三、电阻式传感器接口电路的设计

合集下载

电阻应变式传感器的测量电路

电阻应变式传感器的测量电路

图1 电子秤平剖图1 台面壳体2均压框架3电阻应变片4弹性体5补偿电阻6可调支撑脚7底座如图1所示,底座通过贴有电阻应变片的双孔型等强度弹性体梁与均压框架相接,均压框架用螺钉与壳体相联。

弹性体是应变式力传感器将力转换为应变量的关键部件。

研究结果表明,双孔梁弹性体按刚架计算比按平行梁计算精确,而且桥路输出和载荷之间的线形好、灵敏度高。

非线性和灵敏度与竖梁的长度和刚度无关。

由于采用陶材料设计制作弹性梁,其灵敏度结构系数不仅取决于弹性体结构形式和应变区的选择,而且和陶瓷材料的微结构、质量及机械强度等因素密切相关。

为此,进行了双孔梁的应力分析、抗冲击载荷分析、额定载荷计量等,并用计算机进行了有限元分析。

经模拟验证分析,选用图1a所示的双孔梁结构形式。

该梁的应力分布均匀对称,其应力最大点在弹性梁的最薄偏离两端处。

根据图1a所示的结构形式:ε=M/W.E (1)式中:ε为应变量;M为弯矩;W为抗弯模数;E为弹性模量。

对于这类应变式弹性体上的全等臂电桥,其输出电压V0和桥压Vi有如下关系:V 0=GF.ε.Vi(2)式中:GF为应变电阻的应变系数。

将式(1)代入式(2),可得:V 0=GF.M.Vi/W.E (3)对于矩形截面,W=1/6b.h2式中:b为弹性体承载面宽度;h为弹性体承载梁厚度。

由A—A剖面分析,负荷F必须由一对剪力F/2与之平衡。

若取一应变电阻进行分析,F/2对应变电阻中心点的弯距为M:M=F(L/2-X)/2 (4)以式(4)代入式(3),可得:V 0=3F(L/2-X)GF.Vi/b.h2.E (5)由式(5)可见,双孔梁的桥路输出和载荷F之间具有良好的线形,而且灵敏度高。

)(434211R R R R R R E +-+=))((43214231R R R R R R R R E ++-•电阻应变式传感器的测量电路电阻应变式传感器是一种利用电阻应变效应,将各种力学量转换为电信号的结构型传感器。

微传感器与接口集成电路设计

微传感器与接口集成电路设计

微传感器与接口集成电路设计微传感器与接口集成电路设计是一种交叉学科领域,涉及电子学、物理学、材料科学、机械工程和化学等多个学科,它们的协同作用使得微传感器和集成电路技术在扩展和拓展领域上具有广泛的应用前景。

本篇文章将着重介绍微传感器与接口集成电路设计的概念、原理、发展和应用等方面。

一、微传感器与接口集成电路设计的概念微传感器与接口集成电路是指在集成电路上嵌入微传感器,在同一个芯片上实现传感、信号处理和控制电路的功能。

它可以将各种传感器集成到一个芯片上,实现微型化、低功耗、多参数监测和高性能等多种优势。

与传统的离散器件相比,它具有体积小、重量轻、集成度高、环境适应性好和性能稳定等优点,因此被广泛应用于精密测量、医疗健康、环境检测、安全监控等领域。

二、微传感器与接口集成电路设计的原理微传感器与接口集成电路的设计原理是将传感器的感知元件、信号调理电路、传输接口和数字信号处理电路等功能部件集成在一起,通过微电子加工工艺实现芯片级别的集成化。

