纳米四氧化三铁的应用

合集下载

纳米四氧化三铁制备及其性质研究

纳米四氧化三铁制备及其性质研究

纳米四氧化三铁制备及其性质研究摘要:四氧化三铁是一种具有反尖晶石结构的铁氧体,由于其具有独特的物理、化学性质,已经引起众多专家学者的关注。

纳米四氧化三铁具有超顺磁性、小尺寸效应、量子隧道效应等使其能够区别于一般的四氧化三铁。

目前在国内外,磁性纳米四氧化三铁已经在催化剂、造影成像、靶向给药、药物载体、DNA检测等应用领域表现出良好的应用前景。

尤其随着纳米技术与高分子工程的快速发展,磁性纳米四氧化三铁在细胞分离、蛋白质分离、生物传感器、重金属吸附等领域越来越受到研究者的重视。

同时,合成粒径小、分布窄且具有优良磁性、表面性能稳定、具有生物相容性安全的磁性纳米四氧化三铁也是各专家、学者研究的热点之一。

关键词:纳米四氧化三铁;磁性;合成近年来,有关磁性纳米粒子的制备方法与性质备受关注。

然而,由于磁性纳米粒子之间的作用力,如范德华力以及磁力作用,纳米四氧化三铁粒子极易发生团聚,使得比表面积降低,同时减弱了反应活性。

通过添加高分子聚合物或表面活性剂对粒子表面进行改性,可以获得稳定分散的磁性纳米粒子,从而有效克服上述缺点。

1.实验部分1.1 实验原理化学共沉淀法是指在包含两种或两种以上金属阳离子的可溶性溶液中,加入适当沉淀剂,将金属离子均匀沉淀或结晶出来。

具体反应方程式:Fe2+ +2Fe3+ +8OH-==Fe3O4 +4H2O.通常是把FeⅡ和FeⅢ的硫酸盐或氯化物溶液一物质的量比2比3的比例混合后,用过量的氨水或氢氧化钠在一定温度和pH下,高速搅拌进行沉淀反应,然后将沉淀过滤、洗涤、烘干,制得纳米四氧化三铁。

1.2仪器与试剂三颈瓶,pH计,高速离心机,恒温水浴箱,真空干燥箱,紫外可见分光光度计,X射线衍射仪等四水合氯化亚铁,六水合氯化铁,乙醇,十二烷基苯磺酸钠,油酸,氢氧化钠,盐酸等。

1.3实验步骤室温下,将四水合氯化亚铁和六水合氯化铁按物质的量比为1比2的比例混合放入三颈瓶中,加入200mL去离子水,然后加入一定量表面活性剂和油酸。

纳米四氧化三铁的应用

纳米四氧化三铁的应用

纳米四氧化三铁的应用一、纳米四氧化三铁的简介四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。

四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。

在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO·Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。

化学式:Fe3O4,分子量231.54,硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物。

逆尖晶石型、立方晶系,密度5.18g/cm3。

熔点1867.5K(1594.5℃)。

它不溶于水,也不能与水反应。

与酸反应,不溶于碱,也不溶于乙醇、乙醚等有机溶剂。

在外磁场下能够定向移动,粒径在一定范围之内具有超顺磁性,以及在外加交变电磁场作用下能产生热量等特性,其化学性能稳定,因而用途相当广泛。

纳米四氧化三铁置于介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过在颗粒表面形成吸附双电层结构阻止纳米粒子团聚,制备稳定分散的水基和有机基纳米磁性液体。

