六年级数学上册概念与公式
人教版六年级数学上册概念与公式总结

人教版六年级数学上册概念与公式总结1. 数与代数运算- 自然数概念:自然数是由1、2、3……无限延伸下去的数。
- 小于1000的整数概念:小于1000的整数是由0、1、2、3……999这些数字构成的数。
- 两位数、三位数的概念:两位数是由10~99之间的整数组成,三位数是由100~999之间的整数组成。
- 加减法概念与运算规律:加法是将两个或更多数合并在一起求和,减法是从一个数中减去另一个数。
- 乘法与除法概念与运算规律:乘法是将两个或多个数相乘得到乘积,除法是将一个数分成若干个相等的部分。
2. 分数与小数- 分数的概念与表达方式:分数表示一个整体被等分成若干份的其中之一。
- 看、说、读、写带分数- 小数的概念与表达方式:小数是有整数部分和小数部分组成的数。
3. 平面图形- 点、线、线段、射线的概念与特点- 正方形、长方形、三角形、平行四边形的特点与区别- 镜面对称与图形的判断4. 量的转换- 长度的转换:厘米、分米、米、千米之间的转换- 重量的转换:克、千克、吨之间的转换- 容积的转换:毫升、升之间的转换- 还原图解决实际问题5. 有关时间、温度和人民币的计算- 时、分的概念与基本运算- 摄氏度、华氏度的概念与转换- 人民币的基本面值与简单计算6. 图形的位置与方向- 表示物体位置和方向的依据- 平面图中表示位置和方向的方法- 描写物体位置和方向的语言表达7. 正数与负数- 数轴与正数、负数的表示- 正数与负数的加法与减法- 温度计中的正数和负数以上是人教版六年级数学上册的概念与公式总结,对于每个概念和知识点,可以进一步进行学习与巩固。
人教版,六年级数学上册,概念与公式总结与归纳

人教版,六年级数学上册,概念与公式总
结与归纳
概念与公式总结与归纳:
1. 数的概念:
- 数是人们用来表示事物数量的符号,包括自然数、整数、分数、小数、负数等。
- 自然数由0和比0大的正整数组成,用N表示。
- 整数由正整数、0和负整数组成,用Z表示。
- 分数由整数和真分数组成,用Q表示。
- 小数是不能化成整数的有理数或无理数,用R表示。
2. 四则运算:
- 加法:两个数相加,结果为和。
- 减法:一个数减去另一个数,结果为差。
- 乘法:两个数相乘,结果为积。
- 除法:一个数除以另一个数,结果为商。
3. 数的大小比较:
- 两个数的大小比较可以使用不等号进行表示。
- 大于:用>表示。
- 小于:用<表示。
- 大于等于:用≥表示。
- 小于等于:用≤表示。
4. 使用等式:
- 等式是指两个数或两个代数式之间相等的关系。
- 等号的左右两边的值相等,可以用等号表示。
- 可以进行等式的运算、变形和求解。
5. 坐标系与图形:
- 坐标系是由两条相互垂直的直线组成的,用于表示点在平面
上的位置。
- x轴和y轴是两条相互垂直的直线,它们交叉的点称为原点O,表示为(0, 0)。
- 横坐标表示点在x轴上的位置,纵坐标表示点在y轴上的位置。
- 平面上的点可以用坐标来表示。
以上是人教版六年级数学上册的概念与公式总结与归纳。
希望对你的学习有所帮助!。
六年级上册数学全部公式

六年级上册数学全部公式
六年级上册数学中,常用的公式包括:
1.矩形的面积公式:面积=长×宽
2.正方形的面积公式:面积=边长×边长
3.三角形的面积公式:面积=底边长×高÷ 2
4.梯形的面积公式:面积= (上底长+下底长) ×高÷ 2
5.圆的面积公式:面积= π ×半径×半径,其中π约等于
3.14159
6.圆的周长公式:周长= 2 × π ×半径
7.直角三角形的勾股定理:直角三角形的斜边的平方=直角边1的平方+直角边2的平方
8.一元二次方程求根公式:x = (-b ± √(b² - 4ac)) / 2a,其中ax² + bx + c = 0
9.百分数的计算公式:百分数=实际数值× 100%
10.百分数转化为小数公式:小数=百分数÷ 100%
11.比例的计算:a:b = c:d则a/b = c/d
12.比例的扩大和缩小:若a:b = c:d,则ka:kb = kc:kd,其中k 为任意非零数
同时,也可以拓展一些其他数学公式和概念,如:
1.立方的体积公式:体积=边长×边长×边长
2.棱柱的体积公式:体积=底面积×高
3.圆柱的体积公式:体积=底面积×高
4.球的体积公式:体积= (4/3) × π ×半径×半径×半径
5.直角三角形的正弦定理:a/sinA = b/sinB = c/sinC,其中a、
b、c为三角形的边长,A、B、C为对应的角度。
小学六年级上册数学定义+公式汇总

