纳米四氧化三铁
纳米四氧化三铁制备及其性质研究

纳米四氧化三铁制备及其性质研究摘要:四氧化三铁是一种具有反尖晶石结构的铁氧体,由于其具有独特的物理、化学性质,已经引起众多专家学者的关注。
纳米四氧化三铁具有超顺磁性、小尺寸效应、量子隧道效应等使其能够区别于一般的四氧化三铁。
目前在国内外,磁性纳米四氧化三铁已经在催化剂、造影成像、靶向给药、药物载体、DNA检测等应用领域表现出良好的应用前景。
尤其随着纳米技术与高分子工程的快速发展,磁性纳米四氧化三铁在细胞分离、蛋白质分离、生物传感器、重金属吸附等领域越来越受到研究者的重视。
同时,合成粒径小、分布窄且具有优良磁性、表面性能稳定、具有生物相容性安全的磁性纳米四氧化三铁也是各专家、学者研究的热点之一。
关键词:纳米四氧化三铁;磁性;合成近年来,有关磁性纳米粒子的制备方法与性质备受关注。
然而,由于磁性纳米粒子之间的作用力,如范德华力以及磁力作用,纳米四氧化三铁粒子极易发生团聚,使得比表面积降低,同时减弱了反应活性。
通过添加高分子聚合物或表面活性剂对粒子表面进行改性,可以获得稳定分散的磁性纳米粒子,从而有效克服上述缺点。
1.实验部分1.1 实验原理化学共沉淀法是指在包含两种或两种以上金属阳离子的可溶性溶液中,加入适当沉淀剂,将金属离子均匀沉淀或结晶出来。
具体反应方程式:Fe2+ +2Fe3+ +8OH-==Fe3O4 +4H2O.通常是把FeⅡ和FeⅢ的硫酸盐或氯化物溶液一物质的量比2比3的比例混合后,用过量的氨水或氢氧化钠在一定温度和pH下,高速搅拌进行沉淀反应,然后将沉淀过滤、洗涤、烘干,制得纳米四氧化三铁。
1.2仪器与试剂三颈瓶,pH计,高速离心机,恒温水浴箱,真空干燥箱,紫外可见分光光度计,X射线衍射仪等四水合氯化亚铁,六水合氯化铁,乙醇,十二烷基苯磺酸钠,油酸,氢氧化钠,盐酸等。
1.3实验步骤室温下,将四水合氯化亚铁和六水合氯化铁按物质的量比为1比2的比例混合放入三颈瓶中,加入200mL去离子水,然后加入一定量表面活性剂和油酸。
纳米四氧化三铁的应用

纳米四氧化三铁的应用一、纳米四氧化三铁的简介四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。
四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。
在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO·Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。
化学式:Fe3O4,分子量231.54,硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物。
逆尖晶石型、立方晶系,密度5.18g/cm3。
熔点1867.5K(1594.5℃)。
它不溶于水,也不能与水反应。
与酸反应,不溶于碱,也不溶于乙醇、乙醚等有机溶剂。
在外磁场下能够定向移动,粒径在一定范围之内具有超顺磁性,以及在外加交变电磁场作用下能产生热量等特性,其化学性能稳定,因而用途相当广泛。
纳米四氧化三铁置于介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过在颗粒表面形成吸附双电层结构阻止纳米粒子团聚,制备稳定分散的水基和有机基纳米磁性液体。
制备的磁性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。
通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。