制备的磁性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。

通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。

二、纳米四氧化三铁的配置方法由于纳米四氧化三铁特殊的理化学性质, 使其在实际应用中越来越广泛, 而其制备方法和性质的研究也得到了深入的进展。

磁性纳米微粒的制备方法主要有物理方法和化学方法。

物理方法制备纳米微粒一般采用真空冷凝法、物理粉碎法、机械球磨法等。

但是用物理方法制备的样品一产品纯度低、颗粒分布不均匀, 易被氧化, 且很难制备出10nm 以下的纳米微粒, 所以在工业生产和试验中很少被采纳。

纳米四氧化三铁的制备及应用的研究报告进展论文综述

纳米四氧化三铁的制备及应用的研究报告进展论文综述

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)前言 (1)制备方法 (2)1 固相法 (2)1.1 球磨法 (2)1.2 热分解法 (2)1.3 直流电弧等离子体法 (3)2 液相法 (3)2.1 沉淀法 (4)2.1.1 共沉淀法 (4)2.1.2 氧化沉淀法 (5)2.1.3 还原沉淀法 (5)2.1.4 超声沉淀法 (6)2.2 微乳液法 (6)2.3 水热法/溶剂热法 (7)2.4 水解法 (8)2.5 溶胶-凝胶法 (8)应用 (9)(一)生物医药 (9)(二)磁性液体 (9)(三)催化剂载体 (10)(四)微波吸附材料 (10)(五)磁记录材料 (10)(六)磁性密封 (10)(七)磁保健 (11)展望 (11)致 (11)参考文献 (12)纳米四氧化三铁的制备及应用的研究进展摘要:纳米Fe3O4粒子因其特殊的理化性质而在多个领域得到广泛的应用。

本文综述了纳米四氧化三铁的制备方法和应用领域,其中的制备方法主要有球磨法、沉淀法、微乳液法、水热法/溶剂热、水解法、氧化法、高温分解法和溶胶-凝胶法等,并讨论了纳米四氧化三铁的主要制备方法的优缺点,最后展望了纳米四氧化三铁的应用前景。

关键词:纳米四氧化三铁;制备方法;应用;进展Progress in Preparation and Application of Nano-iron tetroxideStudent majoring in Applied chemistry Name XXXTutor XXXAbstract: Nano-Fe3O4 particles because of their special physical and chemical properties and is widely used in many fields. In this paper, the preparation methods and applications of nano-iron oxide, one of the main methods for preparing milling, precipitation, microemulsion, hydrothermal method / solvent heat, hydrolysis, oxidation, pyrolysis and sol - gel method and discusses the advantages and disadvantages of the main method for preparing iron oxide nanoparticles, and finally the application prospect of nano-iron oxide. Key words: nano-iron oxide; preparation methods; application; progress前言纳米材料是指颗粒尺寸小于100nm的单晶体或多晶体,纳米微粒具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特性[1-2]。

纳米四氧化三铁的化学制备及应用的研究进展

纳米四氧化三铁的化学制备及应用的研究进展

纳米四氧化三铁的化学制备及应用的研究进展摘要:纳米四氧化三铁在在物理、化学等方面表现出优异的性质,因此其制备方法受到了广泛关注。

本文主要综述了纳米四氧化三铁粒子的化学制备方法,包括共沉淀法、微乳液法、溶剂热法等,说明了各个方法的特点,此外介绍了纳米四氧化三铁在催化、吸附、吸波等方面的应用。

关键词:纳米四氧化三铁化学制备方法应用1引言近年来,有关磁性Fe3O4纳米微粒的合成方法及性质研究受到愈来愈多的重视,这是因为磁性Fe3O4纳米微粒具有许多特殊物理和化学性能[1]。

目前,纳米Fe3O4微球的制备方法主要有共沉淀法、微乳液法、溶剂热法等,共沉淀法的操作简单易控制;微乳液法制备的纳米粒子具有粒径分布窄,稳定性好等特点,但其影响因素较多,制备过程较复杂;溶剂热法制备的微球胶体稳定性较差且颗粒大,但此方法可以生长出各类形貌的化合物,这对晶体生长的研究具有重要价值[2]。

未来可将多种传统方法结合,克服单一的制备方法的缺点。

本文就纳米Fe3O4微粒的制备方法及应用进行了综述。

2纳米四氧化三铁的化学制备工艺及应用进展2.1共沉淀法共沉淀法是目前最普遍的使用方法,其方法在包含两种或两种以上金属离子的可溶性盐溶液中,加入适量的沉淀剂,使金属离子均匀沉淀或结晶出来,再将沉淀物脱水或热分解而制得纳米微粉[5]。

夏光强等[3]采用共沉淀法制备纳米Fe3O4,实验过程中发现温度对实验影响不大,对于条件较差的实验室而言,只要保持在40-60℃的温度范围内进行实验即可,此外反应物的添加顺序会影响产物粒子的形貌,反应时间的长短对颗粒细度无明显影响,而沉淀温度过高过低都不利于沉淀,选择50℃左右效果最佳,因此实验选择反相共沉淀法,在50℃水浴环境中,保温10min,PH设定为10左右的实验条件,达到理想的实验效果。

2.2微乳液法微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成热力学稳定的、各向同性、外观透明或半透明的分散体系[5]。

