数学建模基础知识
数学建模知识点

数学建模知识点
以下是 7 条关于数学建模知识点:
1. 什么是函数呀?就像汽车的速度和行驶距离的关系,你给它一个速度,它就能通过时间算出跑了多远,这就是函数在发挥作用。
比如咱们做成本和利润的分析,不就是找出那个能告诉我们怎么赚钱的函数嘛!
2. 线性规划可太重要啦!想象一下,你要安排很多事情,怎么才能让资源利用最大化呢?就像搭积木,得找个最稳最好的方式去摆。
比如说要安排生产任务,怎么分配人力和时间,才能达到最高效率呢!
3. 概率这东西很神奇哦!就好比抽奖,你永远不知道下一次会不会中,但可以算出大概的可能性。
像是判断明天会不会下雨的概率,难道不有趣吗?
4. 统计可真是个好帮手!它就像个细心的记录员,把各种数据整理得清清楚楚。
就像统计一个班级里同学们的成绩分布,这样不就能看出大家的学习情况啦?
5. 模型检验呀,那可不能马虎!这就像你买了个新东西,得试试它好不好用。
比如我们建了个预测销量的模型,得看看预测得准不准呀!
6. 微分方程也很有意思哟!就像研究事物变化的规律。
比如传染病的传播,通过微分方程就可以模拟它怎么扩散的。
哇,是不是很神奇?
7. 建模的思路那得清晰呀!不能乱了阵脚。
就像你要去一个陌生地方,得先规划好路线。
比如碰到一个实际问题,得想清楚从哪里开始,怎么一步一步解决,这就是好的思路的重要性!
我的观点结论是:数学建模知识点丰富有趣又实用,学会了能解决好多实际问题呢!。
数学建模重要知识点总结

数学建模重要知识点总结一、微积分微积分是数学建模中最重要的数学工具之一,它包括微分和积分两大部分。
微分是求函数的导数,用于描述函数的变化率和曲线的切线。
而积分则是求函数的不定积分或定积分,用于描述函数的面积、体积等性质。
在数学建模中,微积分可以用于建立问题的数学模型,求解微分方程和积分方程,对函数进行优化等。
例如,在物理建模中,我们经常会用到微积分来描述物体的运动、速度和加速度等。
在经济学建模中,微积分可以用来描述供求关系、利润最大化等问题。
二、线性代数线性代数是研究向量空间、线性映射和矩阵等数学对象的学科。
在数学建模中,线性代数可以用于描述多维空间中的几何关系、解线性方程组、求解最小二乘问题等。
例如,在计算机图形学中,线性代数可以用来描述和变换三维物体的位置和姿态。
在统计学建模中,线性代数可以用来对数据进行降维、拟合线性模型等。
三、概率论与数理统计概率论与数理统计是研究随机现象的规律性和统计规律的学科。
在数学建模中,概率论与数理统计可以用于描述随机现象的概率分布、推断总体参数、假设检验等。
例如,在风险管理建模中,我们经常会用到概率论与数理统计来描述风险的分布和进行风险评估。
在机器学习建模中,概率论与数理统计可以用来对数据进行建模和推断。
四、数学优化数学优化是研究如何在给定约束条件下,找到使目标函数取得极值的方法和理论。
在数学建模中,数学优化可以用来对问题进行建模和求解。
例如,在生产调度问题中,我们可以用数学优化来寻找最优的生产计划;在投资组合优化中,我们可以用数学优化来构建最优的资产配置。
五、微分方程微分方程是研究未知函数及其导数之间关系的方程。
在数学建模中,微分方程可以用来描述系统的动力学行为、生物种群的增长规律、热传导过程等。
我们可以通过对微分方程进行数值求解、解析求解或者定性分析,来获得系统的行为特征。
六、离散数学离散数学是研究离散结构及其性质的数学学科,包括集合论、图论、逻辑和代数等内容。
数学建模入门基本知识

数学建模知识——之新手上路一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。
不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。
”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。
一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。
今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。
特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。
因此数学建模被时代赋予更为重要的意义。
