,它把偏微分方程的解的唯一性问题,分解成某个Sobolev 空间中广义解的存在与广义解的正则性两个问题来研究,解决了一些新的偏微分方程定解问题,特别是在非线性偏微分方程中,由于直接寻找古典解是相当困难的,而寻找弱解则相对容易,进而确定弱解的正则性后就获得古典解.在偏微分方程的数值计算中,现在比较流行的方法,如有限元法和有限体积法,它们的理论基础就是广义函数与Sobolev 空间. 它们都是利用守恒原理,在偏微分方程两边与某个区域进行积分,再进行一定的简化,将其等价的化为一个变分问题,再在某个Sobolev 空间中求解这个变分问题,其实我们求出来的变分问题的解就是其对应的偏微分方程的古典解.综上所述,广义微商及Sobolev 空间的建立,很大程度上促进了偏微分方程理论及其数值解理论的发展,在偏微分方程发展中揭开了新的一页.。
广义函数论与函数空间

广义函数论与函数空间摘要:一、广义函数论的定义与背景1.广义函数论的概念2.广义函数论的发展背景二、广义函数论的重要概念与性质1.广义函数的定义与性质2.广义函数的分类三、函数空间的概念与性质1.函数空间的概念2.函数空间的性质四、广义函数论在数学领域的应用1.微分方程中的应用2.偏微分方程中的应用五、广义函数论的发展趋势与前景1.广义函数论与其他领域的交叉研究2.广义函数论的未来发展正文:广义函数论与函数空间是现代数学中的重要研究领域,涉及到许多基础数学理论和应用。
广义函数论是在经典函数论的基础上,对函数的概念进行推广和拓展,从而形成的新的数学理论体系。
广义函数论的概念最早可以追溯到20 世纪初,由法国数学家拉普拉斯和德国数学家赫尔德等人提出。
随着科学技术的发展,广义函数论在物理学、工程学等领域得到了广泛应用,逐渐发展成为现代数学的一个重要分支。
在广义函数论中,广义函数是一种特殊的数学对象,它具有连续性、可积性等性质。
广义函数可以分为四类:核函数、基本广义函数、广义函数和逆广义函数。
这些函数具有不同的性质和应用,为数学研究提供了丰富的理论体系。
函数空间是广义函数论中的另一个重要概念,它是一种特殊的集合,包含了许多具有特定性质的函数。
函数空间的性质包括完备性、稠密性、嵌入性等,这些性质对函数空间的构造和应用具有重要意义。
广义函数论在数学领域具有广泛的应用,特别是在微分方程和偏微分方程的研究中发挥着重要作用。
通过引入广义函数,可以更方便地研究这些方程的性质和解的结构,为数学理论的发展提供了有力支持。
近年来,随着计算机技术的进步,广义函数论与其他领域的交叉研究取得了丰硕成果。
例如,在图像处理、信号处理等领域,广义函数论的方法得到了广泛应用。
这些研究成果为广义函数论的未来发展奠定了坚实基础。
总之,广义函数论与函数空间是现代数学中的重要研究领域,具有广泛的应用前景。
Sobolev空间的建立

Sobolev 空间一、定义:(一)弱导数的定义:设)(1Ω∈loc L u ,对于给定的重指标α,称为u 的α阶弱导数,如果存在函数)(1Ω∈loc L v ,使得对于)(Ω∈∀∞C ϕ成立 ⎰⎰ΩΩ-=dx uD vdx ϕϕαα||)1(.并记u D v α=.(二)Sobolev 空间的定义:对p ≥1,m 是非负整数,定义Sobolev 空间{}m L u D u L Wp p pm ≤Ω∈Ω=Ω∆||),(|)()(,αα{}m L u D L u u p p ≤Ω∈Ω∈=||),(),(|αα. 