稳压二极管电路和稳压二级管稳压电路原理分析 2

合集下载

稳压二极管的工作原理 基于稳压二极管的稳压电路图

稳压二极管的工作原理 基于稳压二极管的稳压电路图

稳压二极管的工作原理基于稳压二极管的稳压电路图简单的说,(稳压二极管)其实就是利用(二极管)反向击穿后在继续增加(电流)的情况下二极管两端电压保持不变特性制成的二极管。

就普通二极管而言反向击穿不可恢复,稳压二极管则相反。

稳压电路上图是稳压二极管组成的最简单的稳压电路,输入10V直流电压,输出约6V左右输出电压,利用欧姆定律我们可以很容易的计算各元件的取值。

假定需要输出6V,5ma稳压管的稳压值选取6V左右,稳压管的额定电流大于5MA即可,我们可以用10V-6V(稳压二极管稳压值)=4V 也就是说有4V的电压加在了与稳压管串联的(电阻)上,我们用4V/5ma=800欧电阻。

实际选取1K电阻就可以得到6V左右电压。

下面我们来I简单的分析一下这个简单的电路,当输入电压升高时,负载RL的电压也会随之升高,稳压二极管电流增大,由于其电压不变为6V所以多余的电流以电压形式加在电阻R上,形成稳压。

当输出电压不变负载电流加大时,电阻R上的电流,压降随之增大。

负载电压下降,此时稳压管中的电流急剧下降,使R上的压降随之减小从而保持R上的压降基本不变,使负载电压趋于稳定。

上图稳压电路由于稳压精度及输出电流等弊端目前已经很少使用,但是此电路诠释了稳压二极管的(工作原理)。

为了提高输出电流人们把稳压二极管与三极管结合形成如下串联型稳压电路:稳压二极管扩流电路由此电路可知三极管B极被固定为6V,由于BE间存在0.7V左右压降所以此电路输出约5.3V的电压,由于负载RL与三极管E极相连接,构成射极跟随器,所以只要UB固定不变,输出电压就会基本保持不变。

