纳米四氧化三铁的制备及表面改性.
热分解制备四氧化三铁的工艺流程

热分解制备四氧化三铁的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!热分解法制备四氧化三铁纳米粒子的工艺流程详解四氧化三铁(Fe₃O₄)因其独特的磁性和光谱性质,广泛应用于磁记录材料、生物标记、药物输送等领域。
纳米四氧化三铁制备及其性质研究

纳米四氧化三铁制备及其性质研究摘要:四氧化三铁是一种具有反尖晶石结构的铁氧体,由于其具有独特的物理、化学性质,已经引起众多专家学者的关注。
纳米四氧化三铁具有超顺磁性、小尺寸效应、量子隧道效应等使其能够区别于一般的四氧化三铁。
目前在国内外,磁性纳米四氧化三铁已经在催化剂、造影成像、靶向给药、药物载体、DNA检测等应用领域表现出良好的应用前景。
尤其随着纳米技术与高分子工程的快速发展,磁性纳米四氧化三铁在细胞分离、蛋白质分离、生物传感器、重金属吸附等领域越来越受到研究者的重视。
同时,合成粒径小、分布窄且具有优良磁性、表面性能稳定、具有生物相容性安全的磁性纳米四氧化三铁也是各专家、学者研究的热点之一。
关键词:纳米四氧化三铁;磁性;合成近年来,有关磁性纳米粒子的制备方法与性质备受关注。
然而,由于磁性纳米粒子之间的作用力,如范德华力以及磁力作用,纳米四氧化三铁粒子极易发生团聚,使得比表面积降低,同时减弱了反应活性。
通过添加高分子聚合物或表面活性剂对粒子表面进行改性,可以获得稳定分散的磁性纳米粒子,从而有效克服上述缺点。
1.实验部分1.1 实验原理化学共沉淀法是指在包含两种或两种以上金属阳离子的可溶性溶液中,加入适当沉淀剂,将金属离子均匀沉淀或结晶出来。
具体反应方程式:Fe2+ +2Fe3+ +8OH-==Fe3O4 +4H2O.通常是把FeⅡ和FeⅢ的硫酸盐或氯化物溶液一物质的量比2比3的比例混合后,用过量的氨水或氢氧化钠在一定温度和pH下,高速搅拌进行沉淀反应,然后将沉淀过滤、洗涤、烘干,制得纳米四氧化三铁。
1.2仪器与试剂三颈瓶,pH计,高速离心机,恒温水浴箱,真空干燥箱,紫外可见分光光度计,X射线衍射仪等四水合氯化亚铁,六水合氯化铁,乙醇,十二烷基苯磺酸钠,油酸,氢氧化钠,盐酸等。
1.3实验步骤室温下,将四水合氯化亚铁和六水合氯化铁按物质的量比为1比2的比例混合放入三颈瓶中,加入200mL去离子水,然后加入一定量表面活性剂和油酸。
四氧化三铁的制备实验报告

竭诚为您提供优质文档/双击可除四氧化三铁的制备实验报告篇一:四氧化三铁纳米材料的制备四氧化三铁纳米材料的制备一、原理化学共沉淀法制备超微粒子的过程是溶液中形成胶体粒子的凝聚过程,可分为2个阶段:第一个阶段是形成晶核,第二个阶段是晶体(晶核)的成长。
而晶核的生成速度vl和晶体(晶核)的成长速度v2可用下列两式表示:为过饱和浓度,s为其溶解度,故(c-s)为过饱和度,k1,k2分别为二式的比例常数,D为溶质分子的扩散系数。
当V1>V2时,溶液中生成大量的晶核,晶粒粒度小;当vl 采用化学共沉淀法制备纳米磁性四氧化三铁是将二价铁盐和三价铁盐溶液按一定比例混合,将碱性沉淀剂快速加入至上述铁盐混合溶液中,搅拌、反应一段时间即得纳米磁性Fe304粒子,其反应式如下:Fe2++Fe3++oh-→Fe(oh)2/Fe(oh)3(形成共沉淀)Fe(oh)2+Fe(oh)3→Feooh+Fe304(ph≤7.5)Feooh+Fe2+→Fe3o4+h+(ph≥9.2)Fe2++2Fe3++8oh-→Fe3o4+4h2o由反应式可知,该反应的理论摩尔比为Fe2+:Fe3+:oh-=l:2:8,但由于二价铁离子易氧化成三价铁离子,所以实际反应中二价铁离了应适当过量。