四氧化三铁纳米材料的制备与应用

四氧化三铁纳米材料的制备与应用

四氧化三铁纳米材料的制备与应用四氧化三铁纳米材料是指将三铁酸铁作为原料,通过化学合成或物理制备的方法获得的粒径小于100纳米的铁氧体粉末。

该材料具有高比表面积、独特的磁性、光学性能和化学活性等特点,在磁性材料、催化剂、传感器、生物医药等领域有着广泛的应用。

四氧化三铁纳米材料的制备方法主要包括化学合成法和物理制备法两种。

其中,化学合成法包括溶胶-凝胶法、共沉淀法、水热法、微乳法等,物理制备法包括高能球磨法、磁控溅射法、激光气相沉积法等。

溶胶-凝胶法是一种常见的制备方法,其基本原理是将金属盐或金属有机化合物与溶剂混合后,通过加热、干燥、煅烧等步骤制备出纳米粉末。

共沉淀法是利用化学反应使金属离子在溶液中共同沉淀,得到纳米粉末。

水热法是将金属盐或金属有机化合物与水混合,通过高温高压的条件下合成纳米粉末。

微乳法是将水和油通过表面活性剂的作用形成微乳液,通过添加金属离子与还原剂制备出纳米粉末。

高能球磨法是通过高速旋转的球磨器对粉末进行机械处理,使其粒径减小到纳米级别。

磁控溅射法是利用高能电子轰击靶材,使其表面物质蒸发并沉积在基底上,形成纳米粉末。

激光气相沉积法是将激光束聚焦在靶材表面,使其表面物质蒸发并沉积在基底上,形成纳米粉末。

四氧化三铁纳米材料在磁性材料领域有着广泛的应用。

其高比表面积和独特的磁性能使其成为磁性存储材料和磁性催化剂的理想选择。

在催化剂领域,四氧化三铁纳米材料的高催化活性和稳定性使其成为一种新型的催化剂,可用于有机合成、废水处理等领域。

在生物医药领域,四氧化三铁纳米材料的生物相容性和药物缓释性能使其成为一种新型的药物载体,可用于肿瘤治疗、诊断和影像学等方面。

四氧化三铁纳米材料作为一种新型的纳米材料,在磁性材料、催化剂、生物医药等领域具有广泛的应用前景。

随着制备技术的不断发展和完善,其应用范围和性能将得到更广泛的拓展和提升。

四氧化三铁综述

四氧化三铁综述

四氧化三铁纳米的制备应用及表征摘要:总结了磁性纳米Fe3O4粒子的制备方法,有共沉淀法、超声波沉淀法、水热法、微乳液法、水解法、溶胶- 凝胶法,多元醇法等,并讨论了磁性纳米Fe3O4粒子在磁性液体、生物医学、微波吸附材料磁记录材料、催化剂载体等领域的应用。

简述了Fe3O4得表征手段,最后对纳米Fe3O4的研究前景进行了展望。

关键词:四氧化三铁;磁性纳米颗粒;制备;应用;表征The Preparation and Application of Fe3O4 Magnetic Nano- particles【Abstract】The chemical preparation methods were summarized including co-precipitation,sol-gel method, microemulsion , hydro-thermal method etc. Based on the recent progress , relative meritsof those methods were analyzed. The application of Fe3O4nano-particles in magnetic fluid , magnetic recording materials , catalytical and microwave materials and medicine were introduced.【Key Words】Fe3O4; magnetic nanoparticle; preparation; progressFe3O4磁性纳米颗粒由于具有与生物组织的相容性、与尺寸和形貌有关的电学和磁学性能,且具有好的亲水性、生物兼容性、无毒和高的化学稳定性,所以成为生物磁应用方面的理想材料使其在电子与生物敏感材料,尤其是生物医学领域被人们广泛关注【1】。

应用于生物技术的纳米颗粒需要优良的物理、化学以及磁学特性【2】:(1)具有高磁化率,使材料的磁性较强,一般为铁磁性纳米颗粒;(2)颗粒尺寸为6~15 nm(当颗粒直径小于15 nm 时,就变为单磁畴磁体而具有超顺磁性并且饱和磁化强度很高),比表面积高;(3)具备超顺磁性等。