常用的78系列稳压器就采用这种原理,只不过将电压的波动取样,取调整三极管B极,控制输出电压。

上述两种稳压电路已经淘汰,目前我们可以采用78系列三端稳压器,也可以采用LM2596等高新能稳压器件进行稳压。

所以稳压二极管现在有了如下应用。

保护在mos管G极S极连接适当稳压二极管,当GS电压超过GS击穿电压时稳压二极管导通,电压被牵制在稳压稳压二极管的稳压值上,从而保护MOS管不被击穿。

稳压二极管稳压电路原理

稳压二极管稳压电路原理

稳压二极管稳压电路原理稳压二极管稳压电路是一种应用广泛的电子电路,用于稳定电压输出。

它的工作原理是通过利用二极管的特性,在电路中引入稳压二极管,使得在输入电压变化的情况下,输出电压保持稳定。

稳压二极管是一种特殊的二极管,也称为Zener二极管。

它在反向击穿电压下,可以在电路中产生一个恒定的稳定电压。

在常见的稳压二极管中,Zener二极管的击穿电压通常在2V到200V之间,可以根据具体的应用需求进行选择。

稳压二极管稳压电路可以分为串联型和并联型两种。

串联型稳压电路是将稳压二极管与负载电阻串联连接,以实现稳压的目的。

并联型稳压电路是将稳压二极管与负载电阻并联连接,同样可以实现稳压功能。

在串联型稳压电路中,当输入电压超过稳压二极管的击穿电压时,稳压二极管进入击穿状态,使电路中的电流通过二极管和负载电阻,从而产生稳定的输出电压。

通过合理选择稳压二极管的击穿电压和负载电阻的阻值,可以得到所需的输出电压。

在并联型稳压电路中,稳压二极管与负载电阻并联连接,形成一个分流电路。

当输入电压变化时,稳压二极管会自动调节其反向电流,以保持稳定的输出电压。

与串联型稳压电路相比,并联型稳压电路更适合用于大电流输出的情况。

稳压二极管稳压电路的一个重要参数是稳压系数,用来描述稳压二极管在击穿电压下的电压稳定性。

稳压系数越小,稳压性能越好。

一般来说,稳压二极管的稳压系数在5%到10%之间。

稳压二极管稳压电路在实际应用中具有广泛的用途。

例如,在电源电路中,稳压二极管可用于稳定输出电压,保护后续电路不受输入电压的波动影响。

在测量仪器中,稳压二极管可用于提供精确的参考电压。

此外,稳压二极管还可以用于保护其他电子元件,如集成电路和传感器,免受电压过高的损害。

稳压二极管稳压电路是一种简单而有效的电子电路,可以实现稳定的电压输出。

通过合理选择稳压二极管和负载电阻的参数,可以满足不同应用的需求。

稳压二极管稳压电路在电源、测量仪器和其他电子设备中得到广泛应用,发挥着重要的作用。

稳压二极管稳压电路

稳压二极管稳压电路

稳压二极管稳压电路
稳压二极管稳压电路是一种常见的电子元件,用于稳定电路中的电压。

在电子设备中,稳压电路扮演着至关重要的角色,可以有效地保护电路中的其他元件,提高电路的稳定性和可靠性。

稳压二极管是一种特殊的二极管,其工作原理是利用二极管的导通特性来实现电压的稳定。

当输入电压发生波动时,稳压二极管会自动调节其导通状态,使输出电压保持在一个稳定的值。

这种稳压原理使得稳压二极管在各种电子设备中得到广泛应用。

稳压二极管稳压电路一般由稳压二极管、滤波电容和负载电阻等元件组成。

稳压二极管的工作电压范围取决于其材料和结构,常见的有5V、12V等规格。

滤波电容用于平滑电路中的电压波动,负载电阻则用于限制电流,保护稳压二极管。

在实际电路设计中,稳压二极管稳压电路的选择要根据具体的需求和应用场景来确定。

不同规格的稳压二极管适用于不同的工作电压范围,因此在选型时需要仔细考虑。

此外,电路中的其他元件如滤波电容和负载电阻也要根据实际情况进行合理搭配。

稳压二极管稳压电路还有一种常见的应用场景就是在直流电源中起到稳压作用。

直流电源常常受到电网电压波动的影响,为了保护电子设备不受损坏,需要在电源输出端加入稳压电路,以保证输出电压的稳定性。

总的来说,稳压二极管稳压电路是电子领域中一种简单而有效的电路设计方案,能够在很大程度上提高电路的稳定性和可靠性。

在实际应用中,合理选择稳压二极管和配套元件,并注意电路的设计和布局,可以更好地发挥稳压电路的作用,为电子设备的正常运行提供保障。

希望本文能够为读者对稳压二极管稳压电路有所了解,并在实际应用中发挥作用。

稳压管稳压电路原理

稳压管稳压电路原理

稳压管稳压电路原理
稳压管(也称作稳压二极管)是一种用于稳定电源输出电压的电子元件。

它是根据二极管的正向偏置电压和反向饱和电流特性的改变来实现的。

稳压管的原理如下:
1. 二极管的正向偏置电压特性:当二极管的正向电压超过一定值时,电流会明显增加。

稳压管利用这一特性,在正向电压超过一定值时,使电流稳定在一个相对恒定的值上。

2. 二极管的反向饱和电流特性:在反向电压超过一定值时,二极管会出现反向饱和电流。

稳压管利用这一特性,通过控制反向电流的大小,来实现稳定的输出电压。

稳压管电路一般由稳压管、负载电阻和输入电源组成。

