传感器课程设计——霍尔传感器测量磁场要点

合集下载

使用霍尔效应传感器测量磁场的步骤与技巧

使用霍尔效应传感器测量磁场的步骤与技巧

使用霍尔效应传感器测量磁场的步骤与技巧磁场是我们日常生活中不可或缺的一部分。

为了准确测量磁场的强度和方向,我们可以使用霍尔效应传感器。

霍尔效应传感器是一种电子元件,能够测量磁场对电流的影响,从而提供有关磁场特征的输出。

下面将介绍使用霍尔效应传感器测量磁场的步骤与技巧。

步骤一:选择合适的霍尔效应传感器首先,我们需要选择适合我们需求的霍尔效应传感器。

市面上有多种类型的霍尔效应传感器,根据不同的应用需求,如测量范围、磁场灵敏度等,我们可以选择不同型号的传感器。

在选择过程中,可以参考产品手册和技术规格,以确保选购到最适合的传感器。

步骤二:搭建合适的实验装置为了进行磁场测量,我们需要搭建一个合适的实验装置。

装置可以包括霍尔效应传感器、电源供应器、磁场源以及相应的电路连接等。

在搭建装置时,需要保证传感器和其他元件之间的正确连接,并确保电路的稳定性和可靠性。

步骤三:校准霍尔效应传感器在进行实际测量之前,我们需要对霍尔效应传感器进行校准。

校准的目的是获得准确的输出,以便后续的磁场测量。

校准过程中,可以通过改变磁场的强度和方向,观察传感器的响应,并记录相关数据。

通过分析这些数据,我们可以建立校准曲线,以便将传感器输出与实际磁场值进行对应。

步骤四:确定磁场测量方法在进行磁场测量时,我们需要确定合适的测量方法。

常见的方法有点测量法和线测量法。

点测量法适用于测量特定位置的磁场值,可以将传感器放置在需要测量的位置,记录传感器输出值。

线测量法适用于测量磁场的空间分布情况,可以通过移动传感器的位置,并记录相应的测量值。

步骤五:进行磁场测量在经过前述准备工作后,我们可以进行磁场测量了。

根据选择的测量方法,将霍尔效应传感器放置在适当的位置,并记录传感器输出值。

在测量过程中,需要注意保持传感器与磁场源之间的适当距离,以避免其他因素对测量结果的影响。

如果需要测量不同位置的磁场值,重复移动传感器的位置,并记录相应的测量值。

步骤六:数据处理与分析完成磁场测量后,我们需要对获得的数据进行处理与分析。

霍尔元件基本参量及磁场的测量

霍尔元件基本参量及磁场的测量

霍尔元件基本参量及磁场的测量【实验目的】(1)了解霍尔元件的基本原理及产生的条件,测量室温下半导体材料的霍尔元件的基本参数。

(2)测绘霍尔元件的V H -I S 、V H -I M 曲线,了解霍尔电压与霍尔元件工作电流I S 和励磁电流I M 之间的关系。

(3)测电磁铁磁隙中磁场的横向分布。

【实验原理】1. 霍尔效应如图3.7.1所示,一块宽为W ,厚为h 的半导体薄片,若在其对称点1、2之间接上一个灵敏度电流计,沿x 轴正向通电流,在不加磁场的情况下,电流计不会偏转,说明1、2两点半导体薄片图3.7.1之间电位相等;但是如果在z 方向加上磁场B ,电流计立即就会偏转,说明1、2两点之间有电位差。

这一现象是霍尔首先发现的,故称霍尔效应,两点间的电位差称为霍尔电压。

设沿半导体薄片x 方向通一稳恒电流I S ,z 方向加一均匀磁场B 后,半导体薄片中的载流子(空穴或电子)将受到洛仑兹力F B 的作用,由于I S 的方向和B 垂直,故F B =evB ,这个力使电荷在元件的两边1-3或2-4面堆积并形成一横向电场E H ,即霍尔电场。

电场E H 对载流子产生一个方向和洛仑兹力F B 相反的静电力F B =eE H ,当载流子受到的横向电场力和磁场力达到平衡(F E =F B )时,即有H evB eE = (3.7.1)H E vB =式中 e —— 载流子电量;v —— 载流子速度;E H —— 霍尔电场强度。