在)(,Ωp m W 中引入范数⎪⎪⎩⎪⎪⎨⎧∞=∞<≤==Ω∞≤≤ΩΩ≤Ω∑⎰∑p u D p u D dx u D umm pp p p mp p m ,max 1,)()||(,||||1,1||,,αααααα下面证明)(,Ωp m W 按范数⎪⎪⎩⎪⎪⎨⎧∞=∞<≤==Ω∞≤≤ΩΩ≤Ω∑⎰∑p u D p u D dx u D umm pp p p mp p m ,max 1,)()||(,||||1,1||,,αααααα是赋范空间. (i )非负性:当∞<≤p 1时,任意的)(,Ω∈pm Wu ,则0)||(||1,≥=⎰∑Ω≤mpppm dx u D uαα,且0,=pm u⇔0)||(||1=⎰∑Ω≤mppdx u D αα⇔0=u D α对任意m ≤||α均成立⇔0=u ;当∞=p 时,任意的)(,Ω∈p m W u ,则0m ax ||,≥=∞≤uD umpm αα,且0,=pm u⇔0m ax ||=≤u D mαα⇔0=u D α对任意m ≤||α均成立⇔0=u ;(ii )齐次性:当∞<≤p 1时,任意)(,Ω∈p m W u ,K ∈β,有==⎰∑Ω≤mppdx u D u ||1)|)(|(ααββ=⎰∑Ω≤mppdx u D ||1)||(ααβu β;当∞=p 时,任意)(,Ω∈p m W u ,K ∈β,有==≤)(m ax ||u D u mββαα=≤u D mααβ||m ax u β;(iii )三角不等式性:当∞<≤p 1时,任意)(,Ω∈p m W u ,)(,Ω∈p m W v ,有=+=+⎰∑Ω≤mppdx v u D v u ||1)|)(|(αα⎰∑Ω≤+mppp dx v D u D ||1)|||(|(ααα+≤⎰∑Ω≤mppdx u D ||1)||(αα=⎰∑Ω≤mppdx v D ||1)||(αα+u v ;当∞=p 时,任意)(,Ω∈p m W u ,)(,Ω∈p m W v ,有=+=+≤)(m ax ||v u D v u mαα≤+≤v D u D mααα||m ax +≤u D mαα||max =≤v D mαα||max +u v .所以,Sobolev 空间)(,Ωp m W 是一个赋范空间. 二、Sobolev 空间的主要性质:(一)完备性:)(,Ωp m W 是Banach 空间. 证明 只要证明)(,Ωp m W 是完备的. 任取)(,Ωp m W 中的Cauchy 序列{}j f ,则),(0,∞→→-j k f f pm j k .而∑≤-=-mpp L j k pm jk pf f D f f ||1,))((αα∑≤-=mppL j k p f D f D ||1))(ααα ⇒ ),(0∞→→-j k f D f D pL jk αα.即{})|(|m f D j ≤αα是)(Ωp L 中的Cauch 列,由)(Ωp L 的完备性知,存在)|)(|(m L g p≤Ω∈αα,使得∞→→j g f D pL j ,αα.在弱收敛的意义下,ααg f D j →,即对任意)111)((=+Ω∈qp L p ϕ,有 ⎰⎰ΩΩ∞→→)(j dx g dx f D j ϕϕαα.特别对任意)(0Ω∈∞C ϕ,有 ⎰⎰ΩΩ∞→→)(j dx g dx f D j ϕϕαα.这是因为⎰⎰ΩΩ→||dx g dx f D j ϕϕαα⎰Ω⋅-≤dx g f D j ||||ϕαα0→⋅-≤qpL L j g f D ϕαα(应用Holder 不等式)令0=α得⎰⎰⎰ΩΩ∆Ω=→dx f dx g dx f j ϕϕϕ0.其中)(0Ω∈∞C ϕ. 在利用弱导数的定义得,对于任意∞→Ω∈∞j C ),(0ϕ时有⎰⎰ΩΩ⋅-=dx D f dx f D j j ϕϕααα)1(⎰⎰ΩΩ⋅=⋅-→dx f D dx D f ϕϕααα||)1(.