二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
数学建模基础知识

数学建模基础知识引言:数学建模是一门以数学为工具、以实际问题为研究对象、以模型为核心的学科。
它通过将实际问题抽象为数学模型,并利用数学方法对模型进行分析和求解,从而得到问题的解决方案。
在数学建模中,有一些基础知识是必不可少的,本文将介绍数学建模的基础知识,包括概率与统计、线性代数、微积分和优化算法。
一、概率与统计概率与统计是数学建模的基础。
概率论用于描述随机现象的规律性,统计学则用于从观测数据中推断总体的特征。
在数学建模中,需要根据实际问题的特点选择合适的概率模型,并利用统计方法对模型进行参数估计。
1.1 概率模型概率模型是概率论的基础,在数学建模中常用的概率模型包括离散型随机变量模型和连续型随机变量模型。
离散型随机变量模型适用于描述离散型随机事件,如投硬币的结果、掷骰子的点数等;连续型随机变量模型适用于描述连续型随机事件,如身高、体重等。
在选择概率模型时,需要根据实际问题的特点进行合理选择。
1.2 统计方法统计方法用于从观测数据中推断总体的特征。
在数学建模中,经常需要根据样本数据对总体参数进行估计。
常用的统计方法包括点估计和区间估计。
点估计用于估计总体参数的具体值,如均值、方差等;区间估计则用于给出总体参数的估计范围。
另外,假设检验和方差分析也是数学建模中常用的统计方法。
二、线性代数线性代数是数学建模的重要工具之一。
它研究线性方程组的解法、向量空间与线性变换等概念。
在线性方程组的求解过程中,常用的方法包括高斯消元法、矩阵的逆和特征值分解等。
线性代数还广泛应用于图论、网络分析等领域。
2.1 线性方程组线性方程组是线性代数的基础,它可以用矩阵和向量的形式来表示。
求解线性方程组的常用方法有高斯消元法、矩阵的逆矩阵和克拉默法则等。
高斯消元法通过矩阵的初等行变换将线性方程组转化为简化行阶梯形式,从而求得方程组的解。
2.2 向量空间与线性变换向量空间是线性代数的核心概念,它由若干个向量组成,并满足一定的运算规则。
数学建模常用知识点总结

数学建模常用知识点总结1.1 矩阵及其运算矩阵是一个矩形的数组,由行和列组成。
可以进行加法、减法和数乘运算。
1.2 矩阵的转置对矩阵进行转置就是把矩阵的行和列互换得到的新矩阵。
1.3 矩阵乘法矩阵A和矩阵B相乘得到矩阵C,要求A的列数等于B的行数,C的行数是A的行数,列数是B的列数。
1.4 矩阵的逆只有方阵才有逆矩阵,对于矩阵A,如果存在矩阵B,使得AB=BA=I,那么B就是A的逆矩阵。
1.5 行列式行列式是一个标量,是一个方阵所表示的几何体积的无向量。
1.6 特征值和特征向量对于矩阵A,如果存在标量λ和非零向量x,使得Ax=λx,那么λ就是A的特征值,x就是对应的特征向量。
1.7 线性相关和线性无关对于一组向量,如果存在一组不全为零的系数,使得它们的线性组合等于零向量,那么这组向量就是线性相关的。
1.8 空间与子空间空间是向量的集合,子空间是一个向量空间的子集,并且本身也是一个向量空间。
1.9 线性变换对于向量空间V和W,如果满足T(v+u)=T(v)+T(u)和T(kv)=kT(v),那么T就是一个线性变换。
1.10 最小二乘法对于一个线性方程组,如果方程个数大于未知数个数,可以使用最小二乘法来求得最优解。
1.11 奇异值分解矩阵分解的方法之一,将一个任意的矩阵分解为三个矩阵的乘积。
1.12 特征分解对于一个对称矩阵,可以将其分解为特征向量和特征值的乘积。
1.13 线性代数在建模中的应用在数学建模中,线性代数是非常重要的基础知识,它可以用来表示和分析问题中的数据,解决矩阵方程组、优化问题、回归分析等。
二、微积分2.1 极限和连续性极限是指一个函数在某一点上的局部性质,连续性则是函数在某一点上的全局性质。
2.2 导数和微分对于一个函数y=f(x),它的导数可以表示为f’(x),其微分可以表示为dy=f’(x)dx。
2.3 泰勒级数泰勒级数是一种用多项式逼近函数的方法,在建模中可以用来进行函数的近似计算。
数学建模基础

数学建模基础
数学建模是指利用数学方法和技巧对实际问题进行抽象和
描述,并通过建立数学模型来研究问题的方法。
数学建模
基础主要包括以下几个方面:
1. 数学知识:数学建模需要掌握一定的数学知识,包括数
学分析、线性代数、概率论与数理统计、微分方程等。
