解三角形应用题

合集下载

八年级数学三角形应用题

八年级数学三角形应用题

八年级数学三角形应用题一、三角形边长与周长问题。

1. 一个三角形的三条边分别为3x,4x,5x,其周长为36,求x的值。

- 解析:- 已知三角形周长等于三条边之和,可列出方程3x + 4x+5x = 36。

- 合并同类项得12x = 36。

- 解得x = 3。

2. 三角形的一边长为5cm,另外两边长相等且它们的和为12cm,求这个三角形的周长。

- 解析:- 设相等的两边长为x cm,则2x = 12,解得x = 6。

- 三角形周长为5 + 6+6=17cm。

3. 已知三角形的三边长分别为a,a + 1,a+2,且其周长为12,求a的值。

- 解析:- 根据周长定义a+(a + 1)+(a+2)=12。

- 展开式子得a+a + 1+a+2 = 12。

- 合并同类项3a+3 = 12。

- 移项得3a=12 - 3=9。

- 解得a = 3。

二、三角形内角和问题。

4. 在ABC中,∠ A=∠ B + 10^∘,∠ C=∠ A+10^∘,求ABC各内角的度数。

- 解析:- 因为三角形内角和为180^∘,即∠ A+∠ B+∠ C = 180^∘。

- 又因为∠ A=∠ B + 10^∘,∠ C=∠ A+10^∘=∠ B+10^∘+10^∘=∠ B + 20^∘。

- 把∠ A=∠ B + 10^∘,∠ C=∠ B + 20^∘代入∠ A+∠ B+∠ C = 180^∘得:(∠ B + 10^∘)+∠ B+(∠ B + 20^∘)=180^∘。