传感器的感知元件根据不同的物理量制备,如电容、电阻、感应、压力、温度、湿度、光学等,将感知到的物理量转化为电信号。

信号调理电路实现对传感器信号的放大、滤波、线性化、温度补偿等处理,保证信号质量和可靠性。

传输接口和数字信号处理电路将传感器的信号通过模拟和数字信号转换传输到外部系统中,实现数据的处理和控制。

三、微传感器与接口集成电路设计的发展微传感器与接口集成电路设计的发展与微机电系统(MEMS)技术的发展密切相关。

20世纪80年代,美国斯坦福大学教授Roger T. Howe等人首次在晶圆加工的硅基板上制造了微机械结构,开创了MEMS技术的研究之路。

在此基础上,人们开始将MEMS技术与集成电路技术相结合,开发微传感器和微致动器等微系统。

随着制造技术的不断进步和应用需求的不断增加,微传感器与接口集成电路的可靠性和性能也得到了大幅度的提高和拓展。

四、微传感器与接口集成电路设计的应用微传感器与接口集成电路的应用非常广泛,主要包括以下方面:1.环境监测。

微传感器与接口集成电路设计

微传感器与接口集成电路设计

微传感器与接口集成电路设计
一、微传感器与接口集成电路的概述
1.1 微传感器的定义与应用
1.2 接口集成电路的定义与应用
二、微传感器设计与制造
2.1 传感器设计的基本原理
2.2 主要传感器类型及其特点
2.2.1 压力传感器
2.2.2 温度传感器
2.2.3 光传感器
2.2.4 加速度传感器
2.3 微传感器的制造工艺
2.3.1 基于MEMS的制造工艺
2.3.2 微纳加工技术在传感器制造中的应用
2.3.3 传感器表面微纳加工技术的发展趋势
三、接口集成电路设计原理
3.1 接口电路的主要功能
3.2 接口电路的设计方法
3.2.1 信号放大电路设计
3.2.2 高精度ADC设计
3.2.3 模数转换器设计
3.3 接口电路的选择与优化
3.3.1 传统接口电路的选择
3.3.2 集成接口电路的选择
3.3.3 接口电路的性能优化方法
四、微传感器与接口集成电路设计的关键技术
4.1 微传感器与接口集成电路的耦合方法
4.2 接口电路的功耗优化技术
4.3 微传感器与接口集成电路的封装与测试
五、微传感器与接口集成电路设计的挑战与发展趋势
5.1 器件尺寸与性能的折中
5.2 集成度与功耗的平衡
5.3 新材料的应用与工艺的优化
5.4 微传感器与接口集成电路在智能物联网中的应用前景
六、结论
6.1 微传感器与接口集成电路设计的重要性
6.2 总结微传感器与接口集成电路设计的关键技术
6.3 展望微传感器与接口集成电路设计的未来发展方向。