小学六年级上册数学定义+公式汇总1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数6.分数的倒数:找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1。
9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级数学上册概念与公式

六年级数学上册概念与公式汇总※分数乘法1。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2。
(1)分数乘整数的运算法则:分子与整数相乘,分母不变。
(2)分数乘分数的运算法则:用分子相乘的积做分子,分母相乘的积做分母。
能约分的可以先约分,再计算。
3。
积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
当b 〉1时,a×b 〉a。
一个数(0除外)乘小于1的数,积小于这个数。
当b 〈1时,a×b <a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。
当b =1时,a×b =a .4.分数乘法混合运算顺序与整数乘法相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的.整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
※位置与方向5. 确定物体位置的条件:一是确定方向,二是确定距离。
※分数除法6. 倒数的意义:乘积为1的两个数互为倒数。
1的倒数是它本身,因为1×1=1,0没有倒数,因为任何数乘0积都是0,且0不能作分母。
真分数的倒数是假分数,真分数的倒数大于1,也大于它本身. 假分数的倒数小于或等于1.带分数的倒数小于1.7.分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
8。
比:两个数相除也叫两个数的比。
比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
9比和除法、分数的联系与区别:除法被除数除号(÷)除数(不能为0)商除法是一种运算商不变性质分数分子分数线(-)分母(不能为0)分数值分数是一个数分数的基本性质比前项比号(∶)后项(不能为0)比值比表示两个数的关系比的基本性质10。
比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变.根据比的基本性质可以化简比,化简之后结果还是一个比,不是一个数。
※圆11.圆的特征(1)圆是平面内封闭曲线围成的平面图形。
六年级上册数学概念公式

小学数学图形计算公式:1 正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2 正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 长方体V:体积s:面积a:长b: 宽h:高(1)表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28 圆形S面积C周长πd=直径r=半径(1)周长=直径×π=2×π×半径C=πd=2πr(2)面积=半径×半径×n9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3和差问题的公式:总数÷总份数=平均数(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)棱长总和:长方体棱长和=(长+宽+高)正方体棱长和=棱长×12熟记下列正反比例关系:正比例关系:正方形的周长与边长成正比例关系长方形的周长与(长+宽)成正比例关系圆的周长与直径成正比例关系圆的周长与半径成正比例关系圆的面积与半径的平方成正比例关系常用数量关系:1.路程=速度×时间速度=路程÷时间时间=路程÷速度工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率总价=单价×数量单价=总价÷数量数量=总价÷单价总产量=单产量×面积单产量=总产量÷面积面积=总产量÷单产量单位换算:长度单位:一公里=1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米面积单位:1平方千米=100公顷1公顷=100公亩1公亩=100平方米1平方千米=1000000平方米1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积单位:1立方千米=1000000000立方米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升重量单位:1吨=1000千克1千克=1000克时间单位:一世纪=100年一年=四季度一年=12月一年=365天(平年) 一年=366天(闰年)一季度=3个月一个月= 3旬(上、中、下) 一个月=30天(小月) 一个月=31天(大月)一星期=7天一天=24小时一小时=60分一分=60秒一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七个月)一年中的小月:四月、六月、九月、十一月(四个月)特殊分数值:=0.5=50% = 0.25 = 25% = 0.75 = 75%= 0.2 = 20% = 0.4 = 40% = 0.6 = 60% = 0.8 = 80%=0.125=12.5% = 0.375 = 37.5% = 0.625 = 62.5% = 0.875 = 87.5% 算术1、加法交换律:两数相加交换加数的位置,和不变。
六年级上册公式数学公式

六年级上册公式数学公式
一、几何公式
三角形的面积=底×高÷2。
公式S= a×h÷2
正方形的面积=边长×边长。
公式S= a×a
长方形的面积=长×宽。
公式S= a×b
平行四边形的面积=底×高。
公式S= a×h
梯形的面积=(上底+下底)×高÷2 。
公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
二、单位换算
(1)1公里=1千米1千米=1000米1米=10分米
1分米=10厘米1厘米=10毫米
(2)1平方米=100平方分米
1平方分米=100平方厘米1平方厘米=100平方毫米(3)1立方米=1000立方分米
1立方分米=1000立方厘米1立方厘米=1000立方毫米(4)1吨=1000千克1千克=1000克= 1公斤=1市斤(5)1公顷=10000平方米1亩=平方米
(6)1升=1立方分米=1000毫升1毫升=1立方厘米三、数量关系计算公式方面
1.单价×数量=总价2.单产量×数量=总产量3.速度×时间=路程4.工效×时间=工作总量。
六年级上册数学所有公式讲解