- 合并同类项得3∠ B+30^∘=180^∘。

- 移项得3∠ B=180^∘-30^∘=150^∘。

- 解得∠ B = 50^∘。

- 则∠ A=∠ B + 10^∘=60^∘,∠ C=∠ A+10^∘=70^∘。

5. 已知ABC中,∠ A = 2∠ B,∠ C=3∠ B,求∠ A、∠ B、∠ C的度数。

- 解析:- 因为∠ A+∠ B+∠ C = 180^∘,又∠ A = 2∠ B,∠ C=3∠ B。

初三解直角三角形应用题

初三解直角三角形应用题

初三解直角三角形应用题在一个阳光明媚的下午,咱们的班级决定搞一次户外活动。

老师说,咱们去爬山,真是令人兴奋啊!同学们纷纷欢呼,想着在山顶可以俯瞰四周的美景,感觉就像一只飞翔的小鸟。

不过,话说回来,爬山可不是简单的事,尤其是当你脑袋里还在想着那个搞笑的段子时,脚下的路可得小心点。

到了山脚下,大家开始兴奋地讨论谁先到达山顶。

小明兴致勃勃地表示自己绝对能第一到达,顺便还给我们讲了个笑话。

大家哈哈大笑,结果小明的笑声把一只路过的小鸟吓跑了。

咱们这群孩子,有的急得像热锅上的蚂蚁,有的则在一旁笑嘻嘻地准备拍照,生怕错过任何一个瞬间。

开始爬山了,哎呀,这可真是个挑战!上坡的路弯弯曲曲,有的地方坡度还挺陡。

走着走着,小李突然说:“要是咱们能算出这个三角形的高就好了!”这话一出,大家都愣住了。

什么三角形?大家的脑袋里都开始冒出各种形状,有的甚至想到了吃的。

小红一边喘着气,一边用力挥手:“哎,你们别闹了,快点上山吧!”这时,小刚却认真起来:“我来给大家讲解一下直角三角形的知识!”哇,这小子一说,大家可都认真听了。

小刚一边指着前面的山,一边说:“看,这个山的高度就是直角三角形的一条边,坡道的长度就是斜边,咱们走的这条路,就是底边!”同学们都像听到了天籁之音,纷纷点头。

哎呀,真是个好机会,既能锻炼身体,又能学知识,真是两全其美。

小刚说完,大家突然觉得爬山也变得有趣了许多。

每个人都开始认真算起了角度、长度,搞得跟上数学课一样。

小明还在一旁想出了一道题:“如果这个直角三角形的底边是4米,高是3米,那斜边是多少呢?”同学们纷纷开始计算。

这个时候,小红开始笑了:“你们真是天真,以为在爬山还能做题呢!”终于,我们爬到了一个平台上,大家都累得气喘吁吁。

可是,看到眼前的美景,所有的疲惫都一扫而空。

山下的风景简直美得像画一样,远处的村庄就像点缀在绿色海洋里的小岛。

小刚得意地说:“你看,这就是直角三角形的力量!”这时,小明忍不住反击:“直角三角形能飞吗?我倒是想看!”就在大家说笑时,突然有个同学指着山下大喊:“看,那儿有个小湖!”大家的注意力瞬间被吸引过去,纷纷围拢过去,恨不得立刻飞下去。

六年级数学上册解应用题中的几何三角形问题

六年级数学上册解应用题中的几何三角形问题

六年级数学上册解应用题中的几何三角形问题三角形是数学中的一个重要概念,它在几何学中有着广泛的应用和研究。

在六年级数学上册中,我们将学习解决一些应用题中涉及到的几何三角形问题。

本文将详细介绍几个常见的几何三角形问题,并解答这些问题。

问题一:一个完全成年的大象每天需要多少升水?解析:我们首先需要知道大象每天需要的水量。

根据养殖专家的研究数据,一个完全成年的大象每天需要饮用 150 升的水。

因此,一个完全成年的大象每天需要 150 升的水。

问题二:如图所示,三个大三角形 ABC、ADE 和 FGH 相似,AB=7.5cm,AD=4.5cm,FG=9cm。

试求 AE 和 GH 的长度。

解析:根据相似三角形的性质,我们知道相似三角形的对应边的比值相等。

因此,我们可以设置比例方程:AE/AB = AD/AEGH/AB = DG/GH将已知的数值代入方程,得到:AE/7.5 = 4.5/AEGH/7.5 = DG/GH通过求解方程组,可以得到 AE 和 GH 的长度。

问题三:如图所示,三角形 ABC 中,∠ABC=90°,BC=8cm,AC=6cm。

请计算∠BAC 的正弦、余弦和正切值。

解析:根据三角函数的定义,我们知道正弦、余弦和正切分别是三角形的边长比值。

根据题目中给出的数据,我们可以通过三角函数的公式计算出∠BAC 的正弦、余弦和正切值。

问题四:如图所示,正三角形 ABC 中,AB=5cm。

请计算 BC 边的长度。

解析:由于正三角形的三个边相等,因此 BC 的长度也等于AB,即 BC=5cm。

问题五:如图所示,在直角三角形 ABC 中,∠ACB=90°,BC=3cm,AC=4cm。

请计算∠BAC 的正切值。

解析:根据三角函数的定义,正切是三角形的边长比值。

我们可以通过已知数据计算∠BAC 的正切值。

问题六:如图所示,三角形 ABC 中,AC=12cm,∠ACB=60°。

请计算 AB 和 BC 的长度。

一年级数学应用题认识三角形的应用题

一年级数学应用题认识三角形的应用题

一年级数学应用题认识三角形的应用题一年级数学应用题——认识三角形的应用题假如你是一名一年级的小学生,老师给你出了一些关于三角形的应用题,让你运用所学的知识解决问题。