二、纳米四氧化三铁的配置方法由于纳米四氧化三铁特殊的理化学性质, 使其在实际应用中越来越广泛, 而其制备方法和性质的研究也得到了深入的进展。
磁性纳米微粒的制备方法主要有物理方法和化学方法。
物理方法制备纳米微粒一般采用真空冷凝法、物理粉碎法、机械球磨法等。
但是用物理方法制备的样品一产品纯度低、颗粒分布不均匀, 易被氧化, 且很难制备出10nm 以下的纳米微粒, 所以在工业生产和试验中很少被采纳。
纳米四氧化三铁

纳米四氧化三铁
四氧化三铁是一种铁氧体,俗称黑氧化铁、磁性铁、磁铁、黑氧化铁等。
因为它是一
种磁性黑晶体,所以也称为磁性氧化铁。
四氧化三铁是由氧化亚铁和氧化铁组成的化合物。
溶于酸溶液,不溶于水、碱溶液和乙醇。
天然的四氧化三铁不溶于酸性溶液,湿态下易在
空气中氧化成氧化铁。
一般可用作颜料和抛光剂。
黑色的四氧化三铁是铁的一种混合价态氧化物,熔点为℃,密度为5.18g/cm3,不溶
于水,可溶于酸溶液,在自然界中以磁铁矿的形态出现,常温时具有强的亚磁铁性与颇高
的导电率。
铁磁性和亚铁磁性物质在居里(curie)温度以上发生二级相变转变为顺磁性
物质。
fe3o4的居里温度为℃。
可将物质的磁性分为五类:抗磁性(反磁性):物质中全
部电子在原子轨道或分子轨道上都已双双配对、自旋相反,没有永久磁矩。
顺磁性:原子
或分子中有未成对电子存在,存在永久磁矩,但磁矩间无相互作用。
铁磁性:每个原子都
有几个未成对电子,原子磁矩较大,且相互间有作用,使原子磁矩平行排列。
亚铁磁性
(铁氧体磁性):相邻原子磁矩部分呈现不相等的反平行排列。
反铁磁性:在néel温度
以上呈顺磁性;在低于néel温度时,磁矩间相邻原子磁矩呈现相等的反平行排列。
fe3o4
有高的电导率,可以将fe3o4不平常的电化学性质归因于电子在fe2+与fe3+之间的传递。
四氧化三铁磁性纳米粒子 (1)概要

图8 槲皮素粉末
2.磁性纳米四氧化三铁靶向药物的制备 2.1 四氧化三铁-槲皮素复合纳米材料的合成
Fe2+的外层电子排布为3d64s04p0,Fe3+的外层电子排布为3d54s04p0, 在纳米四氧化三铁的内部,存在很多Fe2+和Fe3+,它们的4s和4p都是空轨 道。槲皮素分子中的羟基氧原子的外层电子排布为2p6,除和苯环及氢
表5 搅拌速度
2:溶胶凝胶法
表面覆盖了Fe3O4壳的C@Fe3O4芯壳纳米纤维
四、Fe3O4磁性纳米粒子的应用
四氧化 三铁磁 性纳米 粒子
磁记 录材 料
微波 吸收 材料
生物 医药
水体污 染物吸 附脱除 及贵金 属回收
催化剂 材料和 催化剂 载体
Fe3O4 纳米粒子在生物方面的应用
Fe3O4因其具有稳定的物料性质、与生物体能较好的相容、强度
较高,且具有磁性。目前,医学领域常采用超顺磁性的铁氧化物纳米
粒子来制备 MRI的造影剂,当这种造影剂进入活体后能够被活体组织 有效的吸收,通过比较不同组织部位的响应信号的差异,就能准确定
位出活体的病灶位置。在靶向药物载体方面,磁性靶向纳米药物载体
在负载药物的组分后通过外加磁场的作用可以直达病灶,减少了药物 对其他器官组织的副作用,同时还可以提高药效增强治疗作用。
原子相连的两个电子,还剩一个孤对电子,因此槲皮素羟基上的氧原子
活化后,可以提供孤对电子给Fe2+和Fe3+的空轨道,形成配位键结合。 Fe2+或者Fe3+的4s和4p轨道都是空轨道,能够接受孤对电子对,从而与两
个氧原子结合。
反应机理:
图13 槲皮素分子与Fe3O4的化学反应
纳米四氧化三铁的制备方法

纳米四氧化三铁的制备方法纳米四氧化三铁(Fe3O4)是一种重要的纳米材料,具有广泛的应用前景。