这
些数学知识可以帮助建模者理清问题的结构和逻辑关系,
从而构建合理的数学模型。
2. 数据分析能力:数学建模过程中需要处理和分析大量的
实际数据,包括收集数据、整理数据、统计分析数据等。
因此,建模者需要具备一定的数据分析能力,如数据挖掘、统计分析等。
3. 系统思维能力:数学建模需要从整体上把握问题的本质
和复杂性,涉及到系统思维能力。
建模者需要能够将问题
拆解成多个子问题,并对它们进行分类、分析和优化,最
终求解整个问题。
4. 编程能力:在数学建模中,常常需要使用计算机编程来实现数学模型的求解。
因此,建模者需要具备一定的编程能力,如使用MATLAB、Python等编程语言进行算法实现和数据处理。
5. 创新能力:数学建模是解决实际问题的方法,需要建模者拥有一定的创新能力。
建模者需要能够运用已有的数学理论和方法,创造性地将其应用于实际问题,并提出新的解决方案。
综上所述,数学建模基础包括数学知识、数据分析能力、系统思维能力、编程能力和创新能力等方面。
这些基础能力是进行有效数学建模的必备条件。
数学建模知识框架

聚类分析
模糊综合评判法
AHP(层次分析法)
数据建模的综合评价
线性加权综合法、非线性加权值与拟合
灰色预测(GM(1,1))
时间序列预测模型(平均数预测法、指数平滑法、季节指数法、趋势延伸法)
线性回归预测
人工神经网络预测
灰色预测的步骤
最小二乘算法
BP算法
9
方程模型
序号
总目录
模型
算法
解决问题
延展类似
使用工具
优化模型
整数规划
变量为整数
分支定界法
0-1整数规划
变量为0、1
分支定界法
隐枚举法
多目标规划
多目标问题
1、转化成单目标规划(主要目标法、线性加权求和法、极大极小点法、范数理想点法、分层序列法、评价函数法)
2、目标规划法
3、遗传算法
目标规划
克服线性规划问题,且为多目标问题
序贯式算法
动态规划
多阶段决策问题
逆序解法
顺序解法
货郎担问题
旅行线路问题
6
图论模型
图论模型
最短路问题:dijkstra算法
最短路问题:floyd算法
修路选线问题:kruskal算法
分派问题:匈牙利算法
最大流问题:标号法
固定起点到任意点最短路
任意两点最短路
最小生成数
最大匹配问题
最大流问题
7
评价模型
传统:总评分法、加权评分法
常微分模型
差分模型
10
数学建模入门

数学建模入门数学建模是运用数学方法和技巧解决实际问题的过程,是一种既有理论又有实践的学科。
随着科技的不断发展,数学建模在工业、农业、医学、金融等各领域都发挥着重要作用。
本文将介绍数学建模的基本步骤和常用方法,帮助读者初步了解数学建模的入门知识。
一、数学建模的基本步骤1. 定义问题:数学建模的第一步是明确问题的定义,包括问题的背景、目标和限制条件。
只有准确定义问题,才能制定合理的建模方法。
2. 收集信息:在开始建模之前,需要收集相关的信息和数据。
这些信息可以从文献、实验、观测等渠道获取,有助于对问题的深入理解和分析。
3. 建立模型:建立模型是数学建模的核心步骤。
根据问题的特点和要求,选择合适的数学模型和方法,建立起描述问题的数学表达式。
4. 模型求解:利用数学工具和计算机软件,对所建立的模型进行求解。
通过数值计算、优化算法等方法,得到问题的解析结果或近似解。
5. 模型验证:对模型的结果进行验证和评估,检查模型的准确性和可行性。
如果模型与实际情况有出入,需要对模型进行修正和完善。
6. 结果分析:分析模型的结果,得出对问题的解释和结论。
根据结果进行决策,提出相应的对策和建议。
二、数学建模的常用方法1. 数理统计:数理统计是数学建模中常用的方法之一,用于分析和处理统计数据,探索数据的规律和趋势。
包括概率分布、假设检验、回归分析等技术。
2. 最优化方法:最优化方法用于求解最大化或最小化问题,寻找最优解。
常见的最优化算法包括线性规划、整数规划、动态规划等。
3. 微分方程模型:微分方程模型用于描述动态系统的行为和演化过程。
通过建立微分方程模型,可以预测系统的未来发展趋势。
4. 离散事件模型:离散事件模型用于描述存在离散事件和状态转换的系统。
通过离散事件模拟,可以模拟系统的运行过程,探索不同策略对系统性能的影响。
5. 图论与网络模型:图论与网络模型用于描述事物之间的关系和连接方式。