快来看看下面这些有趣的数学题吧!1. 小明做了一个三角形的模型,它的底边是12厘米,高度是8厘米。

请你计算一下这个三角形的面积是多少。

解答:我们知道,三角形的面积可以通过底边和高度相乘再除以2来计算。

所以,这个三角形的面积等于(12厘米 * 8厘米)/ 2 = 96平方厘米。

2. 小华正在修建一个小花园,他想让花园的形状是一个直角三角形,其中直角边的长度是4米,斜边的长度是5米。

请你计算一下花园的面积是多少。

解答:我们知道,直角三角形的面积可以通过两条直角边的乘积再除以2来计算。

所以,这个花园的面积等于(4米 * 5米)/ 2 = 10平方米。

3. 小明和小华都有一块土地,他们决定将土地划分为两个形状相同的三角形,其中一个三角形的底边是8米,高度是6米。

请你计算一下这个三角形的面积是多少,然后帮助小明和小华计算出他们各自土地的面积。

解答:根据题目描述,这个三角形的面积可以通过底边和高度相乘再除以2来计算。

所以,这个三角形的面积等于(8米 * 6米)/ 2 = 24平方米。

根据题目要求,小明和小华各自的土地面积都是24平方米。

4. 小明正在做一张海报,他想在海报的顶部制作一个等腰三角形的图案。

他测量了一下等腰三角形的底边长度是12厘米,两边的长度都是6厘米。

请你帮助小明计算一下这个等腰三角形的面积。

解答:我们知道,等腰三角形的面积可以通过底边和高度相乘再除以2来计算。

由于等腰三角形的高度垂直于底边并且通过顶点,所以可以通过勾股定理计算出高度的长度。

根据勾股定理,高度的长度等于(6厘米^2 - 3厘米^2)^0.5 = (36厘米^2 - 9厘米^2)^0.5 = (27厘米^2)^0.5 = 3√3 厘米。