它具有良好的磁性能、化学稳定性和生物相容性,被广泛应用于催化、吸附、生物医学等领域。
本文将介绍纳米四氧化三铁的制备方法。
制备纳米四氧化三铁的方法有很多种,常用的方法包括化学共沉淀法、水热法、溶胶-凝胶法、高能球磨法等。
下面将逐一介绍这些方法。
化学共沉淀法是制备纳米四氧化三铁最常用的方法之一。
该方法是通过在溶液中加入铁盐和氧化剂,使两者发生反应生成沉淀,再经过热处理得到纳米四氧化三铁。
该方法操作简单,成本低廉,能够制备出纯度较高的纳米四氧化三铁。
水热法是一种在高温高压条件下制备纳米材料的方法。
利用该方法可以制备出形貌较为均一的纳米四氧化三铁。
该方法的原理是在水热条件下,溶液中的化学反应速率显著增加,从而促使纳米四氧化三铁的形成。
水热法制备的纳米四氧化三铁具有较高的结晶度和较小的尺寸分布。
溶胶-凝胶法是一种通过溶胶和凝胶转化来制备纳米材料的方法。
该方法将适量的金属盐和有机物溶解在溶剂中形成溶胶,经过凝胶处理后得到纳米四氧化三铁。
该方法可以控制纳米四氧化三铁的形貌和粒径,并且制备出的纳米四氧化三铁具有较高的比表面积和较好的分散性。
高能球磨法是一种通过机械碰撞来制备纳米材料的方法。
该方法利用高能球磨机将粉末样品和球磨体一起放入球磨罐中进行球磨处理。
通过机械碰撞使粉末样品逐渐细化,最终得到纳米四氧化三铁。
高能球磨法可以制备出粒径较小的纳米四氧化三铁,并且可以控制纳米四氧化三铁的形貌。
除了以上几种方法外,还有其他一些制备纳米四氧化三铁的方法,如热分解法、溶液法、微乳液法等。
这些方法各有优缺点,可以根据具体需求选择适合的方法进行制备。
纳米四氧化三铁是一种重要的纳米材料,在各个领域有广泛的应用。
制备纳米四氧化三铁的方法有很多种,每种方法都有其特点和适用范围。
选择合适的制备方法能够得到具有良好性能的纳米四氧化三铁,为其应用提供更多可能性。
四氧化三铁纳米颗粒负载纳米金

一、介绍四氧化三铁纳米颗粒和纳米金的概念和特性四氧化三铁是一种常见的金属氧化物,具有良好的磁性和光学特性。
它在磁性材料、生物医学领域和环境治理中有着广泛的应用。
而纳米金是指粒径在1-100纳米范围内的金纳米颗粒,具有优异的电子性能和表面增强效应,可用于催化、传感和生物医学成像等领域。
二、四氧化三铁纳米颗粒负载纳米金的制备方法1. 沉淀法:通过将三氯化铁和氢氧化钠混合反应制得四氧化三铁,再利用还原剂将金盐还原成纳米金,最后将纳米金与四氧化三铁混合并进行搅拌、过滤、干燥等步骤,即可得到负载纳米金的四氧化三铁纳米颗粒。
2. 气相沉积法:使用化学气相沉积装置,在合适的温度和气氛条件下将金与铁同时沉积在载体上,形成四氧化三铁纳米颗粒负载纳米金。
三、四氧化三铁纳米颗粒负载纳米金的性能和应用1. 磁性性能:四氧化三铁具有良好的磁性,而负载纳米金可以增强其磁性能,使其在磁性材料、磁共振成像等领域具有更广泛的应用。
2. 光学性能:纳米金具有表面增强效应,可以增强四氧化三铁的光学性能,例如表面增强拉曼散射效应,可用于生物医学成像和传感等领域。
3. 催化性能:负载纳米金的四氧化三铁纳米颗粒具有优异的催化性能,可应用于有机合成、环境治理等领域。
四、四氧化三铁纳米颗粒负载纳米金的未来展望1. 多功能性能:进一步研究四氧化三铁纳米颗粒负载纳米金的多功能性能,探索其在生物医学成像、治疗和肿瘤靶向等领域的应用。
2. 可控制备:发展可控的制备方法,探索不同形貌、尺寸和结构的四氧化三铁纳米颗粒负载纳米金,在材料性能和应用方面的优化。
3. 环境友好型材料:研究四氧化三铁纳米颗粒负载纳米金在环境治理和节能材料中的应用,探索其在污染物降解、废水处理等方面的潜在价值。