2021四氧化三铁纳米颗粒催化活性的研究综述范文3

2021四氧化三铁纳米颗粒催化活性的研究综述范文3

2021四氧化三铁纳米颗粒催化活性的研究综述范文 四氧化三铁纳米颗粒(IONPs)具有独特的超顺磁特性,被广泛应用在污水处理、分析检测、生物大分子及细胞分离、药物靶向运输及可控释放、肿瘤磁热治疗、磁共振成像等领域[1~5]. 2007年中国科学院生物物理研究所阎锡蕴教授课题组[6]发现IONPs 能够模拟辣根过氧化物酶(HRP)活性, 催化过氧化氢(H2O2)氧化底物(3,3,5,5-四甲基联苯胺(TMB)、二氨基联苯胺(DAB)、邻苯二胺(OPD))产生颜色变化. 其催化活性与HRP 类似, 依赖于H2O2浓度、pH和反应温度, 催化过程符合米氏动力学以及乒乓反应机制, 因此能够替代HRP应用在酶联免疫吸附分析(ELISA). 随后, 针对IONPs催化活性的研究如雨后春笋般涌现, 涵盖了包括环境保护、食品安全、生物医学等多个领域[7~21]. 1特征及优化 表面未经修饰的IONPs催化TMB-H2O2反应具有以下特征:最适反应条件为pH 3.5, 40℃;低浓度H2O2促进酶样活性, 高浓度H2O2抑制酶样活性; 催化过程符合米氏动力学以及乒乓反应机制; IONPs催化活性源于纳米颗粒表面的Fe2+; 颗粒越小, 比表面积越大, 单位质量纳米颗粒催化活性位点越多, 催化活性更高; 表面修饰基团的包被厚度会影响IONPs与底物的相互作用[6].IONPs在较宽pH(1~12)或者温度(4~90℃)的环境中孵育2 h后仍然保持良好的催化活性, 而HRP在pH低于5或者温度高于40℃的环境中孵育2 h后完全丧失了催化活性[6]. 叠氮钠是生物样品防腐抑菌的重要添加剂. 0.02%叠氮钠的存在抑制了HRP 99%催化活性, 而IONPs在该环境下能够保持93%催化活性. 即使叠氮钠浓度增加4倍, IONPs催化活性仍能维持在54%~82%水平[22]. IONPs催化活性对环境的强耐受性有望拓展其在分析领域特别是HRP使用受限环境中的应用. 过氧化物酶催化反应遵循米氏动力学,米氏常数Km值大小表征酶与底物之间亲和力的大小, Km值高则酶对底物的亲和力低. IONPs具有类似HRP的催化功能, 但是其对底物H2O2的Km值却远高于HRP,表明其对H2O2的亲和力较低[6], 催化反应需要较高浓度的H2O2. 提高IONPs对H2O2及其他底物的亲和力, 可以增强IONPs的催化活性, 促进其过氧化物酶样活性的应用. 通过对IONPs纳米颗粒表面进行修饰, 改变表面电荷类型及大小, 有望增强IONPs与底物之间的静电相互作用, 进而增强IONPs的催化活性. 喻发全等人[22]考察了表面电荷以及表面包被厚度等因素对IONPs酶样活性的影响.2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)含有2个磺酸基,而TMB含有2个氨基. 由于静电相互作用, 纳米颗粒表面电荷会影响对这2种底物的亲和力, 进而影响催化效率. 肝素修饰的IONPs表面负电荷最强, 催化TMB效率也最高; 聚乙烯亚胺修饰的IONPs表面正电荷最强, 催化ABTS效率也最高. 刘艳萍和喻发全[23]发现氨基修饰增强了IONPs对ABTS的亲和力,而巯基修饰增强了IONPs对H2O2的亲和力. 在IONPs表面共同修饰氨基与巯基, 将同时增强IONPs对ABTS和H2O2的亲和力, 提高IONPs的催化活性, 有利于分析测定极微量H2O2以及其他能够转换为H2O2的物质. 卟啉能够加速电子在IONPs和底物之间传递而促进底物氧化, 故卟啉功能化能够增强IONPs过氧化物酶样活性[24]. 不同形状的IONPs具有不同的比表面积和裸露晶面,导致表面催化活性铁原子的数量不同, 因而会导致不同的催化活性. Nath等人[25]制备了右旋糖酐修饰的IONPs, 其对底物TMB的亲和力比未经修饰的IONPs强300倍. Liu等人[26]考察了不同形状IONPs的过氧化物酶样活性, 发现催化活性强弱顺序依次为团簇>三角片>八面体.除IONPs外,大量纳米材料也具有过氧化物酶样活性, 将这些材料与IONPs组合制备复合材料, 可能会起到协同增强模拟酶活性的作用[27~31]. 2应用 IONPs过氧化物酶样活性催化机理可能是:H2O2以及底物 (如 TMB, ABTS等 )吸附在 IONPs表面 ;IONPs 表面的 Fe2+/Fe3+催化H2O2分解为羟自由基;IONPs通过部分电子交换作用稳定羟自由基; 羟自由基氧化底物发生颜色变化, 生成荧光产物, 或者化学发光等[12,24,32,33]. 充分利用催化机理及反应条件的可调节性, IONPs在环境保护、食品安全、生物研究、临床诊断治疗等领域具有广泛应用 , 如免疫测定[6,10,27,34~40]、分析物浓度检测[8,11,13~19,21~24,28,29,31,41~50]、清除污染物[7,9,12,30,32,33,51~56]、抑制细菌[57,58]以及肿瘤治疗[57]等. 2.1免疫检测中作为HRP的替代物 HRP能够催化显色反应,表面的赖氨酸残基可以与多种分子进行交联, 因此被广泛应用于免疫化学领域如蛋白质免疫印迹(western blot)、ELISA、免疫组化(IHC)等. 然而HRP的应用存在一定限制, 如长期储存容易失活, HRP-分子交联物的生产和纯化费用较高等. IONPs具有过氧化物酶活性, 且和天然HRP相比具有以下优点: 生产方法简便, 成本低廉,对恶劣环境抵抗力强易于保存, 具有磁性, 容易回收重复使用以及单分子催化活性更高等. 因此, IONPs可以作为HRP的替代物应用在免疫化学领域, 有望降低分析成本, 提高分析系统稳定性.。