因此,这个等腰三角形的面积等于(12厘米 * 3√3 厘米)/ 2 = 18√3 平方厘米。

解直角三角形的典型例题

解直角三角形的典型例题

一、知识概述1、仰角、俯角仰角、俯角:视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图所示.说明:仰角、俯角一定是水平线与视线的夹角,即从观察点引出的水平线与视线所夹的锐角.2、坡角和坡度坡角:坡面与水平面的夹角叫做坡角,用字母α表示.坡度(坡比):坡面的铅直高度h和水平宽度l的比叫做坡度,用字母i表示.则.如图所示说明:(1)坡角的正切等于坡度,坡角越大,坡度也越大,坡面越陡.(2)在解决实际问题时,遇到坡度、坡角的问题,常构造如图所示的直角三角形.3、象限角象限角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫象限角,如图中的目标方向线OA、OB、OC、OD的方向角分别表示北偏东30°,南偏东45°,北偏西60°,南偏西80°,如:东南方向,指的是南偏东45°角的方向上.如图所示.二、重点难点疑点突破1、怎样运用解直角三角形的方法解决实际问题在解决实际问题时,解直角三角形有着广泛的应用.我们要学会将千变万化的实际问题转化为数学问题来解决,具体地说,要求我们善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,这样就可运用解直角三角形的方法了.一般有以下三个步骤:(1)审题,通过图形(题目没画出图形的,可自己画出示意图),弄清已知和未知;(2)找出有关的直角三角形,或通过作辅助线产生有关的直角三角形,把问题转化为解直角三角形的问题;(3)根据直角三角形元素(边、角)之间关系解有关的直角三角形.其中,找出有关的直角三角形是关键,具体方法是:(1)将实际问题转化为直角三角形中的数学问题;(2)作辅助线产生直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.2、在学习中应注意两个转化(1)把实际问题转化成数学问题这个转化分两个方面:一是将实际问题的图形转化为几何图形,画出正确的平面或截面示意图,并赋予字母;二是将已知条件转化成示意图中的边或角.(2)把数学问题转化成解直角三角形问题.如果示意图形不是直角三角形,可添加适当的辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为解直角三角形问题,把可解的直角三角形纳入基本类型,确定合适的边角关系,细心推理,按要求精确度作近似计算,最后写出答案并注明单位.三、典型例题讲解1、测量河宽例1、如图,河边有一条笔直的公路l,公路两侧是平坦的草地.在数学活动课上,老师要求测量河对岸B点到公路的距离,请你设计一个测量方案.要求:(1)列出你测量所使用的测量工具;(2)画出测量的示意图,写出测量的步骤;(3)用字母表示测得的数据,求出B点到公路的距离.分析:这是一个实际问题,要求B到CD的距离,可转化为直角三角形,然后在两个直角三角形中,可分别用含有AB的式子表示AC和AD,而AC+AD=m,可运用解方程的方法求出AB即可.解:(1)测角器、尺子;(2)测量示意图如下图所示;测量步骤:①在公路上取两点C,D,使∠BCD,∠BDC为锐角;②用测角器测出∠BCD=α,∠BDC=β;③用尺子测得CD的长,记为m米;④计算求值.(3)解:设B到CD的距离为x米,作BA⊥CD于点A,在△CAB中,x=CAtanα,点评:运用所学的解直角三角形的知识解决实际生活中的问题,要求我们要具备数学建模能力(即将实际问题转化为数学问题).2、仰角、俯角问题例2、为申办2010年冬奥会,须改变哈尔滨市的交通状况.在大直街拓宽工程中,要伐掉一棵树AB.在地面上事先划定以B为圆心、半径与AB等长的圆形危险区.现在某工人站在离B点3米远的D处测得树的顶端A点的仰角为60°,树的底部B的俯角为30°(如图).问距离B点8米远的保护物是否在危险区内?分析:解决测量问题要明确仰角、俯角、视角、坡度、坡角等名词术语.要考查距离B点8米远的保护物是否在危险区内,关键的一点是要测算树AB的高度.解:过点C作CE⊥AB,垂足为E.在Rt△CBE中,在Rt△CAE中,故AB=AE+BE=≈4×1.73=6.92(米)<8(米).因此可判断该保护物不在危险区内.3、坡角、坡度(坡比)例3、如图,一水坝横断面为等腰梯形ABCD,斜坡AB的坡度为,坡面AB的水平宽度为上底宽AD为4m,求坡角B,坝高AE和坝底宽BC各是多少?分析:首先将实际问题转化为数学问题,如图所示,实际上已知求∠B、AE、BC.此题实质转化为解直角三角形的问题.点评:(1)解应用题时,解题过程中可以不写各数量的单位,但最后作答时务必写清单位名称.(2)应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形,梯形也是通过作底边的高线来构造直角三角形.(3)本题主要应用坡度是坡角的正切函数而求出坡角,运用坡度的概念求出梯形高,运用等腰梯形性质求出底边.4、象限角例4、如图,一轮船自西向东航行,在A处测得某岛C,在北偏东60°的方向上,船前进8海里后到达B,再测C岛,在北偏东30°的方向上,问船再前进多少海里与C岛最近?最近距离是多少?分析:将实际问题转化为数学问题,并构造出与实际问题有关的直角三角形,如图所示.船沿AB方向继续前进至D处与C岛最近,此问题实质就是已知∠CAB=90°-60°=30°,∠ABC=90°+30°=120°,AB=8海里,求BD和CD的解直角三角形问题.解:根据题设可知△ABC中,∠CAB=30°,∠ABC=120°,∴∠ACB=180°-30°-120°=30°,AB=BC=8,作CD⊥AB于D.∴最近距离即为C到AB所在直线的垂线段CD的长度.在Rt△CBD中,BC=8,∠CBD=60°,点评:根据题意准确画出示意图是解这类题的前提和保障.5、开放探究题例5、(荆州市)某海滨浴场的沿岸可以看作直线,如图,1号救生员在岸边A点看到海中的B点有人求救,便立即向前跑300米到离B点最近的D点,再跳入海中游到B点救助;若每位救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°.(1)请问1号救生员的做法是否合理?(2)若2号救生员从A跑到C,再跳入海中游到B点救助,且∠BCD=65°,请问谁先到达点B?(所有数据精确到0.1,sin65°≈0.9,cos65°≈0.4,)分析:(1)比较1号救生员从点A直接游到点B所用时间与从点A跑到点D再游到点B的时间即可作出判断.(2)分别计算出1号救生员、2号救生员所用时间,再作判断.点评:掌握探究题的探究方法非常重要,本题中救生员赶到点B的时间是我们探究的核心问题,如何准确求出救生员赶到点B所用时间是解决本题的关键.。