单片机接口电路的设计和优化技巧探讨

单片机接口电路的设计和优化技巧探讨

单片机接口电路的设计和优化技巧探讨单片机是现代电子设备中不可或缺的核心控制器件,它在各个领域的应用越来越广泛。

在实际应用中,单片机需要与各种外部设备进行连接,以实现数据的输入和输出。

因此,设计稳定可靠的接口电路是非常重要的,本文将探讨一些单片机接口电路的设计和优化技巧。

一、输入电路的设计和优化输入电路主要用于将外部信号输入到单片机的引脚上,常见的输入电路包括按键输入电路和传感器输入电路。

在设计按键输入电路时,需要考虑按键的稳定性和抗干扰能力。

一种常用的方法是使用稳压二极管和电阻组成的电路,将按键的信号通过二极管和电阻输出到单片机引脚上。

这种电路能够稳定地将按键信号传递给单片机,同时能够有效抵御外部干扰信号的干扰。

传感器输入电路需要考虑信号的放大和滤波问题。

在设计传感器输入电路时,可以使用运算放大器对信号进行放大,并通过RC电路进行滤波,以确保输入信号能够稳定且准确地传递给单片机。

此外,对于一些高频信号的输入,可以使用差分输入电路结构,以提高抗干扰能力和信号质量。

二、输出电路的设计和优化输出电路主要用于将单片机的输出信号驱动外部设备,如LED灯、继电器等。

在设计输出电路时,需要考虑输出电流的大小和稳定性。

对于驱动LED灯等设备,可以使用三极管作为输出驱动器,通过控制三极管的导通和截止,实现LED灯的亮灭控制。

同时,可以通过连接电阻限制输出电流的大小,以保证单片机的输出口和外部设备的安全。

对于一些需要较大电流的外部设备,如继电器等,可以采用驱动芯片或电平转换器来实现驱动功能。

驱动芯片通常具有更大的输出电流能力,并且能够提供更稳定的输出信号。

而电平转换器可以将单片机的逻辑信号转换为与外部设备匹配的电平信号,以实现可靠的驱动功能。

三、通信接口电路的设计和优化通信接口电路用于实现单片机与其他设备之间的数据通信。

常见的通信接口包括串口、I2C总线、SPI总线等。

在设计串口接口电路时,需要选择合适的电平转换芯片,并配合电阻电容等元件实现电平转换和数据发送。

《传感器课程设计》课程教学大纲

《传感器课程设计》课程教学大纲
10
M4
平时表现
20%
A-遵守纪律,全勤;工作态度认真,积极主动;B-遵守纪律,全勤;工作态度比较认真,有积极性;C-遵守纪律,缺勤不到20%;工作态度端正,有一定主动性;D-纪律性差,缺勤超过30%;工作态度不端正,不积极不主动;
11
M4
实验和口头报告
50%
A-传感器设计完整,性能符合要求,实验结果正确。答辩过程语言表达流畅,内容表述清晰准确,回答问题正确。B-传感器设计较为完整,性能比较符合要求,实验结果较为正确。答辩过程语言表达较为流畅,内容表述较为清晰准确,回答问题较为正确。C-传感器设计基本完整,性能基本符合要求,实验结果基本正确。答辩过程语言表达基本流畅,内容表述基本清晰准确,回答问题基本正确。D-传感器设计不完整,性能不符合要求,实验结果不正确。答辩过程语言表达不流畅,内容表述不清晰准确,回答问题不正确。
4
M2
平时表现
20%
A-遵守纪律,全勤;工作态度认真,积极主动;B-遵守纪律,全勤;工作态度比较认真,有积极性;C-遵守纪律,缺勤不到20%;工作态度端正,有一定主动性;D-纪律性差,缺勤超过30%;工作态度不端正,不积极不主动;
5
M2
实验和口头报告
50%
A-传感器设计完整,性能符合要求,实验结果正确。答辩过程语言表达流畅,内容表述清晰准确,回答问题正确。B-传感器设计较为完整,性能比较符合要求,实验结果较为正确。答辩过程语言表达较为流畅,内容表述较为清晰准确,回答问题较为正确。C-传感器设计基本完整,性能基本符合要求,实验结果基本正确。答辩过程语言表达基本流畅,内容表述基本清晰准确,回答问题基本正确。D-传感器设计不完整,性能不符合要求,实验结果不正确。答辩过程语言表达不流畅,内容表述不清晰准确,回答问题不正确。

电阻式传感器

电阻式传感器

结构组成与特点
结构组成
电阻式传感器主要由电阻元件、电极和绝缘体等部分组成。其中,电阻元件是核 心部分,其电阻值随被测量(如温度、压力、位移等)的变化而变化。
特点
电阻式传感器具有结构简单、体积小、重量轻、价格低廉等优点。同时,由于电 阻元件与被测量直接接触,因此响应速度较快,且易于实现小型化和集成化。
性能参数及指标
灵敏度
线性度
电阻式传感器的灵敏度表示为单位被测量 变化引起的电阻值变化量。灵敏度越高, 传感器的测量精度和分辨率就越高。
线性度是指传感器输出量与输入量之间的 线性关系程度。线性度越好,传感器的测 量误差就越小。
稳定性
抗干扰能力
稳定性是指传感器在长时间使用过程中保 持其性能参数不变的能力。稳定性越好, 传感器的使用寿命就越长。
THANKS。
04
电阻式传感器信号处理与接口 电路
信号处理电路设计
01
02
03
放大电路
采用差分放大电路,减小 共模干扰,提高信号放大 倍数。
滤波电路
设计低通滤波器,滤除高 频噪声,保证信号平滑。
A/D转换电路
将模拟信号转换为数字信 号,便于后续数字处理。
接口电路实现方式
线性化接口电路
通过线性化电路将电阻式 传感器的非线性输出转换 为线性输出。
电阻式传感器
汇报人:XX
contents
目录
• 电阻式传感器概述 • 电阻式传感器结构与性能 • 电阻式传感器测量原理与方法 • 电阻式传感器信号处理与接口电路 • 电阻式传感器应用实例分析 • 电阻式传感器发展趋势与挑战
01
电阻式传感器概述
定义与工作原理
定义
电阻式传感器是一种利用被测物理量 (如压力、位移、温度等)引起的电 阻变化来测量该物理量的装置。