六年级上册数学所有公式讲解
六年级上册数学涉及到的公式主要有长方体和正方体的体积公式、分数乘法、分数除法、圆的面积公式等。
以下是对这些公式的详细讲解:
1. 长方体和正方体的体积公式:长方体的体积=长×宽×高,正方体的体积=棱长×棱长×棱长。
这两个公式是计算长方体和正方体体积的基础,其中长、宽、高或棱长代表各个维度上的尺寸。
2. 分数乘法:分数与整数相乘时,可以用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
也可以先将整数与分数的分母进行约分,再应用前面的计算法则。
如果需要计算几个分数的连乘,可以通过约分简化计算过程。
此外,一个数与比1小的数相乘,积小于原数;一个数与比1大的数相乘,积大于原数。
3. 分数除法:分数除法计算法则为甲数除以乙数(不为0)等于甲数乘乙数的倒数。
这个法则相当于分数乘法的逆运算,通过倒数的概念可以方便地实现除法转乘法的运算。
4. 圆的面积公式:圆的面积=πr²,其中r代表圆的半径。
这个公式是计算圆面积的基础,π是一个常数约等于。
如果需要计算环形的面积,可以通过外圆面积减去内圆面积得到。
此外,圆的面积、直径和周长的变化规律是:半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数;而面积扩大或缩小的倍数是半径扩大或缩小倍数的平方倍。
以上公式是六年级上册数学中的重点和难点,需要学生在理解的基础上掌握和运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学上册概念与
公式
六年级数学上册概念与
公式
公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]
六年级数学上册概念与公式汇总
※分数乘法
1.分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2. (1)分数乘整数的运算法则:分子与整数相乘,分母不变。
(2)分数乘分数的运算法则:用分子相乘的积做分子,分母相乘的积做分母。
能约分的可以先约分,再计算。
3.积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。
当b >1时,a×b >a.
一个数(0除外)乘小于1的数,积小于这个数。
当b <1时,a×b <a (b≠0).
一个数(0除外)乘等于1的数,积等于这个数。
当b =1时,a×b =a .
4.分数乘法混合运算顺序与整数乘法相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
※位置与方向
5. 确定物体位置的条件:一是确定方向,二是确定距离。
※分数除法
6. 倒数的意义:乘积为1的两个数互为倒数。
1的倒数是它本身,因为1×1=1,0没有倒数,因为任何数乘0积都是0,且0不能作分母。
真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
7.分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
8.比:两个数相除也叫两个数的比。
比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
9比和除法、分数的联系与区别:
除法被除数除号(÷)除数(不能为0)商除法是一种运算商不变性质分数分子分数线(—)分母(不能为0)分数值分数是一个数分数的基本性质
比前项比号(∶)后项(不能为0)比值比表示两个数的关系比的基本性质
10. 比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
根据比的基本性质可以化简比,化简之后结果还是一个比,不是一个数。
※圆
11.圆的特征
(1)圆是平面内封闭曲线围成的平面图形。
(2)圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心。
圆心确定圆的位置。
(3)半径r:连接圆心到圆上任意一点的线段叫做半径。
在同一个圆里,有无数条半径,且所有的半径都相等。
半径确定圆的大小。
(4)直径d: 通过圆心且两端都在圆上的线段叫做直径。
在同一个圆里,有无数条直径,且所有的直径都相等。
直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍。
12.画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
13.圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
(1)圆的周长总是直径的三倍多一些。
(2)圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
(3)周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
(4)半圆周长=圆周长一半+直径=πr+d
(5)前进的米数=圆周长×转数转数=前进的米数÷圆周长时间=前进的米数÷(圆周长×转数)
14.圆面积
(1)圆的面积S = ππ2=(d÷2)2
(2)圆、正方形、长方形几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
(3)圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
15.跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。
因为两条直
道宽度。
17.有关圆的常用公式与数据
(1)r=d÷2 (已知直径求半径) d=2r(已知半径求直径) C=πd(已知直径求周长) C=2πr(已知半径求周长) d=C÷π (已知周长求直径)
r=C÷2π (已知周长求半径) S=πr2 (已知半径求面积) S=π(d÷2 )2 (已知直径求面积) S=π(C÷2π ) 2 (已知周长求面积) S环=π(R2 -r2)
(2)112=11×11=121 122=12×12=144 132=169142=196152=225 162=256 172=289
※百分数
18.百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比,百分数不能带单位。
19小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
20.有关百分数的常用数据与公式
(1)1÷2 ==50%;1÷4 ==25%;3÷4 ==75%;1÷5 ==20%;2÷5 ==40%;3÷5 ==60%;
4÷5 ==80%;1÷8 ==%;3÷8 ==%;5÷8 ==% ;7÷8 ==%
(2)及格率=及格人数÷全班人数×100% 优分率=优分人数÷全班人数×100% 合格率=合格产品数÷产品总数×100% 发芽率=发芽种子数÷试验种子数×100%出油率=出油千克数÷油菜籽千克数×100% 出粉率=面粉千克数÷小麦千克数×100%出勤率=实际出勤人数÷应出勤人数×100% 成活率=成活棵数÷种植总棵数×100%※. 扇形统计图
21. 扇形统计图
用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。
优点:很清楚地表示出各部分同总数之间的关系。
※数学广角
22. 数学广角——数与形: 连续奇数的等差数列之和等于某平方数。
等比数列之和等于1。