解三角形应用题(7)含答案

解三角形应用题(7)含答案

H G F D C BA45°30°C A 解三角形应用题(7)1.如图,自卸车厢的一个侧面是矩形ABCD ,AB =3米,BC =0.5米,车厢底部离地面1.2米,卸货时,车厢倾斜的角度θ=60°,问此时车厢的最高点A 离地面多少米?(精确到1米)2.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上. ⑴改善后滑滑板会加长多少?(精确到0.01)⑵若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由 (参考数据: 2 =1.414, 3 =1.732,6 =2.449 )3.如图,A 城气象台测得台风中心从A 城正西方向300千米B 处以每小时107 千米的速度向北偏东60°的BF 方向移动,距台风中心200千米的范围内为受台风影响的区域(1)问A 城是否会受这次台风的影响?并说明理由(2)若A 城受到这次台风的影响,那么A 城遭受这次影响的时间有多少长?4.如图,在气象站台A 的正西方向240km 的B 处有一台风中心,该台风中心以每小时20km 的速度沿北偏东60°的BD 方向移动,在距离台风中心130km 内的地方都要受到其影响。

⑴台风中心在移动过程中,与气象台A 的最短距离是多少?⑵台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?北60o东DC BAA P东北4560 5.今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B 处接到报告:有受灾群众被困于一座遭水淹的楼顶A 处,情况危急!救援队伍在B 处测得A 在B 的北偏东600的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A 处就人,同时第二组从陆地往正东方向奔跑120米到达C 处,再从C 处下水游向A 处救人,已知A 在C 的北偏东300的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A 处?请说明理由(参考数据 3 =1.732)6.如图,甲船在港口P 的北偏西60°方向,距港口80海里的A 处,沿AP 方向以12海里/时的速度驶向港口P .乙船从港口P 出发,沿北偏东45°方向匀速驶离港口P ,现两船同时出发,2小时后乙船在甲船的正东方向.求乙船的航行速度.(精确到0.1海里/时,参考数据: 3 ≈1.73, 2 ≈1.41)7.在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且AB=2米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6°,最大夹角β为64.5°.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米?(结果保留两个有效数字)(参考数据sin18.6°=0.32,tan18.6°=0.34,sin64.5°8.如图,沿水库拦水坝的背水坡将坝顶加宽2米,由原来的背水坡坡角为30°改建成坡度为i=1:2.5,已知坝高6米,坝长50米,求完成这项工程需要多少方土?(参考数据:3 ≈1.73,2 ≈1.41)9.某森林管理处雇用两架直升飞机向森林喷洒农药,两机从同一地点A出发,甲机沿东北方向以20km/h的速度飞行,乙机沿南偏东30°方向以20 2 km/h的速度飞行,3小时后,乙机发现有部分药品误放在甲机上了,而此时,乙机只能沿北偏东15°方向追赶甲机,则乙机应以怎样的速度飞行,才能赶上甲机?10.如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度i=1∶ 3 ,斜坡BD的长是50米,在山坡的坡底B处测得铁架顶端A的仰角为45,在山坡的坡顶D处测得铁架顶端A的仰角为60°.(1)求小山的高度;(2)求铁架的高度.( 3 ≈1.73,精确到0.1米)11.在湖水高出水面50米的山顶A处,望见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P处的仰角为45°,其在湖中的像的俯角为60°,试求飞艇离湖面的高度。