五、结语四氧化三铁纳米颗粒负载纳米金作为一种多功能纳米材料,具有广阔的应用潜力。
通过对其制备方法、性能和应用领域的系统研究,将为其在材料科学、生物医学、环境治理等领域的应用提供重要的理论和实践支撑,为纳米技术的发展和创新做出贡献。
纳米四氧化三铁

纳米四氧化三铁简介四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。
四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。
在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO-Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。
化学式:Fe3O4,分子量231.54,硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物。
逆尖晶石型、立方晶系,密度 5.18g/cm3。
熔点1867.5K(1594.5℃)。
它不溶于水,也不能与水反应。
与酸反应,不溶于碱,也不溶于乙醇、乙醚等有机溶剂。
在外磁场下能够定向移动,粒径在一定范围之内具有超顺磁性,以及在外加交变电磁场作用下能产生热量等特性,其化学性能稳定,因而用途相当广泛。
纳米四氧化三铁置于介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过在颗粒表面形成吸附双电层结构阻止纳米粒子团聚,制备稳定分散的水基和有机基纳米磁性液体。
制备的磁性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。
通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。
制备方法1、水热法制备纳米四氧化三铁(2012年)聚乙二醇6000包被的四氧化三铁颗粒,采用X射线衍射法分析其构,用扫描电镜测量其直径及分布,用振动样品磁强计检测磁学参数。
结果所得样品为四氧化三铁晶体,粒径为200 nm,质量饱和磁场强度为79.8 em u/g Fe。
结论:制备的样品粒径均一,分散性好,超顺磁性,水溶性好,可用于物理化学溶栓。
2、卟啉一磁性四氧化三铁纳米粒子的制备(2014年)直接键合成法:卟啉与四氧化三铁纳米粒子表面直接形成化学键的制备方法。
纳米四氧化三铁粒径

纳米四氧化三铁粒径纳米四氧化三铁是一种重要的纳米材料,其粒径尺寸对其物理化学性质具有重要影响。
本文将讨论纳米四氧化三铁粒径的相关内容。
纳米材料是指至少在一维尺寸上,其尺寸范围在1-100纳米之间的材料。
纳米材料具有特殊的物理化学性质,与其宏观尺寸相比,具有更大的比表面积和较高的界面能量。
纳米四氧化三铁即纳米尺寸的三氧化二铁(Fe3O4)颗粒,其粒径范围在1-100纳米之间。
纳米四氧化三铁粒径对其磁性、光学性质以及应用性能有着显著的影响。
首先,纳米尺寸的四氧化三铁具有较大的比表面积,使其具有更多的表面活性位点,增强了其表面反应活性。
这使得纳米四氧化三铁在催化、吸附等领域具有广泛的应用前景。
纳米四氧化三铁的粒径与其磁性质息息相关。
随着粒径的减小,四氧化三铁颗粒的磁晶各向异性减弱,使得其磁性逐渐由单一的铁磁向超顺磁或顺磁转变。
因此,通过调控纳米四氧化三铁的粒径,可以实现对其磁性能的调控,从而拓展其在磁性材料、数据存储、生物医学等领域的应用。
纳米四氧化三铁粒径的大小还会影响其光学性质。
较小的纳米颗粒会导致量子限域效应的出现,使得纳米四氧化三铁在可见光范围内表现出特殊的光学性质,如量子大小效应、量子限域效应和表面等离子共振等。