设两侧面间霍尔电压为V H ,则H H 00w wV E d vBd vBw ===⎰⎰ (3.7.2)由于半导体薄片厚为h ,在x 方向的截面面积S w h =⋅,再设半导体薄片内单位体积电荷数为n ,则电流密度nev δ= (3.7.3) 电流强度S I S nev wh δ=⋅=⋅ (3.7.4) 于是S I v newh =(3.7.5) 则S H 1I B V ne h =⋅ (3.7.6) 2. 基本参数(1)霍尔系数 式(3.7.6)中,令H 1R ne =(3.7.7) 则 S S H H 1I B I B V R ne h h=⋅= (3.7.8) R H 称为霍尔系数,是半导体材料的一个重要参数,当R H 为负值时,半导体薄片为N 型半导体(电子型导电);当R H 为正值时,半导体薄片为P 型半导体(空穴型导电),由式(3.7.7)可得出半导体薄片的霍尔系数的测量公式为H H S V h R I B⋅= (3.7.9) H R 的单位为:cm 3/C 〔B 、I S 、V H 、h 的单位分别为高斯(1Gs =10-4 T )、安培(A )、伏特(V )、厘米(cm )〕,也常用m 3/C.(2) 载流子浓度由公式(3.77)可得载流子浓度n :H 1n R e= (3.7.10) (3)电导率由于半导体薄片的电阻R 的大小与其长度L 成正比,与其截面面积成反比,即L R Sρ= (3.7.11) 式中ρ 为半导体材料的电阻率,则其电导率σ 为1L RSσρ== (3.7.12) 在图3.7.1的半导体薄片中,设相距为L 的两点间的电位差为V 1,则S S 1S 11I L I L V R I S whσσ=⋅=⋅=⋅ (3.7.13) S 1I L V whσ=⋅ (3.7.14) 若已知半导体薄片的w 、h 、L ,并测出工作电流I S 和相距为L 的两点间的电位差V 1,代入式(3.7.14)就可求得σ。

霍尔传感器的课程设计..docx

霍尔传感器的课程设计..docx

霍尔传感器的课程设计.标题:霍尔传感器的课程设计摘要:霍尔传感器是一种常用的磁场传感器,广泛应用于工业控制、汽车电子、医疗仪器等领域。

本文基于实际情景,设计了一门针对霍尔传感器的课程。

通过该课程,学生将全面了解霍尔传感器的原理、应用和实验操作技能,为他们将来的工作和学习提供有力支持。

关键词:霍尔传感器,课程设计,实验操作技能一、引言近年来,随着工业自动化和电子技术的快速发展,传感器技术在各个领域得到广泛应用。

其中,霍尔传感器因其简单、高精度的测量特性备受关注。

针对这一热门技术,设计一门系统全面的课程对于培养学生的实践操作技能和创新能力具有重要意义。

二、课程目标1. 理解霍尔传感器的原理和工作机制。

2. 掌握霍尔传感器的应用场景和相关技术。

3. 培养学生在实验操作和解决实际问题中的能力。

三、课程内容安排1. 原理和基础知识讲解- 霍尔效应的原理和基本概念- 霍尔传感器的工作原理及分类- 霍尔传感器在不同领域的应用案例介绍2. 实验操作训练- 霍尔传感器的接线和电路设计- 信号采集和处理相关实验- 数据分析和结果评估3. 项目设计与开发- 学生自主或小组合作,设计并实现一个基于霍尔传感器的应用项目- 考核项目的创新性、可行性和实用性四、教学方法1. 讲授法:通过教师讲解和示范,向学生传授相关知识和技能。

2. 实验操作:提供实验平台,让学生亲自操作霍尔传感器进行测量和实验。

3. 讨论与案例分析:通过小组讨论、案例分析,激发学生思维,培养解决实际问题的能力。

4. 项目指导:教师定期跟进项目设计与开发过程,提供指导和反馈。

五、评估方式1. 平时表现:包括实验记录、课堂参与等。

2. 实验报告:学生通过实验操作,撰写实验报告,总结实验结果和数据分析。

3. 项目成果:考核学生项目设计和实现的创新性、可行性和实用性。

六、预期成果经过本课程的学习,学生将掌握霍尔传感器的原理、应用和实验操作技能,具备以下能力:- 理解和解释霍尔传感器相关技术和概念。

霍尔传感器探伤要点

霍尔传感器探伤要点

东北石油大学课程设计2013年7 月16日任务书课程传感器课程设计题目探伤式传感器应用电路设计专业测控技术与仪器姓名刘师学号100601240207主要内容:霍尔传感器无损探伤:应用在设备故障诊断、材料缺陷检测之中霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。