通过图论和网络模型,可以分析复杂系统的结构和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将path[0][2]、path[1][0]后path[1][2]
初始时,有A-1[i][j]=cost[i][j]。当求从顶点vi到顶点 vj的路径上所经过的顶点编号不大于k+1的最短路径长 度时,要分两种情况考虑:
一种情况是该路径不经过顶点编号为k+1的顶点, 此时该路径长度与从顶点vi到顶点vj的路径上所经过的 顶点编号不大于k的最短路径长度相同;
另一种情况是从顶点vi到顶点vj的最短路径上经过 编号为k+1的顶点。
{ int i;
for (i=0;i<n;i++)
if (s[i]==1)
{ printf(“从%d到%d的最短路径长度为:
%d\t路径为:",v0,i,dist[i]);
printf("%d,",v0);
/*输出路径上的起点*/
Ppath(path,i,v0);
/*输出路径上的中间点*/
printf("%d\n",i);
➢ 最小生成树问题
➢ 连线问题—欲修筑连接多个城市的铁路设计一个线路图, 使总造价最低(prim算法、Kruskal算法 )
➢ 图的匹配问题
➢ 人员分派问题:n个工作人员去做n份工作,每人适合做
其中一份或几份,问能否每人都有一份适合的工作?如果 不能,最多几人可以有适合的工作?(匈牙利算法)
➢ 遍历性问题
{2,3,4,5,6}
{0,4,5,6,11,∞,∞}
{3,4,5,6}
{0,4,5,6,11,9,∞}
{4,5,6}
{0,4,5,6,11,9,19}
{4,6}
{0,4,5,6,10,9,17}
{6}
{0,4,5,6,10,9,16}
{}
{0,4,5,6,10,9,16}
则v0到v1~v6各顶点的最短距离分别为4、5、6、 10、9和16。
/*距离初始化*/
s[i]=0;
/*s[]置空*/
if (cost[v0][i]<INF)
/*路径初始化*/
path[i]=v0;
else
path[i]=-1;
}
s[v0]=1;path[v0]=0; /*源点编号v0放入s中*/
for (i=0;i<n;i++) /*循环直到所有顶点的最短路径都求出*/
{ mindis=INF;
u=-1;
for (j=0;j<n;j++) /*选取不在s中且具有最小距离的顶点u*/
if (s[j]==0 && dist[j]<mindis)
{ u=j; mindis=dist[j]; }
s[u]=1;
/*顶点u加入s中*/
for (j=0;j<n;j++) /*修改不在s中的顶点的距离*/
狄克斯特拉算法如下(n为图G的顶点数,v0为源点编号):
void Dijkstra(int cost[][MAXV],int n,int v0)
{ int dist[MAXV],path[MAXV]; int s[MAXV];int mindis,i,j,u;
for (i=0;i<n;i++)
{ dist[i]=cost[v0][i];
我们介绍三种优化模型:
图论 动态优化 排队论
重点:图论模型的数学建模案例分析
数学建模的方法和步骤 基本方法
根据对客观事物特性的认识, •机理分析 找出反映内部机理的数量规律 •测试分析 将研究对象看作“黑箱”,通过对量测数据
的统计分析,找出与数据拟合最好的模型
•二者结合 机理分析建立模型结构,测试分析确定模型参数
➢ 中国邮递员问题—邮递员发送邮件时,要从 邮局出发,经过他投递范围内的每条街道至 少一次,然后返回邮局,但邮递员希望选择 一条行程最短的路线
➢ 最小费用最大流问题
➢ 在运输问题中,人们总是希望在完成运输任 务的同时,寻求一个使总的运输费用最小的 运输方案
1、最短路问题
(1) 基 本 概 念 (2)固 定 起 点 的 最 短 路 (3)每 对 顶 点 之 间 的 最 短 路
{ int k;
k=path[i];
if (k==v0) return;
/*找到了起点则返回*/
Ppath(path,k,v0);
/*找k顶点的前一个顶点*/
printf("%d,",k); /*输出k顶点*/
}
void Dispath(int dist[],int path[],int s[],int n,int v0)
(4)重复步骤(2)和(3)直到所有顶点都包含在S中。
S {0} {0,1} {0,1,2} {0,1,2,3} {0,1,2,3,5} {0,1,2,3,5,4} {0,1,2,3,5,4,6}