该法的原理虽然简单,但实际制备中还有许多复杂的中间反应和副产物:Fe3o4+0.25o2+4.5h2o→3Fe(oh)3(4)2Fe3o4+0.5o2→3Fe2o3(5)此外,溶液的浓度、nFe2+/nFe3+的比值、反应和熟化温度、溶液的ph值、洗涤方式等,均对磁性微粒的粒径、形态、结构及性能有很大影响。
目前,纳米二氧化硅主要制备方法有:以硅烷卤化物为原料的气相法;以硅酸钠和无机酸为原料的化学沉淀法;以及以硅酸酯等为原料的溶胶凝胶法和微乳液法。
在这些方法中,气相法原料昂贵,设备要求高,生产流程长,能耗大;溶胶凝胶法原料昂贵,制备时间长;而微乳液法成本高、有机物难以去除易对环境造成污染。
Fe3O4合成与改性

可见植入Fe3O4的麦秸杆纤维素磁种对阴离子和有机物的吸附效果显 著,证明麦秸杆磁种具有良好的稳定性和多次重复使用性,且麦秸杆纤维 素成本低廉,具有潜在的应用前景。
University
of
Science
and
Technology
of
China
Proposal
University
of
Science
of
Science
and
Technology
of
China
summary: 总体看,固相法制备Fe3O4 纳米粒子的主要优点是 容易实现工业化,可以连续生产,但固相法制得的产物往 往是铁的几种化合物的混合物,产物品质较低,颗粒大小 分布不均匀,能耗高。而液相法可以较好地控制Fe2 + 和Fe3 + 的比例,易制得化学计量的、品质高的纳米级 Fe3O4 ,但一般限于实验室制备。
沉淀法是指使用沉淀剂将液体中的Fe2 + 和Fe3 + 按 1∶2 的摩尔比例沉淀出来,形成氢氧化物胶体;胶体失水 得到纳米Fe3O4 悬浮体系,再经过滤、洗涤、干燥等过 程得到纳米Fe3O4 的方法。根据沉淀过程的特点,一般 将沉淀法分为共沉淀法、氧化沉淀法和还原沉淀法。 University
of
The Preparation Methods of Magnetite Nanoparticles and Their Morphology Yu W.G Zhang Tonglai
University
of
Science
and
Technology
of
China
II.液相法: 以液态体系为反应前驱体系,经过沉淀、脱 水和结晶等过程,制备得到纳米Fe3O4 。其中, 沉淀法、水热法、有机物模板法和回流法等是 研究较多的制备纳米Fe3O4 的液相方法。在此 介绍一下沉淀法制备(球型Fe3O4 NP)。
磁性纳米四氧化三铁的制备工艺及其表面改性

计算各条件下 F e3 O4 粒子的晶粒度。
表 1 即为因素水平表, 结果见表 2 。图 1 为各样品 的 XRD 图谱。
表 1 因素水平表 Tab le 1
A Fe
3+
Fa ctor s a nd levels
B C D E
BFe
2+
反应时间 反应温度 晶化时间 晶化温度 /h 1. 0 1. 5 2. 0 2. 5 /e 50 60 70 80 /h 1 . 0 1 . 5 2 . 0 2 . 5 /e 50 60 70 80
172
应用化工
3+ 2+
第 39 卷