当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。

其探伤原理是建立在铁磁性材料的高磁导率特性之上。

采用霍尔元件检测该泄漏磁场B的信号变化,可以有效地检测出缺陷存在。

基本要求:1、此霍尔传感器正常工作时能诊断设备故障。

2、此霍尔传感器正常工作时能检测材料缺陷。

主要参考资料:[1]陈杰.传感器与检测技术[M].北京.高等教育出版社.2002[2] 郁有文.传感器原理与工程应用[M].西安电子科技大学出版社.2001[3] 张福学.传感器电子学及其应用[M].北京.国防工业出版社.1990[4] 吴光杰.传感器与检测技术[M].重庆大学出版社.2011完成期限2013.7.12—2013.7.16指导教师专业负责人2013年7 月12 日摘要霍尔元件是一种基于霍尔效应的磁传感器,用它们可以检测磁场及其变化,并且运用越来越广泛,且有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀,这与其结构和原理有很大的关联。

[1]用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。

在利用霍尔传感器进行机械设备的无损探伤中,我们根据无损探伤原理,在理论的基础上,讨论了霍尔元件在获取漏磁场变化信号中的特点,设计出简易的无损探伤设备。

探讨提高探伤精度的技术措施,介绍在工程中的应用实例。

关键词:霍尔效应;原理;无损探伤;磁场;漏磁目录一、设计要求 (1)1、功能及意义 (1)2、国内外发展现状 (1)二、设计方案及其特点 (2)1、方案说明 (2)2、方案论证 (3)三、传感器工作原理 (3)1、霍尔元件定义及其特点和制作 (3)2、霍尔元件电磁无损探伤原理 (3)四、电路的工作原理 (4)五、单元电路设计、参数计算和器件选择 (5)1、单元电路设计 (5)2、参数计算 (6)3、器件选择 (7)六、总结 (7)探伤式传感器应用电路设计一、设计要求1、功能及意义霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。

霍尔元件测量磁场实验报告

霍尔元件测量磁场实验报告

霍尔元件测量磁场实验报告1. 引言嘿,大家好,今天咱们来聊聊一个酷炫的实验,那就是用霍尔元件测量磁场。

这玩意儿听起来可能有点高深,但其实也没那么复杂。

就像喝水一样,简单明了,来,跟我一块儿探究吧!霍尔元件,它的工作原理就像魔法一样。

你只需把它放到磁场中,它就能告诉你磁场的强度。

是不是很神奇?而且我们用这个实验,不仅能让大家对物理有更直观的认识,还能让学习变得更有趣,谁不想当个科学小达人呢?2. 实验原理2.1 霍尔效应首先,咱们得聊聊霍尔效应。

简单来说,就是当电流流过一个导体,放在垂直磁场里时,导体的一侧会出现电压差,这就是霍尔电压。

哇,这个原理听起来就像是在讲故事一样,对吧?电流、磁场、电压,这些元素混在一起,真的是一场科学的盛宴。

霍尔元件通过这种效应,能把磁场的强度转化成电信号,太厉害了!2.2 实验准备在实验之前,咱们得准备一些材料。

别担心,所需的东西可不复杂:一个霍尔元件、一块电源、一根电流表,还有一个可以调节磁场的装置。

哦,对了,还有个小黑板,用来记录数据。

只要把这些东西都准备好,就可以开始这场科学之旅啦!记得保持耐心哦,科学可不是一蹴而就的事情。

3. 实验步骤3.1 连接电路接下来,咱们开始实验。

首先,把霍尔元件连上电源。

电流一开,霍尔元件就开始“工作”了。

真是好像打开了一扇新世界的大门!记得检查一下连接是不是牢靠,别让电流跑了。

这就像养花,浇水的时候要保证水分足够,也不能太多,否则就容易烂根。

3.2 测量磁场好了,现在就轮到咱们测量磁场了。

把霍尔元件放进调节好的磁场里,慢慢调整磁场强度。

每次调整后,看看电流表上的数值,哇,真的是一目了然,数据在眼前一闪一闪的,就像星星一样。

记得要记录下每个强度对应的电压哦,数据可不能遗漏!这些数据将来可是你展示成果的“秘密武器”呢!4. 数据分析4.1 结果讨论当数据收集完后,咱们就要进行数据分析了。