即当∞→j 时,j f D α在)(Ωp L 内弱收敛于f D α,记成))((Ω−−−→−p j L f D f D αα弱收敛由极限的唯一性,得)(Ω∈=p L g f D αα )|(|m ≤α 且))((Ω→p j L f D f D αα )(∞→j .这就说明,若{}j f 是)(,Ωp m W 中的Cauchy 序列,则必存在)(,Ω∈p m W f ,使得))((,Ω→p m j W f f )(∞→j .即,)(,Ωp m W 是完备的. 从而)(,Ωp m W 是Banach 空间.(二)可分性:当∞<≤p 1时,)(,Ωp m W 是可分的.证明 只要证明当∞<≤p 1时,Q p L ))((Ω是可分的,也就是说Q p L ))((Ω中存在稠密的可列集.事实上,对每个正整数k ,作⎭⎬⎫⎩⎨⎧<>Ω∂Ω∈=Ωk x k x dist x x k ||,1),(,|.设P 表示所有有理数多项式全体,{}P f f P kk ∈=Ω|χ,k k P P ∞==1~ ,则P ~在)(Ωp L 中稠密. 事实上,对)(Ω∈p L f ,任意的0>ε,由)(0ΩC 在)(Ωp L 中稠密知,存在)(0Ω∈C g ,使得2)(ε<-Ωp L gf .另外容易看出,)()(010k k C C Ω=Ω∞= .故g 属于某个)(0m C Ω,利用weierstrass 定理知,m P 在)(0m C Ω中稠密,也就是说,存在m P h ∈,使得pm h g 1||2||-Ω<-ε,m x Ω∈∀.因为m Ω有界,故有⎰ΩΩ-=-ppL h g h g p 1)()||(||||2)||(1ε<-=⎰Ωmpp h g故ε<-Ω)(||||p L h f .其中,k k P P h ∞==∈1~.这就说明P ~在)(Ωp L 中稠密,且P ~是一个可列集,因而P P P P Q ~~~~1⨯⨯⨯=∏ 是Q p L ))((Ω可列的稠密集,即)1())((∞<≤Ωp L Q p 是可分的,从而)(,Ωp m W 也是可分的.(三)自反性:设∞<<p 1,则)(,Ωp m W 是自反空间. 三、Sobolev 空间的嵌入定理: (一)设Ω具有锥性质k Ω表示Ω与n R 中一上k 维平面的交集,n k ≤≤1,m 为正整数,j 为非负整数,∞<≤p 1,则有下列嵌入关系情形A 假设n mp <且n k mp n ≤<-则)()(,ΩΩq p m L W ,mp n npq p -≤≤ )()(,,ΩΩ+q j p m j W W ,mp n npq p -≤≤ )()(,,k q j p m j W W ΩΩ+ ,mpn kpq p -≤≤. 情形B 假设n mp =,则对n k ≤≤1,有)()(,,k q j p m j W W ΩΩ+ ,∞<≤q p .特别)()(,ΩΩq p m L W ,∞<≤q p .若1=p ,则n m =,这时当∞=q 时,上两式仍成立. 情形C 假设n mp >,则)()(,ΩΩ+j B pm j C W.(二)设Ω具有强局部Lipschitz 性质 情形C ' 假设p m n mp )1(->>,则)()(,,ΩΩ+αj p m j C W ,pn m -≤<α0. 情形C '' 假设p m n )1(-=,则)()(,,ΩΩ+αj p m j C W ,10≤<α.若1,1-==m n p ,则上式对1=α也成立. 四、建立Sobolev 空间的意义:随着科技的不断发展,在工程中提出了许多形式各样的偏微分方程,其中有相当一部分在古典理论上是不存在解的. 