的混合溶液, 再加入 0 . 5 mol/L 的 NaOH 溶液 , 调节 溶液 p H 至 14 , 不断搅拌下于一定温度下水浴加热 一定时间后取出, 再于一定温度下晶化一定时间后, 即制得水基 Fe3O 4。利用 F e3 O4 磁性 微粒的磁 性, 将水基 Fe3 O4 置于多用 磁性分析仪 上快速固 液分 离, 再用去离子水反复洗涤至中性 , 取出, 于 50 e 下 低温干燥 , 即得纳米 F e3 O4 粒子。 1 . 2 . 2 F e3 O4 表面改性 将最适宜 条件制备的水 基 Fe3 O4, 滴加浓度 37 % 的盐酸, 调节 p H= 4 , 加入 Fe3O 4 粒子质量 20 % ~ 30 % 的油酸钠 , 60 e 下反应 30 m in 后, 置于多用磁性分析仪上进行快速固液分 离, 用无水乙醇洗涤 2~ 3 次, 洗掉表面多余的油酸, 完成 F e3 O4 表面改性。
2+ 3+ -
/摩尔比 1 2 3 4 4 B4 4 B3 4 B2 4 B1
四氧化三铁纳米材料的制备与应用

四氧化三铁纳米材料的制备与应用四氧化三铁纳米材料是指将三铁酸铁作为原料,通过化学合成或物理制备的方法获得的粒径小于100纳米的铁氧体粉末。
该材料具有高比表面积、独特的磁性、光学性能和化学活性等特点,在磁性材料、催化剂、传感器、生物医药等领域有着广泛的应用。
四氧化三铁纳米材料的制备方法主要包括化学合成法和物理制备法两种。
其中,化学合成法包括溶胶-凝胶法、共沉淀法、水热法、微乳法等,物理制备法包括高能球磨法、磁控溅射法、激光气相沉积法等。
溶胶-凝胶法是一种常见的制备方法,其基本原理是将金属盐或金属有机化合物与溶剂混合后,通过加热、干燥、煅烧等步骤制备出纳米粉末。
共沉淀法是利用化学反应使金属离子在溶液中共同沉淀,得到纳米粉末。
水热法是将金属盐或金属有机化合物与水混合,通过高温高压的条件下合成纳米粉末。
微乳法是将水和油通过表面活性剂的作用形成微乳液,通过添加金属离子与还原剂制备出纳米粉末。
高能球磨法是通过高速旋转的球磨器对粉末进行机械处理,使其粒径减小到纳米级别。
磁控溅射法是利用高能电子轰击靶材,使其表面物质蒸发并沉积在基底上,形成纳米粉末。
激光气相沉积法是将激光束聚焦在靶材表面,使其表面物质蒸发并沉积在基底上,形成纳米粉末。
四氧化三铁纳米材料在磁性材料领域有着广泛的应用。
其高比表面积和独特的磁性能使其成为磁性存储材料和磁性催化剂的理想选择。
在催化剂领域,四氧化三铁纳米材料的高催化活性和稳定性使其成为一种新型的催化剂,可用于有机合成、废水处理等领域。
在生物医药领域,四氧化三铁纳米材料的生物相容性和药物缓释性能使其成为一种新型的药物载体,可用于肿瘤治疗、诊断和影像学等方面。
四氧化三铁纳米材料作为一种新型的纳米材料,在磁性材料、催化剂、生物医药等领域具有广泛的应用前景。
随着制备技术的不断发展和完善,其应用范围和性能将得到更广泛的拓展和提升。
Fe3O4纳米粒子的可控制备及其表面改性

Fe3O4纳米粒子的可控制备及其表面改性刘利娜;秦瑞飞;张永胜;孙瑞瑞;肖宏宇【摘要】四氧化三铁(Fe3O4)因在细胞分离、靶向药物、磁共振成像等生物医学领域具有广阔的应用前景而成为研究热点.本文采用溶剂热法合成了Fe3O4纳米粒子,并详细研究了反应温度、反应时间和反应前驱体组成对Fe3O4结构和形貌的影响.实验结果表明,反应时间对球形纳米颗粒的尺寸影响不大,反应时间为12 h时,球的直径达到了最大,继续延长反应时间,球的尺寸保持不变;200℃容易生成大尺寸的Fe3O4纳米粒子;反应物的组成对Fe3O4纳米粒子的形貌也有一定的影响,当用水合肼代替乙二胺时,得到的是立方体形状的Fe3O4.