看看这些数值有没有规律,能不能从中找到一些有趣的结论。

霍尔法测磁场实验总结

霍尔法测磁场实验总结

霍尔法测磁场实验总结
霍尔效应是指当导体中有电流流过时,垂直于电流方向和磁场方向的电场会产
生一个电势差,这个现象就是霍尔效应。

利用霍尔效应可以测量磁场的强度,这就是霍尔法测磁场实验的原理。

在进行霍尔法测磁场实验时,首先需要准备一块矩形形状的半导体材料,如硅
或者锗。

将这块半导体材料连接到一个电源上,使其形成一个闭合电路,然后将这个闭合电路放置在一个外加磁场中。

在半导体材料的一侧放置一个电压表,另一侧放置一个磁感应强度计,通过测量在外加磁场下半导体材料两侧产生的电势差和电流,就可以计算出磁场的强度。

在实验过程中,我们发现了一些规律。

首先是磁场的方向和电流的方向会影响
霍尔电压的极性,当磁场方向和电流方向一致时,霍尔电压的极性与电流方向一致;当磁场方向和电流方向相反时,霍尔电压的极性与电流方向相反。

其次是磁场的强度和霍尔电压成正比,即磁场越强,霍尔电压也越大。

最后是半导体材料的性质也会影响霍尔电压的大小,不同的半导体材料会有不同的霍尔系数,从而影响霍尔电压的大小。

通过这些实验结果,我们可以得出结论,霍尔法测磁场实验是一种简单而有效
的测量磁场强度的方法。

它不仅可以用于实验室中对磁场的测量,还可以应用于工业和科研领域中。

同时,我们也深刻理解了霍尔效应在磁场测量中的应用,这对我们进一步深入研究磁场有着重要的意义。

总之,霍尔法测磁场实验是一项具有重要意义的实验,通过这项实验,我们不
仅加深了对霍尔效应的理解,还掌握了一种测量磁场强度的有效方法。

希望在今后的学习和科研中,我们能够充分利用这项实验成果,为科学研究和技术应用做出更大的贡献。

霍尔效应法测量磁场

霍尔效应法测量磁场

实验八 霍尔效应法测量磁场【实验目的】1.了解霍尔器件的工作特性。

2.掌握霍尔器件测量磁场的工作原理。

3.用霍尔器件测量长直螺线管的磁场分布。

4.考查一对共轴线圈的磁耦合度。

【实验仪器】长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。

【实验原理】1.霍尔器件测量磁场的原理图1 霍尔效应原理如图1所示,有-N 型半导体材料制成的霍尔传感器,长为L ,宽为b ,厚为d ,其四个侧面各焊有一个电极1、2、3、4。

将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I ,则电子将沿负I 方向以速度运动,此电子将受到垂直方向磁场B 的洛仑兹力m e F ev B =⨯u u r u r u r作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。

因此在薄片中产生了由2侧指向1侧的电场H E u u u r,该电场对电子的作用力H H F eE =u u r u u u r ,与m e F ev B =⨯u u r u r u r反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压H U ,此种效应为霍尔效应,由此而产生的电压叫霍尔电压H U ,1、2端输出的霍尔电压可由数显电压表测量并显示出来。

I如果半导体中电流I 是稳定而均匀的,可以推导出H U 满足:H H H IBU R K IB d=⋅=⋅, 式中,H R 为霍耳系数,通常定义/H H K R d =,H K 称为灵敏度。

由H R 和H K 的定义可知,对于一给定的霍耳传感器,H R 和H K 有唯一确定的值,在电流I 不变的情况下,与B 有一一对应关系。

2.误差分析及改进措施由于系统误差中影响最大的是不等势电势差,下面介绍一种方法可直接消除不等势电势差的影响,不用多次改变B 、I 方向。

如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间连接一可变电阻,其滑动端作为另一引出线2,将线路完全接通后,可以调节滑动触头2,使数字电压表所测电压为零,这样就消除了1、2两引线间的不等势电势差,而且还可以测出不等势电势差的大小。