当输入电压上升或下降时,稳压管会自动调整其反向饱和电流,以保持输出电压稳定。

当输入电压超过稳压管的额定电压时,稳压管会开始工作,把多余的电压转化为热量耗散掉。

稳压管的电路原理设计简单、成本低廉,常用于一些低功率电子设备中,如小型电子器件、仪器仪表等。

但由于其功率损耗较大,效率低,适用范围有限。

在高功率和高精度稳定电压要求的场合,一般采用更高效、更精确的稳压电路设计。

硅稳压二极管稳压电路的工作原理

硅稳压二极管稳压电路的工作原理

硅稳压二极管稳压电路的工作原理
硅稳压二极管(也称为稳压二极管或Zener二极管)是一种特
殊的二极管,它能够在特定电压下保持稳定的反向电压。

稳压电路通过将硅稳压二极管连接在逆向偏置模式下来实现稳压功能。

工作原理如下:
1. 硅稳压二极管具有一个固定的突破电压,称为稳定电压Vz。

当反向电压超过稳定电压时,硅稳压二极管开始导通电流。

2. 稳压电路将正极连接到稳压二极管的正向端,负极连接到稳压二极管的反向端。

这样当电路中的电压超过稳定电压时,稳压二极管开始导通,形成一条绕过负载的反向通路,以保持负载端的电压稳定。

3. 负载连接在稳压二极管的反向端,通过稳压二极管提供稳定的电压。

当电流流过负载时,稳压二极管将自动调整电流以保持负载端的电压不变。

总的来说,硅稳压二极管稳压电路通过将稳压二极管连接在反向偏置模式下,利用其特殊的电压-电流特性来实现对负载端
电压的稳定控制。

稳压二极管在电路中的作用及工作原理

稳压二极管在电路中的作用及工作原理

稳压二极管在电路中的作用及工作原理稳压二极管(Zener diode)是一种特殊的二极管,它能够在逆向电压达到特定的阈值后维持稳定的电压。

稳压二极管在电路中主要用于提供一定的稳定电压,以保护其他电子元件不受过高的电压破坏,或者用于产生稳定的参考电压。

以下将详细介绍稳压二极管的作用及工作原理。

1.电压稳定器:稳压二极管可以提供一个稳定的电压源,确保电路中其他元件的工作电压不会超过其耐压范围。

2.电压源调节:通过合适连接稳压二极管,可以调节输出电压的大小,使其保持稳定。

3.电压限制器:稳压二极管能够在逆向击穿时提供较低的电阻,从而起到限制电压的作用。

稳压二极管的工作原理与普通二极管相似,但其特殊之处在于具有逆向击穿的特性。

当施加在稳压二极管的正向电压小于其前向压降时,它的导通特性与普通二极管相同。

然而,当施加在稳压二极管的逆向电压超过一定的阈值时,它就进入了击穿区域。

在击穿区域中,稳压二极管会维持一个稳定的逆向电压,而其电流将呈现跨导状态,即变化微小。

1. 齐纳击穿(Zener breakdown):在款通区域中,电场足够强以至于电子与空穴击穿。

这种击穿机制用于电压低于5.6V的稳压二极管。

2. 穿隧击穿(Avalanche breakdown):在击穿区域中,电场足够强以至于产生高能带载荷,导致电子发生穿隧效应并击穿。

这种击穿机制用于高于5.6V的稳压二极管。

当稳压二极管处于逆向击穿状态时,它的电压将保持相对稳定,这是由于击穿电压决定了电流流过的通道的电阻。

稳压二极管的电阻通常很小,因此在选择合适的稳压二极管时需要根据实际需求来确定。

需要注意的是,稳压二极管在正向电流和逆向电流过大时会发热,因此需要根据其电流和电压特性来选择合适的散热方式,以确保其工作的稳定性和可靠性。

总结起来,稳压二极管能够提供稳定的电压源,在电路中起到保护其他元件或产生稳定参考电压的作用。

其工作原理是通过击穿机制维持一个稳定的逆向电压,具有较低的电阻特性。

5.4.2 稳压二极管典型稳压电路工作原理分析与理解_胡老师教你识读电源电路图_[共3页]

5.4.2 稳压二极管典型稳压电路工作原理分析与理解_胡老师教你识读电源电路图_[共3页]

第 5 课 直流稳压电路工作原理分析与理解193 1.电路分析(1)这一稳压电路的作用也是稳定电路中A 点的直流工作电压,为放大器提供稳定的直流工作电压。

(2)分析这一电路的工作原理需要运用二极管的管压降特性,当二极管导通后,其管压降是基本不变的,对于硅二极管而言这一管压降是0.6V 。

(3) VD1、VD2和VD3串联起来,直流工作电压+V 通过R1加到这三只串联二极管上,使三只二极管同时导通,这样电路中A 点的直流工作电压是3 × 0.6 = 1.8V ,而且是稳定的,达到稳定电路中A 点直流工作电压的目的。

2.电路故障分析(1)这一电路的故障分析基本思路与前面稳压电路的故障分析相同,主要分析VD1、VD2和VD3开路和击穿时的电路故障现象。

(2) VD1、VD2和VD3是串联电路,根据串联电路的特性可以方便地分析这一电路的故障。

(3)当三只二极管中有一只二极管开路时,这一串联电路就开路,不存在稳压功能,而且电路中A 点直流电压升高许多;当其中有一只二极管短路时,电路中A 点的直流电压下降0.6V ,由于A 点正常直流工作电压本来就低,因此任意一只二极管短路都将影响到放大器的正常工作。