为了增加Fe3O4纳米粒子的化学稳定性、生物相容性和作为药物载体的可能性,我们用St?ber方法在Fe3O4纳米粒子的表面包覆了一层SiO2介孔分子筛,并探索了超声和机械搅拌对核壳结构形貌的影响,还研究了包覆前后样品的磁学性质.【期刊名称】《发光学报》【年(卷),期】2019(040)004【总页数】7页(P425-431)【关键词】溶剂热法;Fe3O4;SiO2;核壳结构【作者】刘利娜;秦瑞飞;张永胜;孙瑞瑞;肖宏宇【作者单位】洛阳理工学院数学与物理教学部,河南洛阳 471023;洛阳理工学院数学与物理教学部,河南洛阳 471023;洛阳理工学院数学与物理教学部,河南洛阳471023;洛阳理工学院数学与物理教学部,河南洛阳 471023;洛阳理工学院数学与物理教学部,河南洛阳 471023【正文语种】中文【中图分类】O482.311 引言四氧化三铁(Fe3O4)作为一种重要的铁氧体材料,具有较高的电阻率和较低的居里温度,在低温下会发生Verwey转变[1],即在该温度点附近,Fe3O4的许多物理性质,如电阻率、磁电阻、比热容及磁化强度等会突然发生转变,具有极高的应用价值,已广泛地应用于磁记录、磁流体、微波吸收、特种涂料、催化剂、磁性高分子微球和电子材料等各个领域[2-3]。
磁性Fe3O4纳米粒子的制备及其表面修饰研究[开题报告]
![磁性Fe3O4纳米粒子的制备及其表面修饰研究[开题报告]](https://img.taocdn.com/s3/m/f318030af7ec4afe05a1df26.png)
毕业论文开题报告环境工程磁性Fe3O4纳米粒子的制备及其表面修饰研究一、选题的背景、意义随着人类文明的不断进步和科学技术的飞速发展,特别是能源开发、空间技术、电子技术、激光技术、光电子技术、传感技术等高新技术领域的高速发展,元器件的小型化、智能化、高集成、高密度存储和超快传输等对材料提出了新的需求[1]。
再者随着中国工业经济的飞速发展,现有的传统材料己经难以满足其需求,开发、利用高性能材料和新功能材料己经成为共识。
纳米材料就应运而生,由于纳米材料的界面组元所占比例大,纳米颗粒表面原子比例高,与通常的多晶材料或者微粉完全不同,其表现出高的表面效应、体积效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应,派生出传统固体材料所不具备的许多特殊性质[2-4]。
纳米科学技术的快速发展,让磁性纳米材料得到了长足的发展。
近年来的磁性材料,在非晶态、稀土永磁化合物、超磁致伸缩、巨磁电阻等新材料相继发现的同时,由于组织的微细化、晶体学方位的控制、薄膜化、超晶格等新技术的开发,其特性显著提高。
这些不仅对电子、信息产品等特性的飞跃提高作出了重大贡献,而且成为新产品开发的原动力。
目前,磁性纳米材料已成为支持并促进社会发展的关键材料。
而磁性Fe304纳米粒子是纳米材料中一类新颖的功能材料,四氧化三铁的化学稳定性好,原料易得,价格便宜,广泛用于涂料、油墨等领域[5-7]。
四氧化三铁纳米粒子的磁性比大块本体材料的强许多倍,当四氧化三铁纳米粒子的粒径d<16nm,具有超顺磁性。
磁性四氧化三铁纳米粒子磁性能好,用于优质磁记录材料的制备,同时是制备α-Fe203等重要磁记录材料的中间体,还可作为微波吸收材料及催化剂。
近年来,四氧化三铁纳米粒子具有良好的磁性,在生物医学方面表现出潜在的广泛用途,如磁性四氧化三铁纳米粒子可作为药物的主要载体进行靶向给药,也可用于细胞及DNA的分离等,成为倍受关注的研究热点。