解直角三角形典型应用20例子

解直角三角形典型应用20例子

解直角三角形.典型应用题20例1.已知:如图,河旁有一座小山,从山顶 A 处测得河对岸点 C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽 CD 为50m .现需从山顶 A 到河对岸点C 拉一条笔直的缆 绳AC ,求山的高度及缆绳 AC 的长(答案可带根号)•2•已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔 M 在北偏西45°,问该货轮 继续向北航行时,与灯塔 M 之间的最短距离是多少 ?(精确到0.1海里,J 3止1.732)3.已知:如图,在两面墙之间有一个底端在端在B 点;当它靠在另一侧墙上时,梯子的顶端在45°.点D 到地面的垂直距离 DE =3J2m ,求点B 到地面的垂直距离 BC •4.已知:如图,小明准备测量学校旗杆 的影子恰好落在水平地面和斜坡的坡面上, 上的影长CD = 8m ,太阳光线AD 与水平地面成26°角,斜坡CD 与水平地面所成的锐 角为30°,求旗杆 AB 的高度(精确到1m ) •A 点的梯子,当它靠在一侧墙上时,梯子的顶D 点.已知/ BAC = 60°,/ DAE=AB 的高度,当他发现斜坡正对着太阳时,旗杆AB测得水平地面上的影长 BC = 20m ,斜坡坡面北A5.已知:如图,在某旅游地一名游客由山脚一个景点B ,再由B 地沿山坡BC 行走320米到达山顶C ,如果在山顶 C 处观测到景点 B 的俯角为60°.求山高CD (精确到0.01米).5.已知:如图,小明准备用如下方法测量路灯的高度:他走到路灯旁的一个地方,竖起一 根2m 长的竹竿,测得竹竿影长为 1m ,他沿着影子的方向,又向远处走出两根竹竿的 长度,他又竖起竹竿,测得影长正好为2m .问路灯高度为多少米 ?运动员从营地A 出发,沿北偏东60°方向走了 500 30°方向走了 500m ,到达目的地 C 点.求IIIA 沿坡角为30°的山坡AB 行走400m ,到达6.已知:如图,在一次越野比赛中,到达B 点,然后再沿北偏西北n(1)A 、C 两地之间的距离;⑵确定目的地C 在营地A 的什么方向?已知:如图,在1998年特大洪水时期,要加固全长为10000m 的河堤.大堤高5m ,坝顶宽4m ,迎水坡和背水坡都是坡度为1 : 1的等腰梯形.现要将大堤加高坡度改为1 : 1.5.已知坝顶宽不变,求大坝横截面面积增加了多少平方米, 多少立方米的土石?(1)BC 的长; ⑵△ ABC 的面积.(1)求AB 的长;a⑵求证:—一si n ot7. 1m ,背水坡完成工程需已知:如图,在△ ABC 中, 9. 已知:如图,在△ ABC 中, AC = b , BC = a ,锐角/ A = Ct ,/ B =P .__b sin P . A拓展、探究、思考AB = c , AC = b ,锐角/ A = Ct .RRt △ ADC 中,/ D = 90°,/ A=a ,/ CBD = P , AB = a.用含a 及P的三10.已知:如图,在角函数的式子表示CD的长.11.已知:△ ABC 中,/ A = 30°, AC = 10,12.已知:四边形 ABCD 的两条对角线 AC 、=a (0 °v a v 90° ),求此四边形的面积. BD 相交于 E 点,AC = a , BD = b , / BEC13 ..已知:如图, 长.(精确到 AB = 52m , / DAB = 430.01m),/ CAB = 40°,求大楼上的避雷针 CD 的□□□□□□□□□ □□口□□口口口口口□□口口□□口口14.已知:如图, 知测角仪AB 的高为在距旗杆 25m 的A 处,用测角仪测得旗杆顶点C 的仰角为30°,已BC =5J2,求 AB 的长.4 1如图,△ ABC 中,AC = 10, si nC=-,si nB=-,求 AB .3如图,在O O 中,/ A =/ C ,求证:AB = CD (利用三角函数证明).如图,P 是矩形ABCD 的CD 边上一点,PE 丄AC 于E , PF 丄BD 于F , AC18.已知:如图,一艘渔船正在港口 A 的正东方向40海里的B 处进行捕鱼作业,突然接到通知,要该船前往C 岛运送一批物资到 A 港,已知C 岛在A 港的北偏东60 ° 方向,且在B 的北偏西45°方向.问该船从B 处出发,以平均每小时20海里的速 度行驶,需要多少时间才能把这批物资送到A 港(精确到1小时)(该船在C 岛停留半个小时"(丁㊁止1.41, J 3 7.73, J 6 止 2.45)15 .已知:16.已知:17.已知:=15, BC = 8,求 PE + PF.C19.已知:如图,直线y = —x+ 12分别交X轴、y轴于A、B点,将△ AOB折叠,使A 点恰好落在0B的中点C处,折痕为DE .(1)求AE 的长及sin / BEC 的值; ⑵求△ CDE 的面积.20..已知:如图,斜坡 PQ 的坡度i = 1 : J 3,在坡面上点0处有一根1m 高且垂直于水平面的水管0A ,顶端A 处有一旋转式喷头向外喷水,水流在各个方向沿相同的 抛物线落下,水流最高点 M 比点A 高出1m ,且在点A 测得点M 的仰角为30°, 以0点为原点,OA 所在直线为 标系•设水喷到斜坡上的最低点为(1) 写出A 点的坐标及直线 PQ 的解析式; (2) 求此抛物线AMC 的解析式;⑶求 I X C — X B I ; ⑷求B 点与C 点间的距离.y 轴,过O 点垂直于OA 的直线为X 轴建立直角坐 B ,最高点为C.。