5.4.2 稳压二极管典型稳压电路工作原理分析与理解图5-45所示是稳压二极管稳压电路。

电路中,VD1是稳压二极管;U i 是没有经过稳压的直流电压,在这一电路中是输入电压;U o 是经过这一电路稳定后的直流输出电压,其电压大小稳定。

1.电路分析(1)如果电路中没有接入稳压二极管VD1,当直流输入电压U i 大小在波动时,直流输出电压U o 也随之波动,这时直流输出电压U o 没有稳压特性。

(2)加入稳压二极管VD1之后,直流输入电压U i 经电阻R1加到VD1上,使VD1导通,根据稳压二极管特性可知,这时VD1两端的直流电压降是稳定的,这样直流输出电压U o 是稳定的,达到稳压目的。

(3)稳压二极管稳压电路中,稳压电路的直流输出电压大小就是电路中稳压二极管VD1的稳压值。

稳压二极管的工作原理

稳压二极管的工作原理

稳压二极管的工作原理稳压二极管,也称为Zener二极管,是一种特殊的二极管,它可以在特定的反向电压下保持稳定的电压输出。

稳压二极管通常用于电子电路中,用来稳定电压并保护其他元件不受过高的电压损坏。

本文将详细介绍稳压二极管的工作原理及其在电子电路中的应用。

一、稳压二极管的结构和特性。

稳压二极管的结构与普通二极管相似,但在制造工艺上有所不同。

普通二极管是通过P型半导体和N型半导体的P-N结构构成,而稳压二极管则是通过在P-N结的材料中加入特定的杂质来实现的。

这些杂质的加入使得稳压二极管在反向击穿时能够产生稳定的电压输出。

稳压二极管的特性主要包括反向击穿电压和稳定的电压输出。

反向击穿电压是指当稳压二极管的反向电压达到一定数值时,会出现击穿现象,电流急剧增加,电压基本保持不变。

而稳定的电压输出则是指在反向击穿时,稳压二极管能够保持稳定的电压输出,不受外部环境和电路变化的影响。

二、稳压二极管的工作原理。

稳压二极管的工作原理主要是基于反向击穿效应。

当稳压二极管的反向电压达到击穿电压时,P-N结中的载流子会急剧增加,电流迅速增大,电压基本保持不变。

这种反向击穿效应是稳压二极管能够稳定输出电压的关键。

稳压二极管的工作原理可以用简单的电路模型来解释。

当稳压二极管连接在电路中时,如果电压低于击穿电压,稳压二极管处于截止状态,电流很小。

一旦电压超过击穿电压,稳压二极管就会进入反向击穿状态,电流急剧增大,电压保持稳定。

这样就实现了对电路中的稳定电压输出。

三、稳压二极管的应用。

稳压二极管在电子电路中有广泛的应用,主要包括电压稳定和电压保护两个方面。

首先是电压稳定。

稳压二极管可以用来稳定电路中的电压,保证电路在一定的电压范围内工作。

例如,稳压二极管可以用在电源电路中,保证输出电压的稳定性,避免因电压波动而损坏其他元件。

其次是电压保护。

稳压二极管还可以用来保护其他元件不受过高的电压损坏。

当电路中出现过电压时,稳压二极管会进入反向击穿状态,吸收过电压,保护其他元件不受损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳压二极管电路和稳压二级管稳压电路原理分析
最简单的稳压电路由稳压二极管组成如图。

从稳压二极管的特性可知,若能使稳压管始终工作在它的稳压区内,则V O.基本稳定在V z左右。

当电网电压升高时,若要保持输出电压不变,则电阻器R上的压降应增大,即流过R 的电流增大。

这增大的电流由稳压二极管容纳,它的工作点将由b点移到C点,由特性曲线可知V o≈V z基本保持不变。

若稳压二级管稳压电路负载电阻变小时,要保持输出电压不变,负载电流要变大。

V I保持不变,则流过电阻R的电流不变。

负载增大的电流由稳压管调节出来,它的工作点将由b点移到a点。

,稳压管可认为是
调节流过自身的电流大小(端电压基本不变)来满足负载电流的改变,并和限流电阻R配合
将电流的变化转化为电压的变化以适应电网电压的变化。

稳压二极管电路稳压存在问题:电网电压不变时,负载电流的变化范围I Z的调节范围(几十mA),这就限制了负载电流I0的变化范围。

怎样才能扩大I O的变化范围?。

相关文档
最新文档