表面化学修饰法是指通过纳米表面与改性剂之间进行化学反应,改变纳米微粒的表面结构和状态,以达到表面改性的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米四氧化三铁的制备与表面改性化学与材料科学系 09级应用化学1班刘立君李淑媛摘要:由于纳米Fe3O4在光学、电学、热学、磁学、力学等方面独特的性质,对它的研究越来越多,且在各个领域的应用也越来越广泛,因此本文详细介绍了纳米四氧化三铁的各种制备方法,对其制备工艺的优缺点、应用前景、产品性能进行了详细的比较;并综述了纳米四氧化三铁的表面改性的方法,如有机改性、无机改性、偶联改性、小分子改性、大分子改性等改性手法,以及表面改性后各种纳米Fe3O4的特征与用途前景。
关键词纳米Fe3O4 综述表面改性1引言四氧化三铁的性质:四氧化三铁在常温常压状态下是一种具有强磁性的黑色粉末状晶体,潮湿状态的四氧化三铁在空气中容易氧化成三氧化二铁,二价铁离子被氧化成三价铁离子。
四氧化三铁具有强磁性,四氧化三铁固体具有优良的导电性。
因为在磁铁矿中,由于Fe2 +与 Fe3 +在八面体位置上基本上是无序排列的,电子可在铁的两种氧化态间迅速发生转移,所以四氧化三铁固体具有优良的导电性能。
X 射线研究表明,四氧化三铁是铁( III) 酸盐,即 Fe2 +( Fe3 +O2 -2)2,称为“偏铁酸亚铁”,化学式为Fe( FeO2)2。
在四氧化三铁里,铁显两种价态,所以常常将四氧化三铁看成是由 FeO 与 Fe2O3组成的化合物,也可表示为 FeO·Fe2O3,但不能说是 FeO 与Fe2O3组成的混合物,它属于纯净物。
常见的天然磁铁矿中主要成分是四氧化三铁的晶体。
磁性纳米粒子的性质:纳米材料指颗粒尺寸在1-100nm间的粒子,及由其聚集而成的纳米固体材料,具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等,使得其与同组成的材料相比,显示独特的光学、电学、热学、磁学、力学及化学性质。
当磁性纳米材料的尺寸减小到纳米尺度时,尺寸和形状这两个关键参数强烈影响着其磁性能,使磁性纳米粒子呈现超顺磁性,高矫顽力,低居里温度和高磁化率,同时,磁性纳米粒子具有以下几方面的特性:第一,磁性纳米粒子具有可控性的粒径(从几纳米到几十纳米),小于或相当于细胞(10-100nm),病毒(20-450nm),蛋白质(5-50nm),基因(Znm宽10-100nm长)的尺度,这表明磁性纳米粒子能够接近我们所感兴趣的生物实体.事实上,它们可以被生物分子修饰后连接到生物实体上,由此提供了一种可控的标一记方法;第二,磁性纳米粒子的磁性遵从库仑定律,能够通过外加磁场加以控制;第三,磁性纳米粒子能够对磁场的周期性变化产生响应,从激励场获得能量,由此微粒能够被加热,从而可用于热疗,传输大量的热能到靶区,如肿瘤;第四,磁性纳米粒子可从尿液及大便中排泄,其中经肾脏排出较多,肠道排出较少。
这也使其在工业、电子信息、生物医药等领域都有着特殊的应用。
常用的磁性纳米材料有金属合金及其金属氧化物,由于镍、钴等存在毒性,在生物、医药等方面受到严格的限制,而铁的氧化物(Fe3O4,γ一Fe2O3)因其低毒(LD50约2000mg/kg体重,远远高于目前临床应用剂量)、易得等特点被广泛推用。
2四氧化三铁纳米粒子的制备方法磁性纳米四氧化三铁微粒的制备方法主要有物理方法和化学方法。
常见的物理方法有真空冷凝法、物理粉碎法、机械球磨法,该法生产工艺简单,重复性好,但该法生产周期长,对纳米粒子的粒径与形态无法控制,因此应用较少。
化学方法中以液相法为主,主要有微乳液法、水热法、共沉淀法、溶胶-凝胶法、水解法等。