初中数学解直角三角形的实际应用题(精编版)

初中数学解直角三角形的实际应用题(精编版)

解直角三角形C1.如图1,一架飞机在空中P处探测到某高山山顶D处的俯角为60°,此后飞机P60以300米/秒的速度沿平行于地面AB的方向匀速飞行,飞行10秒到山顶D的D正上方C处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米)12千A G图1B 2.如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD=60 ,坡长AB=203m,为加强水坝强度,将坝底从A处向后水平延伸到F处,使新的背水坡的坡角∠F=45 ,求AF的长度(结果精确到1米,参考数据cos20°≈0.94,sin20°≈0.34,sin18°≈0.31,参考数据:2≈1.414,3≈1.732).(2题图)cos18°≈0.953.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB=4米,斜面E17cm 距离BC=4.25米,斜坡总长DE=85米.A B(1)求坡角∠D的度数(结果精确到1°);CD F(2)若这段斜坡用厚度为17cm的长方体台阶来铺,需要铺几级台阶?(第3题)4.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距83km的C处.B北(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.lCA M N东5.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文首先梳理了三角形应用题的基础知识,如仰角、俯角、方位角和坡比等关键概念。随后,详细阐述了解斜三角形在实际应用中的广泛性和重要性,特别是在测量、航海、几何和物理等领域。解题的一般步骤包括准确理解题意、画出示意图、将问题归结到三角形中并运用正弦定理、余弦定理等知识进行求解,最后检验答案的实际意义。通过具体例题,如测量两点间距离、测量高度和测量角度等,展示了如何运用这些知识和步骤解决实际问题。例如,在测量高度问题中,通过观测点的仰角和俯角数据,利用三角函数计算出物体的高度。在测量角度问题中,通过解三角形求出相关角度。这些例题不仅
相关文档
最新文档