第3章 电阻式传感器-医学传感器概要

第3章 电阻式传感器-医学传感器概要
l R= A
F
Δl、ΔA 、Δρ
ΔR
两边取对数: 两边求导:
ln R ln ln l ln A
dR d dl dA R l A
Page 5
医学仪器教研室

l 式中 l
是长度相对变化量,用金属电阻丝的轴向 应变ε表示,ε数值一般很小表达式为:
l l
ΔA/A为圆形电阻丝的截面积相对变化量,即:
r
Page
15
医学仪器教研室
当实际使用应变片的条件与其灵敏系数k的标定 条件不同时,如μ≠0.285或受非单向应力状态, 由于横向效应的影响,实际 值要改变,如仍按 标称灵敏系数来进行计算可能造成较大误差。当 不能满足测量精度要求时,应进行必要的修正。
横向效应在圆弧段产生,消除圆弧段即可消除横 向效应。为了减小横向效应产生的测量误差,现 在一般多采用箔式应变片。
R1
R RR R1R 2 3 4 R1 R 2 R 3 R 4
RL
R3
R2
U0
R
R4
RL
如果c,d之间的电阻为:
R 3R 4 R1R 2 R R1 R 2 R 3 R 4
Page 35
医学仪器教研室
如果c,d之间有负载电阻 RL ,则负载电流 I L 为:
U0 IL R RL R1R 4 - R 2 R 3 U R L (R1 R 2 )(R3 R 4) R1R 2 (R3 R 4) R 3R 4 (R1 R 2 )
5. 最高工作频率
应变片的最高工作频率和应变片线栅的长度有关,它反映了
6. 应变片电阻值
绝缘电阻是指粘贴的应变片的引线与被测件之间的电阻值。 通常要求绝缘电阻在 50 ~ 100M 以上。 绝缘电阻下降将使测量系统的灵敏度降低,使应变片的指 示应变产生误差。 绝缘电阻取决于粘结剂及基底材料的种类及固化工艺。

传感器课程设计20页

传感器课程设计20页

传感器课程设计20页一、教学目标本课程的教学目标是使学生掌握传感器的基本原理、性能和应用方法,培养学生动手能力和创新思维,提高学生对传感器技术的认识和理解。

知识目标:了解传感器的基本概念、分类和特性;掌握传感器的选型、安装和调试方法;了解传感器在自动化系统和智能制造中的应用。

技能目标:能够根据实际需求选择合适的传感器,进行电路设计和系统集成;能够使用传感器进行数据采集和分析,解决实际问题。

情感态度价值观目标:培养学生对科技创新的兴趣和热情,提高学生责任感和社会使命感,使学生认识到传感器技术在现代社会中的重要性。

二、教学内容本课程的教学内容主要包括传感器的基本原理、性能参数和应用领域。

1.传感器的基本原理:电阻式、电容式、电感式、霍尔效应、光电效应等传感器的原理和特点。

2.传感器的性能参数:灵敏度、迟滞、重复性、线性度、分辨力等参数的定义和计算。

3.传感器的应用领域:工业自动化、智能交通、生物医学、环境监测等领域的传感器应用案例。

4.传感器选型、安装和调试:根据实际需求选择合适的传感器,了解传感器的安装和调试方法。

5.传感器与微处理器的接口技术:了解传感器与微处理器的接口方式,掌握接口电路的设计方法。

三、教学方法本课程采用讲授法、讨论法、案例分析法和实验法等多种教学方法。

1.讲授法:通过教师讲解,使学生掌握传感器的基本原理和性能参数。

2.讨论法:引导学生参与课堂讨论,提高学生对传感器应用案例的分析和评价能力。

3.案例分析法:分析实际应用案例,使学生了解传感器在各个领域的应用,提高学生的实践能力。

4.实验法:学生进行实验,使学生掌握传感器的选型、安装和调试方法,培养学生的动手能力。

四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。

1.教材:选用国内权威出版社出版的传感器教材,保证课程内容的科学性和系统性。

2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。

3.多媒体资料:制作PPT、视频等多媒体资料,提高课堂教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三电阻式传感器的仿真与接口电路设计首先介绍一款应变片传感器YZC-1B称重传感器。