与物理方法相比,化学方法制得的纳米微粒的粒子颗粒度较小,化学组成均匀,制作工艺简便,生产原料来源广泛,价格低廉,因此受到越来越多的关注,常用在工业生产和试验中。
本文主要综述纳米Fe3O4的各种化学制备方法。
2.1沉淀法沉淀法包括共沉淀法、氧化沉淀法。
共沉淀法是指共沉淀法是指在包含两种或两种以上金属离子的可溶性盐溶液中,加入沉淀剂,使金属离子生成沉淀或结晶,再将沉淀物脱水或热分解,制得纳米微粉的方法。
该法反应原理是:Fe2 ++ 2Fe3 ++ 8OH→Fe3O4+ 4H2O,该法普遍采用按1:2(物质的量比) 混合的Fe2 +与 Fe3 +溶液,以过量的氨水或氢氧化钠等溶液作为沉淀剂,在一定的温度、pH 值及氮气保护的条件下,制备纳米级四氧化三铁粒子。
林本兰[ 1 ]由液相共沉淀法制备出了纳米Fe3O4粒子,并通过盐酸表面处理使得纳米粒子的平均粒径在10nm左右。
赵晓东等[ 2 ]对共沉淀法进行了系统的研究,探讨了制备Fe3O4纳米粒子的最佳条件。
以FeCl3•6H2O和FeSO4•7H2O为原料,对Fe3+和Fe2+的摩尔比、反应温度、反应时间、晶化温度、晶化时间进行了研究,最终得出共沉淀法制备Fe3O4粒子的最佳条件为:Fe3+和Fe2+的摩尔比为4﹕2,反应温度50℃,反应时间1. 0 h,晶化温度50℃,晶化时间1. 0 h。
该条件下制备的Fe3O4粒子大致呈球形,粒径为10~20 nm.共沉淀法具有合成简单、易于操作、产品纯度高、耗能低、颗粒均匀、分散性好等优点。
但反应过程中影响因素多难以控制,因此很难进行工业化生产。
化学氧化沉淀法是指以Fe2 +溶液为原料,先生成 Fe( OH)2悬浮液,再用氧气或空气氧化悬浮液生成纳米四氧化三铁粒子的方法。
刘骏[ 3 ]采用沉淀氧化法成功的制备了Fe3O4铁流体,刘发现反应之初控制氧化剂H2O2的用量尤为重要,而当观察到溶液颜色变黑时应当迅速停止滴入氧化剂。
丁程程[ 4 ]等分别比较了沉淀氧化法与改性沉淀氧化法制备出的Fe3O4纳米粒子的物理结构以及使用性能。
以淀粉为改性剂,发现改性后的Fe3O4为纯相的反尖晶石结构,淀粉改性使得粒径由60nm减少到10nm左右,同时其化学吸附能力大大增强,且随PH的升高而吸附能力下降。
共沉淀法合成纳米Fe3O4粒子应用比较普遍,它有合成简便、易于操作、产品纯度高、耗能低、颗粒均匀、分散性好等优点,但反应过程中影响因素很多且苛刻,难以进行大批量生产,所以难以实现工业化。
2.2水热法水热法是指在特制的密闭反应容器(高压釜)里,采用水溶液或者其他溶液作为反应介质,通过反应容器加热,创造一个高温高压的反应环境,使得通常难溶或不溶的物质溶解并且重结晶。
水热法具有两个特点,一是较高的反应温度(130~250℃),有利于磁性能的提高;二是在封闭容器中进行,产生相对高压(0.3~4.0Mpa),避免组分挥发,有利于提高产物的纯度和保护环境。
同时还具有原料易得、粒子纯度高、分散性好、晶形好等优点。
采用水热法制备Fe3O4磁性纳米颗粒,有利于产物磁性能的提高,并可避免组分挥发,提高产物纯度。
詹凤科研组[ 5 ]使用水热法并探讨了不同温度、不同反应时间、合成比例因素等对样品形貌、尺寸、结晶性的影响,得出在该实验条件下制备Fe3O4的最佳条件:Fe3+、Fe2+离子摩尔比R(=nFe3+:nFe2+)=1.5∶1,反应温度T=160℃,反应时间t=5h。
产物Fe3O4磁性纳米颗粒粒径均匀、分散性好、磁性较强。