传感器课程设计——霍尔传感器测量磁场

传感器课程设计——霍尔传感器测量磁场

目录一、课程设计目的与要求 (2)二、元件介绍 (3)三、课程设计原理 (6)3.1霍尔效应 (6)3.2测磁场的原理,载流长直螺线管内的磁感应强度 (8)四、课程设计内容 (10)4.1电路补偿调节 (10)4.2失调电压调零 (10)4.3按图4-3接好信号处理电路 (10)4.4按图4-4接好总测量电路 (11)4.5数据记录与处理 (12)4.6数据拟合 (14)五、成品展示 (16)六、分析与讨论 (17)实验所需仪器 (19)个人总结 (20)致谢 (21)参考文献 (22)参考网址 (22)一、课程设计目的与要求1.了解霍尔传感器的工作原理2.掌握运用霍尔传感器测量磁场的方法二、元件介绍CA3140CA3140高输入阻抗运算放大器,是美国无线电公司研制开发的一种BiMOS高电压的运算放大器在一片集成芯片上,该CA3140A和CA3140 BiMOS运算放大器功能保护MOSFET的栅极(PMOS上)中的晶体管输入电路提供非常高的输入阻抗,极低输入电流和高速性能。

操作电源电压从4V至36V(无论单或双电源),它结合了压电PMOS晶体管工艺和高电压双授晶体管的优点.(互补对称金属氧化物半导体)卓越性能的运放。

应用范围:.单电源放大器在汽车和便携式仪表.采样保持放大器.长期定时器.光电仪表.探测器.有源滤波器.比较器.TTL接口.所有标准运算放大器的应用.函数发生器.音调控制.电源.便携式仪器3503霍尔元件UGN3503LT,UGN3503U和UGN3503UA霍尔效应传感器准确地跟踪磁通量非常小的变化,密度变化通常太小以致不方便操作霍尔效应开关。

可作为运动探测器,齿传感器和接近探测器,磁驱动机械事件的镜像。

作为敏感电磁铁的显示器,就可以有效地衡量一个系统的负载量可以忽略不计的性能,同时提供隔离污染和电气噪声。

每个霍尔效应集成电路包括一个霍尔传感元件,线性放大器和射极跟随器输出级。

三种封装形式提供了对磁性优化包大多数应用程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、课程设计目的与要求 (2)二、元件介绍 (3)三、课程设计原理 (6)3.1霍尔效应 (6)3.2测磁场的原理,载流长直螺线管内的磁感应强度 (8)四、课程设计内容 (10)4.1电路补偿调节 (10)4.2失调电压调零 (10)4.3按图4-3接好信号处理电路 (10)4.4按图4-4接好总测量电路 (11)4.5数据记录与处理 (12)4.6数据拟合 (14)五、成品展示 (16)六、分析与讨论 (17)实验所需仪器 (19)个人总结 (20)致谢 (21)参考文献 (22)参考网址 (22)一、课程设计目的与要求1.了解霍尔传感器的工作原理2.掌握运用霍尔传感器测量磁场的方法二、元件介绍CA3140CA3140高输入阻抗运算放大器,是美国无线电公司研制开发的一种BiMOS高电压的运算放大器在一片集成芯片上,该CA3140A和CA3140 BiMOS运算放大器功能保护MOSFET的栅极(PMOS上)中的晶体管输入电路提供非常高的输入阻抗,极低输入电流和高速性能。

操作电源电压从4V至36V(无论单或双电源),它结合了压电PMOS晶体管工艺和高电压双授晶体管的优点.(互补对称金属氧化物半导体)卓越性能的运放。

应用范围:.单电源放大器在汽车和便携式仪表.采样保持放大器.长期定时器.光电仪表.探测器.有源滤波器.比较器.TTL接口.所有标准运算放大器的应用.函数发生器.音调控制.电源.便携式仪器3503霍尔元件UGN3503LT,UGN3503U和UGN3503UA霍尔效应传感器准确地跟踪磁通量非常小的变化,密度变化通常太小以致不方便操作霍尔效应开关。

可作为运动探测器,齿传感器和接近探测器,磁驱动机械事件的镜像。

作为敏感电磁铁的显示器,就可以有效地衡量一个系统的负载量可以忽略不计的性能,同时提供隔离污染和电气噪声。

每个霍尔效应集成电路包括一个霍尔传感元件,线性放大器和射极跟随器输出级。

三种封装形式提供了对磁性优化包大多数应用程序。

封装后缀“LT”是一个缩影SOT-89/TO243AA表面贴装应用的晶体管封装;后缀“U”是一个微型三引脚塑料SIP,而'UA'是一个三引脚超小型SIP协议。

所有器件的额定连续运行温度范围为-20 °C至+85°C。

特点:·极为敏感·至23 kHz的平坦的响应Array·低噪声输出·4.5 V至6 V的操作·磁性优化装箱图2-4 3503霍尔元件封装及引脚图三、课程设计原理3.1霍尔效应图3-1-1 霍尔效应原理图 把矩形的金属或半导体薄片放在磁感应强度为的磁场中,薄片平面垂直于磁场方向。