1
7
4
16
6 0
2
6
4 2
3 5
U
4
6
1
6
8 5
v0到0~6各顶点的距离
{1,2,3,4,5,6} {0,4,6,6,∞,∞,∞}
从一个顶点到其余各顶点的最短路径
问 题:给定一个带权有向图G与源点v,求从v 到G中其他顶点的最短 路径,并限定各边上的权值 大于或等于0。
采用狄克斯特拉(Dijkstra)算法求解 基本思想是:设G=(V,E)是一个带权有向图, 把图中 顶点集合V分成两组: 第一组为已求出最短路径的顶点集合(用S表示,初始 时将结束Svk中加了只入) 有到一集个合源S点中,,以直后到每全求部得顶一点条都最加短入到路S径中v,,…算v法k,就就 第二组为其余未确定最短 路径的顶点集合(用U表 示)。 按最短 路径长度的递增次序依次把第二组的顶点 加入S中。在加入的过程中,总保持从源点v到S中各顶点 的最短路径长度不大于从源点v到U中任何顶点的最短 路径长度。此外,每个顶点对应一个距离,S中的顶点的 距离就是从v到此顶点的最短 路径长度,U中的顶点的距 离从v到此顶点只包括S中的顶点为中间顶点的当前最 短 路径长度。
基本概念
定 义 1 在 无 向 图 G = (V ,E , )中 : ( 1 ) 顶 点 与 边 相 互 交 错 且 (e i) v i 1 v i (i= 1 ,2 ,… k )的 有 限 非 空 序 列 w (v 0 e 1 v 1 e 2 v k 1 e kv k)称 为 一 条 从 v 0到 v k的 通 路 , 记 为 W v 0 v k ( 2 ) 边 不 重 复 但 顶 点 可 重 复 的 通 路 称 为 道 路 , 记 为 T v 0 v k ( 3 ) 边 与 顶 点 均 不 重 复 的 通 路 称 为 路 径 , 记 为 P v 0 v k
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
一、图论方法
➢ 最短路问题
➢ 两个指定顶点之间的最短路径—给出了一个连接若干个 城镇的铁路网络,在这个网络的两个指定城镇间,找一条 最短铁路线 (Dijkstra算法 )
➢ 每对顶点之间的最短路径 (Dijkstra算法、Floyd算法 )
假设有向图G=(V,E)采用邻接矩阵cost存储,另外
设置一个二维数组A用于存放当前顶点之间的最短路
径长度,分量A[i][j]表示当前顶点vi到顶点vj的最短路 径长度。弗洛伊德算法的基本思想是递推产生一个矩
阵序列A0,A1,…,Ak,…,An,其中Ak[i][j]表示从顶点vi到 顶点vj的路径上所经过的顶点编号不大于k的最短路 径长度。
0
5
7
34
2 2
1
3
2
3
1
0 5 7
0
4
2
3 3 0 2
1
0
0 5 7 A 1 0 4 2
3 3 0 2 1 0
1 1 1 1 Path 1 1 1 1 1
1 1 1 1 1 1 1 1
采用弗洛伊德算法求解过程
考虑顶点v0,A0[i][j]表示由vi到vj, 经由顶点v0的最短路径。只有从v2到 v1经过v0的路径和从v2到v3经过v0的 路径,不影响v2到v1和v2到v3的路径长 度,因此,有:
path[1][0]均改为2。因此,有:
0
5
7
34
2 2
1
3
2
3
1
0 5 9 7
A2
7
0
4
2
3 3 0 2
4
4
1
0
1 1 1 1
Path2
2
1 1 1
1 1 1 1
2
2 1 1
考虑顶点v3,A3[i][j]表示由vi到vj, 经由顶点v3的最短路径。存在路径v0v3-v2,长度为8比原长度短,将A[0][2]改 为8;存在路径v1-v3-v2-v0,长度为 6(A[1][3]+A[3][0]=2+4=6)比原长度短,
因此,有:
0
5
7
34
2 2
1
3
2
3
1
0 5 9 7
1 1 1 1
A 1 3
0 3
4 0
2
2
Path1 1 1 1 1 1 1 1 1
1
0
1 1 1 1
考虑顶点v2,A2[i][j]表示由vi到vj,经由 顶点v2的最短路径。存在路径v3-v2v0,长度为4,将A[3][0]改为4;存在路 径v3-v2-v1,长度为4,将A[3][1]改为4。 存在路径v1-v2-v0,长度为7,将A[1][0] 改为7。将path[3][0]、path[3][1]和