但实际背景表明,它们是存在唯一解的,这时,偏微分广义解的提出,很大程度上解决了这一数学与实际相冲突的问题. 广义解的另一优点是,它把偏微分方程的解的唯一性问题,分解成某个Sobolev 空间中广义解的存在与广义解的正则性两个问题来研究,解决了一些新的偏微分方程定解问题,特别是在非线性偏微分方程中,由于直接寻找古典解是相当困难的,而寻找弱解则相对容易,进而确定弱解的正则性后就获得古典解.在偏微分方程的数值计算中,现在比较流行的方法,如有限元法和有限体积法,它们的理论基础就是广义函数与Sobolev 空间. 它们都是利用守恒原理,在偏微分方程两边与某个区域进行积分,再进行一定的简化,将其等价的化为一个变分问题,再在某个Sobolev 空间中求解这个变分问题,其实我们求出来的变分问题的解就是其对应的偏微分方程的古典解.综上所述,广义微商及Sobolev 空间的建立,很大程度上促进了偏微分方程理论及其数值解理论的发展,在偏微分方程发展中揭开了新的一页.。
sobolev空间范数

sobolev空间范数Sobolev空间范数是数学分析中常用的一种函数空间范数,它在偏微分方程、泛函分析等领域中具有重要的应用。
本文将介绍Sobolev空间范数的定义、性质以及一些常见的应用。
我们来定义Sobolev空间范数。
给定定义在一个开集上的函数f,我们可以定义它的一个特定阶数的Sobolev空间W^{k,p}(Ω)。
其中k是一个非负整数,p是一个大于等于1的实数,Ω是定义域。
对于任意一个在Ω上具有连续的k个偏导数的函数f,我们可以定义它的Sobolev范数为:||f||_{W^{k,p}(Ω)} = \left( \sum_{|\alpha|\leq k} \int_{Ω} |D^{\alpha} f|^p dx \right)^{1/p}这里,α是一个多重指标,D^α是偏导数算子,|α|表示指标α的阶数之和。
Sobolev范数的定义中,我们对函数f的各个阶数的偏导数进行了加权求和,并取这个和的p次方根。
这个范数的定义允许我们度量一个函数在各个阶数的导数上的平滑程度。
Sobolev空间范数的一个重要性质是它是完备的。
也就是说,对于一个在Sobolev空间中的Cauchy序列,存在一个极限函数使得序列中的函数逐点收敛到这个极限函数,并且这个极限函数也属于Sobolev空间。
这个性质使得Sobolev空间成为了一个良好的函数空间,可以用来研究偏微分方程的解的存在性和唯一性。
除了完备性外,Sobolev空间范数还具有嵌入定理的性质。
嵌入定理指出,如果定义域Ω是一个有界开集并且k大于等于定义域的维数n除以p,那么函数f属于Sobolev空间W^{k,p}(Ω)中就意味着它在Ω上的p次方可积。
这个性质使得Sobolev空间成为了研究函数的可积性的一个有力工具。
Sobolev空间范数在偏微分方程的研究中有广泛的应用。
例如,在椭圆型偏微分方程的理论中,我们经常需要研究解的正则性。
通过定义适当的Sobolev空间范数,我们可以得到解的Hölder连续性、可微性等结果。
Soblev空间

专家2007年12月25日
表
课程名称:Sobolev空间
课程代码:011.562
英文名称:Sobolev Spaces
课程类型:√讲授课程□实践(实验、实习)课程□研讨课程□专题讲座□其它
考核方式:考试+研讨成绩(60+40)
教学方式:讲授
适用专业:基础数学,应用数学
适用层次:硕士□√博士□√
开课学期:春
总学时/讲授学时:48/48
教学大纲:(章节目录)
第一章预备知识:
1.泛函分析和实分析基本知识回顾.
2.嵌入和紧嵌入算子的定义,连续函数空间的嵌入定理.
3.广义函数基本知识回顾.