如图3-1-1所示,在横向方向通以电流I ,那么就会在纵向方向的两端面间出现电位差,这种现象称为霍尔效应,两端的电压差称为霍尔电压,其正负性取决于载流子的类型。

(图3-1-1载流子为带负电的电子,是N 型半导体或金属),这一金属或半导体薄片称为霍尔元件。

假设霍尔元件由N 型半导体制成,当霍尔元件上通有电流时,自由电子运动的方向与电流I 的流向相反的。

由于洛伦兹力B v e F m ⨯-=的作用,电子向一侧偏转,在半导体薄片的横向两端面间形成电场 称为霍尔电场H E ,对应的电势差称为霍尔电压U H 。

电子在霍尔电场H 中所受的电场力为H H e -=,当电场力与磁场力达到平衡时,有()()0=⨯-+-e e HB v E H ⨯-=若只考虑大小,不考虑方向有E H =vB因此霍尔电压U H =wE H =wvB (1)根据经典电子理论,霍尔元件上的电流I 与载流子运动的速度v 之间的关系为I=nevwd (2)式中n 为单位体积中的自由电子数,w 为霍尔元件纵向宽度,d 为霍尔元件的厚度。

由式(1)和式(2)可得IB K IB d R end IB U H H H =⎪⎭⎫ ⎝⎛== (3) 即I K U B H H =(4) 式中en R H 1=是由半导体本身电子迁移率决定的物理常数,称为霍尔系数,而K H 称为霍尔元件的灵敏度。

在半导体中,电荷密度比金属中低得很多,因而半导体的灵敏度比金属导体大得多,所以半导体中,电荷密度比金属中低得多,因而半导体的灵敏度比金属导体大得多,所以半导体能产生很强的霍尔效应。

对于一定的霍尔元件,K H 是一常数,可用实验方法测定。

虽然从理论上讲霍尔元件在无磁场作用(B=0)时,U H =0,但是实际情况用数字电压表测量并不为零,这是由于半导体材料结晶不均匀、各电极不对称等引起附加电势差,该电势差U HO 称为剩余电压。

随着科技的发展,新的集成化(IC)器件不断被研制成功,本课程设计采用AN503型集成霍尔传感器。

AN503型集成霍尔传感器有三根引线,分别是:“V+”、“V -”、“V out ”。

其中“V+”和“V -”构成“电流输入端”,“V out ”和“V -”构成“电压输出端”。

由于AN503型集成霍尔传感器它的工作电流已设定,被称为标准工作电流,使用传感器时,必须使工作电流处于该标准状态。

在实验时,只要在磁感应强度为零(B=0)条件下,“V out ”和“V -”之间的电压为2.500V ,实际测得2.53V ,则传感器就处于标准工作状态之下(V+标号为1,V-标号为2,V out 标号为3)。

所以要对霍尔传感器进行电路补偿,使得传感器在0磁场的条件下接入电路输出电压Uo=0V ,则补偿电路如下:图3-1-2 霍尔传感器的补偿电路3.2测磁场的原理,载流长直螺线管内的磁感应强度对于密绕的螺线管,可以看成是一列有共同轴线的圆形线圈的并排组合,因此一个载流长直螺线管轴线上某点的磁感应强度,可以从对各圆形电流在轴线上该点所产生的磁感应强度进行积分求和得到。

根据毕奥—萨伐尔定律,当线圈通以电流IM 时,管内轴线上P 点的磁感应强度为 )cos (cos 21210ββμ-=M P NI B 5其中μO 为真空磁导率,μO =4π×10-7亨利/米,N 为螺线管单位长度的线圈匝数,IM 为线圈的励磁电流,β1、β2分别为点P 到螺线管两端径失与轴线夹角,如图3-2-1所示。

对于一个有限长的螺线管,在距离两端口等远的中心处轴上O 点,221)2()2(2cos D L L +=β 6 222)2()2(2cos D L L +-=β7图3-2-1式中D 为长直螺线管直径,L 为螺线管长度。