四氧化三铁纳米颗粒负载纳米金

四氧化三铁纳米颗粒负载纳米金

一、介绍四氧化三铁纳米颗粒和纳米金的概念和特性四氧化三铁是一种常见的金属氧化物,具有良好的磁性和光学特性。

它在磁性材料、生物医学领域和环境治理中有着广泛的应用。

而纳米金是指粒径在1-100纳米范围内的金纳米颗粒,具有优异的电子性能和表面增强效应,可用于催化、传感和生物医学成像等领域。

二、四氧化三铁纳米颗粒负载纳米金的制备方法1. 沉淀法:通过将三氯化铁和氢氧化钠混合反应制得四氧化三铁,再利用还原剂将金盐还原成纳米金,最后将纳米金与四氧化三铁混合并进行搅拌、过滤、干燥等步骤,即可得到负载纳米金的四氧化三铁纳米颗粒。

2. 气相沉积法:使用化学气相沉积装置,在合适的温度和气氛条件下将金与铁同时沉积在载体上,形成四氧化三铁纳米颗粒负载纳米金。

三、四氧化三铁纳米颗粒负载纳米金的性能和应用1. 磁性性能:四氧化三铁具有良好的磁性,而负载纳米金可以增强其磁性能,使其在磁性材料、磁共振成像等领域具有更广泛的应用。

2. 光学性能:纳米金具有表面增强效应,可以增强四氧化三铁的光学性能,例如表面增强拉曼散射效应,可用于生物医学成像和传感等领域。

3. 催化性能:负载纳米金的四氧化三铁纳米颗粒具有优异的催化性能,可应用于有机合成、环境治理等领域。

四、四氧化三铁纳米颗粒负载纳米金的未来展望1. 多功能性能:进一步研究四氧化三铁纳米颗粒负载纳米金的多功能性能,探索其在生物医学成像、治疗和肿瘤靶向等领域的应用。

2. 可控制备:发展可控的制备方法,探索不同形貌、尺寸和结构的四氧化三铁纳米颗粒负载纳米金,在材料性能和应用方面的优化。

3. 环境友好型材料:研究四氧化三铁纳米颗粒负载纳米金在环境治理和节能材料中的应用,探索其在污染物降解、废水处理等方面的潜在价值。

五、结语四氧化三铁纳米颗粒负载纳米金作为一种多功能纳米材料,具有广阔的应用潜力。

通过对其制备方法、性能和应用领域的系统研究,将为其在材料科学、生物医学、环境治理等领域的应用提供重要的理论和实践支撑,为纳米技术的发展和创新做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理纳米四氧化三铁的应用
一、纳米四氧化三铁的简介
)前面
显+2与大,
胶溶化法和添加改性剂及分散剂的方
法,通过在颗粒表面形成吸附双电层结
构阻止纳米粒子团聚,制备稳定分散的
水基和有机基纳米磁性液体。