第二章Lp空间:
1.基本性质.
2.磨光篹子与光滑函数逼近.
3.相对紧集的特征.
4.一致凸和一致光滑性.
5.对偶空间的Riesz表示定理.
第三章Sobolev空间Wm, p(Ω):
1.Lions的迹空间与内插性质.
2.迹空间的算子半群表征.
3.迹定理与Ws, p(Ω)的定义,内在范数.
4.嵌入定理简介.
教材:
R. A.Adams.《Sobolev Spaces》, Academic Press, New York.
主要参考书:
[1] V. G. Maz’ja.《Sobolev Spaces》, Springer, New York.
[2] W. P. Ziemer.《Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation》, Springer, New York.
该课程所属基层教学组织(教研室、系)专家小组意见:
soblev空间

完备空间可以看成是一些好的经典函数空间的完备化. H m, p 是C 函数按范数 4.2 完备化得到的空间 H 0m, p 是Cc 函数按范数 4.2 完备化得到的空间
m
L 1 p
H m, p
,1 p , Lp ( )
p
H
m ,
max D u
特别的,p 2时,记H m,2为H m , 这时可引进内积, u, v m
D u , D v
m
L2
定理4.1:H m, p 为Banach空间. 根据H m, p 的定义,易知如下性质:
1.4 Sobolev空间
1.非负整指数Sobolev空间H m, p 定义4.1:设 R n是一给定的区域,对m 0,1 p 定义Sobolev空间H m, p 为满足条件D u Lp (), m的广义函数u全体所构成的集合,并装备以范数 u u D u m
函数的傅里叶变换
2. 函数1的傅里叶变换
1.3.3紧支集广义函数的Fourier变换
定理3.4:若T E( Rn ), 则T T , eix .
定义3.2 : 若函数a( x, ) C ( Rxn Rn ), 且对任意重指标,,有
x a ( x, ) C , (1 )
1 H 0, p =LP 2 若m1 m2 0, 则H m , p H m , p ,又若p1 p2 1, 且为 有界区域,则H m, p H m, p . 3 若u H m, p , m, 则D u H m , p
广义函数和Sobolev空间的一些性质综述

广义函数和Sobolev空间的一些性质综述广义函数和Sobolev空间是近代分析的重要概念,其研究的逐步深入对于近代数学各个分支的发展均起到了极其重要的作用。
随着研究的深入,广义函数由最开始的被物理学家以不严密形式表示,到后来的说明线性双曲型方程哥西问题的解唯一性问题,再到后来用线性拓扑空间理论作为基础,得到了一系列的重要而具有深远意义的结论。
与此同时,sobolev空间的研究也取得了实质性的发展,其各种推广、嵌入定理、迹定理及各种插值公式已经成为偏微分方程理论必不可少的工具。
本文就广义函数和sobolev空间的性质及其应用以lax-milgram定理的研究为例展开讨论。
这是一篇读书报告,主要取材于[1]-[3].关键词:广义函数,sobolev空间,lax-milgram定理广义函数和Sobolev空间的一些性质综述第一章引言广义函数和Sobolev空间是近代分析的重要概念,它们的发展也直接促进了偏微分方程的研究。
本文将就广义函数和Sobolev空间进行综述,介绍一些基本性质及其应用。
1.1关于广义函数目前,在各个不同的数学分支的发展中,广义函数均得到日益广泛的传播,而以不严密形式来表示的广义函数,实际上早已为物理学家所采用。
J.Hadamant由于研究波动方程的基本解,曾经探讨发散的积分。
他的很多工作和M.Ricsz的一些工作都对广义函数理论的形成起了极其重要的作用。
1936年,索伯列夫首先引入广义函数,以一种明确而又是目前广泛采用的形式,说明了线性双曲型方程哥西问题的解唯一性问题。
另一方面,有另一些数学理论的发展也与广义函数理论也有紧密的联系,例如按幂式增长函数的傅里叶变换的C.Bochner理论。
这些傅里叶变换实际上也是广义函数。
在C.Bochner的理论中,这些广义函数的出现是为了表示连续函数的形式上的导数。