吴明在等[ 6 ]以不同的铁盐为前驱物,制备出了球形、方形、棒形的Fe3O4纳米粒子,同时通过形貌表征发现不同的铁盐前驱物以及反应体系的选择对于产物的形貌、磁性、结晶性有重要的影响。
用水热法尽管具有上述优点,但是操作相对复杂、对设备的要求也高、反应时间长、生产成本高、难以大量生产。
所以该方法还需要不断改进,以便降低成本。
2.3溶剂热法溶剂热反应是水热反应的发展,它与水热反应的不同之处在于所使用的溶剂为有机溶剂而不是水。
在溶剂热反应中,一种或几种前驱体溶解在非水溶剂中,在液相或超临条件下,反应物分散在溶液中并且变的比较活泼,反应发生,产物缓慢生成。
吕庆荣等[ 7 ]在前人研究的基础上,用溶解热法合成Fe3O4空心微球并在室温与变温磁性能方面进行了系统的研究,通过室温磁滞回线表明不同条件所得产物均表现为良好的亚铁磁性,其饱和磁化强度Ms随反应时间的延长呈现先升后降的趋势;随反应温度的增加,饱和磁化强度 Ms和矫顽力 HC均有所增加,可根据应用需要改变反应条件来调节 Fe3O4空心微球的磁性能。
制备的空心微球Fe3O4是单分散、立方多晶结构,其直径大约为400nm,是有40nm的纳米颗粒组装而成。
苏雅拉[ 8 ]等以尿素铁和乙醇为原料,采用溶剂热法一步合成Fe3O4纳米粒子。
该方法原料种类少、无毒,有利于安全生产和环境保护;产物具有超顺磁性,其饱和磁化强度为57A•m2/kg。
溶剂热法操作过程简单且易于控制,在密闭体系中可以有效的防止有毒物质的挥发和制备对空气敏感的前驱体。
在溶剂热条件下,溶剂的性质( 密度、粘度、分散作用) 相互影响,变化很大,反应物( 通常是固体)的溶解、分散过及化学反应活性也可提高或增强,使得反应能在较低的温度下发生。
纳米结构 Fe3O4空心微球具有低密度、高比表面的特性,而且其空心部分可容纳大量的客体分子或大尺寸的客体,因此溶解热法合成的空心微球结构在微波吸收材料和药品传输等许多技术领域都有重要的应用前景。
2.4软膜版法模板法是指采用具有微孔结构的有机物作为模板,使反应物或单体在这些具有纳米尺度的微孔或层隙间反应或聚合形成目标产物。
模板法是制备空心结构材料的一种有效途径,探寻一种相对环保且简便快捷的方法成为制备空心结构 Fe3O4材料的重要研究内容。
气泡正作为一类新的软模板被用于制备空心结构材料。
俞凌杰等[ 9 ]等以氨气气泡作为软膜板,以FeCl3•6H2O 和 NH4Ac 为反应物,制备出了空心结构的 Fe3O4微球,产物形貌均匀且具有良好的分散性。
在温度为200℃、反应时间为12h,此时得到的Fe3O4微球尺寸较小且表面光滑,平均粒径为400nm。
2.5微乳热法微乳热法制备优点:制备的纳米粒子表面包裹了一层乳化剂分子,使粒子间不易团聚,同时反应在“水核”内进行,同而有效的控制了微粒的大小,因此近年来受到很多科学家的关注。
缺点:这种方法制备的磁流体磁性粒子的含量很低,在实际应用中微乳结构也很容易遭到破坏,因此有很大的局限性。
2006年柴波[ 10 ]就用Span80和石油磺酸盐复合乳化剂(复合质量比为4∶1)、异丙醇、煤油、水制备出最佳的W/O型微乳液系统,以此作为“微乳液反应器”,制备出球形、平均粒径50nm、粒径分布比较均匀的Fe3O4粒子。
2010年赵曾宝,刘福田等[ 11 ]从另一方面探索了微乳液法制备Fe3O4纳米颗粒的最佳条件。
他们以十二烷基苯磺酸钠为表面活性剂,甲苯作为油相, Fe3+与Fe2+水溶液和NaOH水溶液为水相形成W /O乳浊液,探索了Fe3+与Fe2+的物质的量之比、表面活性剂用量、乳化温度、乳化时间对产物Fe3O4纳米颗粒结构、性质的影响。