这些特殊的光学性质使得纳米四氧化三铁在光学传感、光催化、光电器件等领域具有广泛的应用潜力。
纳米四氧化三铁粒径的控制也对其应用性能产生重要影响。
例如,在磁性材料领域,较大的纳米四氧化三铁粒径可以用于制备高密度的磁记录介质,而较小的纳米四氧化三铁粒径则更适用于制备高灵敏度的磁传感器。
因此,通过调控纳米四氧化三铁的粒径,可以实现对其在不同领域的应用需求的满足。
纳米四氧化三铁粒径是影响其物理化学性质和应用性能的重要因素。
通过对纳米四氧化三铁粒径的控制,可以实现对其磁性、光学性质和应用性能的调控,从而拓展其在催化、磁性材料、光学传感等领域的应用前景。
随着纳米技术的不断发展,纳米四氧化三铁的粒径控制将会越来越精确,为其应用带来更多可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米四氧化三铁
简介
四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。
四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。
在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO-Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。
化学式:Fe3O4,分子量,硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物。
逆尖晶石型、立方晶系,密度?cm3。
熔点℃)。
它不溶于水,也不能与水反应。
与酸反应,不溶于碱,也不溶于乙醇、乙醚等有机溶剂。
?
在外磁场下能够定向移动,粒径在一定范围之内具有超顺磁性,以及在外加交变电磁场作用下能产生热量等特性,其化学性能稳定,因而用途相当广泛。
纳米四氧化三铁置于介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过在颗粒表面形成吸附双电层结构阻止纳米粒子团聚,制备稳定分散的水基和有机基纳米磁性液体。
制备的磁性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。
??
通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。
制备方法
1、水热法制备纳米四氧化三铁(2012年)
聚乙二醇6000包被的四氧化三铁颗粒,采用X射线衍射法分析其构,用扫描电镜测量其直径及分布,用振动样品磁强计检测磁学
参数。
结果所得样品为四氧化三铁晶体,粒径为200 nm,质量饱
和磁场强度为 em u/g Fe。
结论:制备的样品粒径均一,分散性好,
超顺磁性,水溶性好,可用于物理化学溶栓。
2、卟啉一磁性四氧化三铁纳米粒子的制备(2014年)
直接键合成法:卟啉与四氧化三铁纳米粒子表面直接形成化学键的
制备方法。
要求卟啉与四氧化三铁纳米粒子成键单元,如中心金属
原子、羟基等。
用一锅高温合成法合成了单分散的油胺包覆四氧化三铁纳米粒子,
在DMF溶液中,原卟啉IX与多巴胺的偶联反应制备了连有多巴胺的
原卟啉(PPD),然后与四氧化三铁纳米粒子在甲醇中混合得到卟啉
PPD,然后与四氧化三铁纳米粒子在甲醇中混合得到卟啉PPD包覆的
四氧化三铁纳米粒子(PPDNP),其中粒度单一(<7nm),具有清晰的
晶格和高的结晶度,在室温有明确的超顺磁性行为。
3、化学共沉淀法制备纳米四氧化三铁粒子(2007年)