它的主要参数见下表。

额定载荷:3,5,8,10,15,20,25,30, 35,40,45kg绝缘电阻:≥5000MΩ工作温度范围:-40 ~+80℃灵敏度:2.0±0.002mv/v 安全过载:150%F.S综合误差:±0.02%F.S 极限过载:200%F.S 蠕变:±0.02%F.S推荐激励电压:10~12V(DC)零点平衡:±1%F.S最大激励电压:15V零点温度影响:±0.02%F.S/10℃密封等级:IP67输出温度影响:±0.02%F.S/10℃材质:铝合金输入电阻:405±5Ω电缆:线长:0.3~3m;直径:¢4mm 输出电阻:350±3Ω输入+:红;输入-:黑;输出+:绿;输出-:白这种传感器主要的应用领域是电子计价秤、计重秤等小台面电子秤。

它的外观是这样的。

这个实验里首先对这样一款传感器进行仿真,然后设计一个接口电路,使其具有测量压力(重量)的功能。

电阻应变片的工作原理基于电阻应变效应,即在导体产生机械变形时,它的电阻值相应发生变化。

应变片是由金属导体或半导体制成的电阻体,其阻值随着压力的变化而变化。

对于金属导体,导体变化率△R/R的表达式为:△ R/R ≈(1+2μ)ε式中μ为材料的泊松系数;ε为应变量。

通常把单位应变所引起电阻值相对变化称作电阻丝的灵敏系数。

对于金属导体,其表达式为:K=△R/R=(1+2μ)所以△R/R=Kε。

在外力作用下,应变片产生变化,同时应变片电阻也发生相应变化。

当测得阻值变化为ΔR时,可得到应变值ε,根据应力与应变关系,得到应力值为:σ=Eε式中:σ为应力;ε为应变量(为轴向应变);E为材料的弹性模量(kg/mm2)。

又知,重力G与应力σ的关系为G=㎎=σs 。

式中:G为重力;S为应变片截面积。

根据以上各式可得到:ΔR/R=Kmg/ES。

由此便得出应变片电阻值变化与物体质量的关系,即ΔR=RK0mg/ ES。

根据应变片的材料,取K=2,E=16300kg∕mm2, s=100mm2,R=350Ω,g=9.8m∕s,ΔR=[(2×9.8×348)∕(16300×100)]m。

最终确定电阻变化与质量的对应关系为:ΔR =4.185×10-3m下面用multisim10建立一个包含有传感器和放大电路在内的电路原理图,来进行输入输出的仿真。

原理图如下。

在这个电路里采用了恒流源对传感器电桥的激励。

适用四个350Ω的电阻来代替传感器上的四个应变片。

当没有外界压力的时候,传感器四个应变片不产生应变而保持原来的阻值,因此电桥平衡,输出为0。

当传感器感知压力的时候,对角线的电阻阻值将发生相应的变化,因此破坏了电桥臂的平衡,有电压输出。

但输出电压值很小。

于是在后面连接了两级放大电路。

电路中有四个滑动变阻器分别是R13,R5,R10,R12。

其中R13和R5用于电路的调零,R10和R12用于调整电路的放大倍数。

首先将放大电路两端接地调零。

假定传感器在重物的压力下发生了应变,按照前面计算的关系ΔR =4.185×10-3m,在受到30kg的重物的压力时,它的ΔR 应为0.125Ω。

于是调整电桥上的电阻的阻值为350.125Ω,350.125Ω,349.875Ω,349.875Ω。

此时,为了使输出电压与输入的重量成对应关系,可调整滑动变阻器R10和R12使输入30kg时输出3V。

然后观测各表的显示并记录下来。

可见,此时恒流源输出6.779mA电流,电桥输出874.434μV的电压,放大输出后的电压是2.999V。

当传感器受到20kg的重物压力时,相应的电阻变化ΔR时0.084Ω。

相应的输出是1.937V。

这样再进行10kg、40kg、50kg情况下的仿真。

记录在表格里。

重量(kg) 10 20 30 40 50ΔR(Ω)0.042 0.084 0.125 0.167 0.209 电桥输出μV284.737 571.183 847.434 1132 1417放大后输出V0.836 1.937 2.999 4.093 5.187 仿真结果并不理想。