此时,磁感应强度为最大,且等于220222200))21()21(21)21()21(21(21D L L NI D L L D L L NI B M M +=+++=μμ 8由于本设计所用的长直螺线管满足L>>D ,则近似认为M NI B 00μ= 9 在两端口处,221)21(cos D L L+=β, 0cos 2=β 10磁感应强度为最小,且等于2201)21(21D L L NI B M +=μ 11同理,由于本设计所用的长直螺线管满足L>>D ,则近似认为M NI B 0121μ= 12由(11)、(12)式可知, 0121B B =由图3-2-2所示的长直螺线管的磁力线分布可知,其内腔中部磁力线是平行于轴线的直线系,渐近两端口时,这些直线变为从两端口离散的曲线,说明其内部的磁场在很大一个范围内是近似均匀的,仅在靠近两端口处磁感应强度才显著下降,呈现明显的不均匀性。

根据上面理论计算,长直螺线管一端的磁感应强度为内腔中部磁感应强度的1/2。

图 3-2-2四、课程设计内容4.1电路补偿调节(1)按图3-1-2接好电路。

集成霍尔传感器与5V微机电源相接(正负极请勿接错)。

如图标号,1接正极,2接地,3和2与数字电压表+、-相接。

(2)霍尔传感器处于零磁场条件下,传感器工作电源输出电压5V,测得数字电压显示的电压指示值为2.53V,调节传感器补偿电路中的可调电阻,也就是用一外接2.53V的电位差与传感器输出2.53V电位差进行补偿,使数字电压表指示值为0(这时应将数字电压表量程开关拨向mV档),这时集成霍尔元件便达到了标准化工作状态,即集成霍尔传感补偿电路的输出电压恰好达到U0=0V。

4.2失调电压调零按图2-3接好电路。

调节可调电阻使得运算放大器的输出端电压Uo=0V。

4.3按图4-3接好信号处理电路图4-3 信号处理电路4.4按图4-4接好总测量电路图4-4为螺线管磁场测量电路示意图,即总电路图。

螺线管长度:22.3cm ,平均直径:25mm 。

螺线管匝数:2000±20匝。

螺线管中央均匀磁场长度:>10.0cm 。

电源组和数字电压表:传感器工作电源5V ,传感器补偿电源5V 。

【注意事项】1.集成霍尔元件的“V+”和“V -”不能接反,否则将损坏元件。

2.实验中常检查Im=0时,传感器输出电压是否为2.500V 。

3.用mV 档读U'值。

当Im=0时,输出端mV 指示应该为0。

5.拆除接线前应先将螺线管工作电流调至为零,再关闭电源。

以防止电感电流突变引起高电压。

6.实验完毕后,请逆时针地旋转仪器上的三个调节旋钮,使恢复到起始位置(最小的位置)。

4.5数据记录与处理(1)三位半数字万用表测量数据表一正向测量结果表二反向测量结果(2)四位半数字万用表测量数据表三正向测量结果表四反向测量结果4.6数据拟合(1)y = 165.1745 x – 7.6376线性度el = 0.76%y = 162.8667x - 5.8409线性度el = 0.71%(2)y = 169.0742x + 9.4787线性度el = 0.21%y = 1681321x - 14.3265线性度el = 0.2%五、成品展示1、全图图 52、面包板接线六、分析与讨论1、补偿电路的分压电阻的大小对整个电路的输出电压是否有影响?答:有影响。

现象1:分压电阻用10k的电阻,可调电阻用50k的电阻。

虽然此时补偿后传感器的输出电压可基本调至0.而整个电路的输出无法调至0,且数值波动很大。

现象2:分压电阻用0.51k的电阻,可调电阻用1k的电阻。

此时补偿后传感器的输出电压可基本调至零,且整个电路的输出电压也可基本调至零,且波动很小。

由此可以得出,输入阻抗的大小对整个电路的输出电压是有影响的,所以补偿电路的分压电阻的大小对整个电路的输出电压是有影响的。

2、失调电压调零电路的电阻对传感器的输出是否有影响?答:有影响。

现象1:当用1k和0.51k电阻并联时,输出端电压可基本调至0,但是接入电路时,输出电压稳定,且可基本调至0。

现象2:当换成10k电阻时,输出电压也可基本调至0,但是接入电路时输出电压不稳定,且波动较大。

相关文档
最新文档