将一定量的二价铁盐 (FeSO4 -7H2O )和三价铁盐( FeCI 3 -6 H20)混合溶液加入到三口烧瓶中,滴液漏斗中加入一定浓度的沉淀
剂氨水,在氮气氛下将氨水溶液加到反应体系中使体系的pH>10 ,
剧烈搅拌水浴恒温搅拌30 mi n 后结束反应,用蒸馏水反复洗涤直
至中性倾去上层清液,在60摄氏度下真空干燥后,研磨即得纳米
Fe3O4粒子。
采用化学共沉淀法制备纳米Fe3 O4 粒子,其粒径大小
随铁盐溶液浓度和氨水浓度的增加而增大. 在搅拌的同时引入超声
波,可使产物粒径减小. 改变实验条件,可制得平均粒径在10n m以
下的纳米Fe 3 O4粒子。
应用
1、稻壳基活性炭负载纳米 Fe304对水体中罗丹明B的吸附(2015年)
通过浸渍-碳热法制备出稻壳基活性炭负载纳米四氧化三铁颗粒,利用光学显微镜、透射电子显微镜、x射线衍射仪等仪器对材
料的形貌、物相结构等进行了表征,探讨了纳米四氧化三铁在不同
条件下对罗丹明 B 的吸附情况。
结果表明在常温常压、pH 为 6.0 - 4-0. 1 的条件下,0 .4 g/ L R H —Fe30 对 10 m g/ L 的罗丹明 B 的去除率为
91.94 %,并在 100 m in 内可达到吸附平衡;R H —Fe O 对罗
丹明 B 的吸附符合 Freundlich 吸附方程 (R = 0.97 ) ;对比
稻壳基活性炭和纳米四氧化三铁,所合成的 RH —Fe O 具有优越
的吸附性能;此外,溶液的初始pH 、吸附时间等因素对其吸附效
果均有一定影响。
2、纳米四氧化三铁对C r(V I)溶液吸附效率的研究(2015年)
纳米四氧化三铁由于其具备了比表面积大,反应活性高等优点,同时具有磁性特征,再加上其再生简便。
成本低和高效等优点,使
得纳米四氧化三铁这种优异吸附剂受到了越来越多的关注。
该研究
采用共沉淀方法制备纳米四氧化三铁,考察不同pH,时间,初始浓
度对纳米四氧化三铁去除C r(V I)离子的影响。
结果表明:pH 为,
温度为25 ℃时,吸附12 h 后,Cr(V I) 的去除率可达99 .4%,
并通过吸附曲线计算出纳米四氧化三对Cr(VI) 离子的饱和吸附浓
度为 m g/g。
研究表明:纳米四氧化三铁对Cr(V I)具有非常好
的吸附效果,可广泛用于实际工程中的废水处理。
3、纳米四氧化三铁模拟酶催化光度法测定食品中痕量双氧水(2014年)
纳米四氧化三铁具有过氧化物模拟酶功能,在pH=的HCl—NaAc介质中,催化双氧水产生羟基自由基迅速氧化甲基橙使其褪
色,基于此建立了一种过氧化氢一甲基橙一纳米四氧化三铁模拟酶
催化反应体系测定痕量双氧水的新方法。
讨论了缓冲溶液、纳米四
氧化三铁用量、反应温度及反应时间的影响.确立了最佳反应条件。
在优化的条件下,该方法的线性范围为—/L,检出限为仙mol/L。
该法用于食品中痕量双氧水的测定,取得满意的结果。
4、纳米四氧化三铁吸附水中汞离子的研究(2008年)
纳米Fe304颗粒作吸附剂,研究其用量、粒径、吸附温度以及pH值等因素对汞离子吸附效果的影响,考察了纳米Fe304颗粒对水
中汞离子的吸附性能,并对吸附结果的重现性和吸附机理进行了研
究。
结果表明:纳米Fe304颗粒对水中汞离子的吸附去除率随其用
量的增加、粒径的减小而增大;对H92+吸附的最佳温度为19℃、最
佳pH值为,此pH值不需要经过酸或碱调节,便于控制;实验的重
现性良好;纳米Fe304颗粒吸附水中H92+以物理吸附为主。
纳米
Fe304颗粒对H92+的吸附符合Freundlich吸附方程,显示了很强的
纳米效应,是一种具有较好应用前景的汞离子吸附剂。
总结
纳米四氧化三铁的制备方法比较成熟简单,现在多用于做吸附剂。