制备的磁
性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。

通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。

二、
泛,
,所
,操
磁性
目前,制备磁性Fe3O4纳米颗粒方法的机理已研究得很透彻,归结起来一般分为两种。

一是采用二价和三价铁盐,通过一定条件下的反应得到磁性Fe3O4纳米颗粒;另一种则是用三价铁盐,在一定条件下转变为三价的氢氧化物,最后通过烘干、煅烧等手段得到磁性Fe3O4纳米颗
粒。

(一)共沉淀法
沉淀法是在包含两种或两种以上金属离子的可溶性盐溶液中,加入适当的沉淀剂,使金属离子均匀沉淀或结晶出来,再将沉淀物脱水或热分解而制得纳米微粉。

(二)溶胶-凝胶法
溶胶-凝胶方法(Sol-Gel)是日本科学家Sugimoto等于上世纪90年代发展
,油(OΠ
,
对实验设备和制备条件方面的要求相对高一些,因而大多数也只停留在研究阶段。

三、纳米四氧化三铁的应用
当粒子的尺寸降至纳米量级时,由于纳米粒子的小尺寸效应、表面效
应、量子尺寸效应和宏观量子隧道效应等的影响,使其具有不同于常规体相材料的特殊的磁性质。

这也使其在工业、生物医药等领域有着特殊的应用。

(一)生物医药
磁性高分子微球(也称免疫磁性微球)是一种由磁性纳米颗粒和高分子骨架材料制备而成的生物医用材料,其中的高分子材料包括聚苯乙烯、硅烷、聚乙烯、聚丙烯酸、淀粉、葡聚糖、明胶、白蛋白、乙基纤维素等,骨架
.用
能长期稳定的存在,不产生沉淀与分离。

目前,磁性流体已经广泛应用于选矿技术、精密研磨、磁性液体阻尼装置、磁性液体密封、磁性液体轴承、磁性液体印刷、磁性液体润滑、磁性液体燃料、磁性液体染料、磁性液体速度传感器和加速度传感器、磁性液体变频器、磁性液体陀螺仪、水下低
频声波发生器、用于移位寄存器显示等。

(三)催化剂载体
Fe3O4颗粒在很多工业反应中被用作催化剂,如制取NH3(Haber制氨法)、高温水气转移反应和天然气的去硫反应等。

由于Fe3O4纳米微粒尺寸小,比表面积大,且纳米颗粒表面光滑性差,形成了凹凸不平的原子台阶,
,
(四)
,
,
(五)磁记录材料
纳米Fe3O4磁性颗粒的另一个重要用途是用来做磁记录材料。

纳米Fe3O4由于其尺寸小,其磁结构由多畴变为单畴,具有非常高的矫顽力,用来做磁记录材料可以大大提高信噪比,改善图像质量,而且可以达到信息记录的高密度。

为了达到最好的记录效果,纳米Fe3O4颗粒必须有较高的矫
顽力和剩余磁化强度,尺寸较小、耐腐蚀、耐摩擦以及适应温度的改变。

(六)磁性密封
磁性液体又称磁流体或铁磁流体,具有可通过磁场控制其物理性能的特点,具有液态载体的流动性、润滑性以及密封性。

它是由纳米级(10nm以下)的强磁性微粒高度弥散于某种液体中所形成的稳定的胶体体系。

可用作机械密封的旋转轴密封(动密封),利用磁性液体既是流体又是磁性材料的
特点,
基磁性液体稳定性很好,放置几个月仍能均匀分散。

因此,可将水基磁性液体作为一种类似于磁性颜料易于添加到各种产品中;可广泛用于各类化纤、塑料、橡胶等,是保健产品、养生产品的极佳添加材料。

目前市场上也存在一些纳米磁性材料的应用产品,如纳米磁疗产品,纳米磁疗护膝、纳米磁疗手链等。

三、纳米四氧化三铁的应用展望
随着科学的进步,人们对新型材料的需求更加迫切,这使得用于纳米科技和生物技术等方面的单分散磁性纳米颗粒的制备研究工作得到了迅猛发展。

由于制备技术的不断改进,研究者对Fe3O4纳米颗粒尺寸、均匀分布程度、形状、晶体结构、表面结构以及颗粒磁性能等要素都有了进一步
处理。

相关文档
最新文档