接下来讲输出的电压经过A/D转换输入单片机并仿真。

在proteuse中建立原理图。

图中的恒流源、传感器电桥、放大电路已在前文出现,接下来是A/D 转换、单片机处理和液晶显示。

A/D 转换采用ADC0809(仿真中用ADC0808),单片机采用89C51。

在Keil4中编写代码编译并生成 .hex 文件(代码在附录2中)。

双击图中的AT89C51加载 .hex 文件,查看仿真结果。

在液晶屏幕上显示出了电压(或者说物体的重量)。

单片机▶A/D 转换电路▶◀放大器输出下图是这次实验的完整电路。

接下来是由protel99 SE再绘制原理图,形成PCB版图,并焊电路板。

附录1:元器件一览表名称数量名称数量附录2://-------------- include.h -----------------#ifndef __INCLUDES_H__#define __INCLUDES_H__#include <REGX51.H>#include "SMC1602.h"#include "DATransform.h"#endif//-------------- main.c --------------------#include "includes.h"#define TIME0H 0x3C#define TIME0L 0xB0//全局变量unsigned char uc_Clock=0; //定时器0中断计数bit b_DATransform=0;//LCD上显示电压void vShowNum(unsigned int uiNumber) {unsigned char ucaNumber[3],ucCount;if(uiNumber>999)uiNumber=999;ucaNumber[0]=uiNumber/100;//把计算数字的每个位存入数组。

ucaNumber[1]=(uiNumber-100*(int)uca Number[0])/10;ucaNumber[2]=uiNumber-100*(int)ucaN umber[0]-10*ucaNumber[1];for(ucCount=0;ucCount<3;ucCount++){vShowOneChar(ucaNumber[ucCount]+48); //从首位到末位逐一输出。

//if(ucCount==0)// vShowOneChar('.');}}void delay(unsigned char a){unsigned char i;while(a--)for(i=100;i>0;i--);}void main(){//char key_pre=0,key_cur=0;char weight;//设置定时器0TMOD=0x01; //定时器0,模式1。

TH0=TIME0H;TL0=TIME0L;TR0=1; //启动定时器。

ET0=1; //开定时器中断。

EA=1; //开总中断vdInitialize();vWriteCMD(0x00);vShowChar(" ");while(1){vWriteCMD(0xC0);vShowChar(" xiexie DUlaoshi");while(b_DATransform!=1);b_DATransform=0;while((weight=uiADTransform())==0);vWriteCMD(0x88);//vShowNum(" ");vShowNum(weight);vShowChar(" kg");vWriteCMD(0xC0);delay(250);delay(250);delay(250);delay(250);vdCleanLCD() ;}}//定时器0中断函数void Time0() interrupt 1{if(uc_Clock==0){uc_Clock=5;b_DATransform=1;}elseuc_Clock--;TH0=TIME0H; //恢复定时器0。

TL0=TIME0L;}//------------- DATransform.h -------------#ifndef __DATRANSFORM_H__#define __DATRANSFORM_H__ unsigned int uiADTransform();#endif//------------- SMC1602.h ----------------- #ifndef __SMC1602_H__#define __SMC1602_H__#include <REGX51.H>//LCD设置函数#define vdInitialize() vWriteCMD(0x01);vWriteCMD(0x38);v WriteCMD(0x0C); vWriteCMD(0x0F); //初始化#define vdCleanLCD() vWriteCMD(0x01);//清屏//#define vdSetShowMode() vWriteCMD(0x38); //显示模式设置:8位2行5x7点阵//#define vdSetInput() vWriteCMD(0x0C);//文字不动,光标自动右移// vWriteCMD(0x0F); //显示器开、光标开、闪烁开//端口设置宏定义#define LCDRS P3_5//寄存器选择信号:// 0--数据寄存器;// 1--指令寄存器。

#define LCDRW P3_6//读写信号:// 1--读LCD;// 0--写LCD。

#define LCDE P3_7//片选信号,当输入下降沿信号时,//执行指令或传送数据。

#define LCDPORT P0//LCD数据接口。

//写数据命令函数void vDelay();//延时函数。

void vWriteCMD(unsigned char ucCommand);//把1个命令写入LCD。

void vWriteData(unsigned char ucData);//把1个数据写入LCD。

void vShowOneChar(unsigned char ucChar);void vShowChar(unsigned char ucaChar[]);#endif//-----------------DATransform.c---------------------//AD转换函数#include <REGX51.H>#define START P3_4//ATART,ALE接口。

相关文档
最新文档