在1950至1951年间,随着L.Schwartz的专著“分布函数理论”的出版,广义函数理论更加系统化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1基本解
§3.2椭圆方程
第四章整数阶Sobolev空间(10学时)
§4.1连续函数空间与 空间
§4.2整数阶Sobolev空间的定义与基本性质
§4.3对偶空间与负整数阶Sobolev空间
§4.4用光滑函数逼近 中的元素
§4.5延拓定理、导数的内插定理
第五章嵌入定理(8学时)
学分:4
先修课程要求:实变函数,泛函分析
课程组教师姓名
职称
专业
年龄
学术专长
张显文
教授
应用数学
49
非线性偏微分方程
段志文
副教授
应用数学
47
非线性偏微分方程
魏金波
讲师
应用数学
33
非线性偏微分方程
课程教学目标:
本课程是为基础数学,应用数学,计算数学和概率论等专业相关研究方向的研究生开设的基础课.其目的是让研究生掌握广义函数与Sobolev空间的基本知识,为以后学习非线性发展方程、反应扩散方程、无穷维动力系统等偏微分方程课程以及进行相关方向的科学研究奠定坚实的理论基础。
§5.1Gagliardo-Nirenberg-Sobolev不等式
§5.2Morrey不等式
§5.3一般的Sobolev嵌入定理
§5.4Rellich-Kondrachov紧嵌入定理
§5.5迹嵌入定理
第六章实数阶Sobolev空间 (10学时)
§6.1空间 的基本性质
§6.2 的嵌入定理、内插定理与等价范数
[3]L.Hörmander.《The Analysis of Linear Partial Differential Operator》I.distribution theory and fourier analysis,Berlin:Springer, 2003.
[4] W. P. Ziemer.《Weakly Differentiable Functions》, Berlin: Springer, 1989.
教学大纲(章节目录):
第一章检验函数与广义函数(14学时)
§1.1引言
§1.2检验函数空间
§1.3广义函数的运算
§1.4局部化
§1.5广义函数的支柱
§1.6广义函数Βιβλιοθήκη 局部结构§1.7卷积第二章Fourier变换(12学时)
§2.1基本性质
§2.2缓增广义函数
§2.3Paley-Wiener定理
§2.4Sobolev引理
主要参考书:
[1]J.Barros-Neto.《An Introduction to the Theory of Distributions》, New York: Marcel Dekker, 1973.
[2] R.A.Adams and J.F.Fournier.《Sobolev Spaces》,2ndedition, New York: Academic Press, 2003.
[2]L.C.Evans.《Partial Differential Equations》, AMS. 1998.(Chapter 5)
[3]D. Gilbarg and N.S. Trudinger《Elliptic Partial Differential Equations of Second Order》,北京:世界图书出版公司, 2003.(Chapter 7)
表
课程名称:广义函数与Sobolev空间
英文名称:Generalized Functions and Sobolev Spaces
课程类型:■讲授课程□实践(实验、实习)课程□研讨课程□专题讲座□其它
考核方式:考试
教学方式:讲授
适用专业:数学
适用层次:硕士■博士■
开课学期:秋
总学时/讲授学时:64/64
§6.3空间 的定义与基本性质
§6.4 的延拓定理、嵌入定理与内插定理
§6.5 的迹定理
第七章选择的论题(4学时)
§7.1Poincare不等式
§7.2差商、 的等价描述
§7.3Sobolev函数的几乎处处可微性
§7.4涉及时间的Sobolev空间
教材:
[1]W.Rudin.《Functional Analysis》,New York:McGraw-Hill,1991.(Chapters 6-8)
注:每门课程都须填写此表。本表不够可加页