正弦定理和余弦定理教案设计
高三数学总复习 正弦定理和余弦定理教案

高三数学总复习 正弦定理和余弦定理教案教学目标:1、掌握正弦定理和余弦定理的推导,并能用它们解三角形.2、利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.3、常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等.教学重点:①能充分应用三角形的性质及有关的三角函数公式证明三角形的边角关系式. ②能合理地选用正弦定理余弦定理结合三角形的性质解斜三角形.③能解决与三角形有关的实际问题.教学难点:①根据已知条件判定解的情形,并正确求解.②将实际问题转化为解斜三角形.教学过程一、基础回顾1、正余弦定理正弦定理:a sinA =b sinB =c sinC=2R(其中R 为△ABC 外接圆的半径). 余弦定理a 2=b 2+c 2-2bccosA ,b 2=a 2+c 2-2accosB ;c 2=a 2+b 2-2abcosC2、变形式①a =2RsinA ,b =2RsinB ,c =2RsinC ;(其中R 是△ABC 外接圆半径)②a ∶b ∶c =sinA :sinB :sinB③cosA =b 2+c 2-a 22bc ,cosB =a 2+c 2-b 22ac ,cosC =a 2+b 2-c 22ab. 3、三角形中的常见结论(1) A +B +C =π.(2) 在三角形中大边对大角,大角对大边:A>B a>b sinA>sinB.(3) 任意两边之和大于第三边,任意两边之差小于第三边.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高); ② S =12absinC =12acsinB =12bcsinA =abc 4R; ③ S =12r(a +b +c)(r 为内切圆半径); ④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c). 二、基础自测1、在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =________.2、在△ABC 中,a =3,b =1,c =2,则A =________.3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若a =2bcosC ,则此三角形一定是________三角形.4、已知△ABC 的三边长分别为a 、b 、c ,且a 2+b 2-c 2=ab ,则∠C=________.5、在△ABC 中,a =32,b =23,cosC =13,则△ABC 的面积为________.三、典例分析例1 (2013·惠州模拟)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a; (2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理,得asin B =bsin A ,又asin Asin B +bcos 2A =2a ,∴bsin 2A +bcos 2A =2a ,即b =2a ,因此b a = 2. (2)由c 2=b 2+3a 2及余弦定理,得cos B =a 2+c 2-b 22ac =(1+3)a 2c, (*) 又由(1)知,b =2a ,∴b 2=2a 2,因此c 2=(2+3)a 2,c =2+3a =3+12 a. 代入(*)式,得cos B =22, 又0<B <π,所以B =π4. 规律方法:1.运用正弦定理和余弦定理求解三角形时,要分清条件和目标.若已知两边与夹角,则用余弦定理;若已知两角和一边,则用正弦定理.2.在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.例2、(2013·合肥模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =(cos 2A 2,cos 2A),且m ·n =72. (1)求角A 的大小; (2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =(cos 2A2,cos 2A ), ∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3. 又∵m ·n =72, ∴-2cos 2A +2cos A +3=72,解得cos A =12. ∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3,∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc . ① 又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b =3, 于是a =b =c =3,即△ABC 为等边三角形.规律方法:判定三角形的形状,应围绕三角形的边角关系进行转化.无论使用哪种方法,不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能.例3、(2012·课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,acos C +3asin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c.解:(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,则sin B =sin A cos C +cos A sin C . 所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin(A -π6)=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. ① 又a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.② 由①②联立,得b =c =2.四、练习 变式练习1:(2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且bsin A =3acos B.(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.变式练习2:在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b +c)sin B +(2c +b)sin C.(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状五、作业布置六、板书设计1、正余弦定理2、变形式3、三角形中常用结论典例分析七、教学反思。
江苏正弦定理和余弦定理教案

江苏正弦定理和余弦定理教案一、教学目标:1. 让学生了解正弦定理和余弦定理的定义及应用。
2. 培养学生运用正弦定理和余弦定理解决实际问题的能力。
3. 通过对正弦定理和余弦定理的学习,提高学生的数学思维能力和创新能力。
二、教学内容:1. 正弦定理的定义及证明。
2. 余弦定理的定义及证明。
3. 正弦定理和余弦定理的应用。
4. 相关例题解析。
5. 实践练习。
三、教学重点与难点:1. 正弦定理和余弦定理的推导过程。
2. 灵活运用正弦定理和余弦定理解决实际问题。
四、教学方法:1. 采用讲授法,讲解正弦定理和余弦定理的定义、证明及应用。
2. 利用多媒体展示相关例题,进行解析。
3. 开展小组讨论,让学生互动交流,巩固所学知识。
4. 布置实践练习题,巩固所学内容。
五、教学过程:1. 引入:通过回顾三角形的基本知识,引导学生思考正弦定理和余弦定理的定义。
2. 讲解:详细讲解正弦定理和余弦定理的定义、证明及应用。
3. 例题解析:利用多媒体展示相关例题,进行解析,让学生掌握解题技巧。
4. 小组讨论:让学生围绕例题展开讨论,互相交流解题思路。
5. 实践练习:布置实践练习题,让学生独立完成,巩固所学知识。
6. 总结:对本节课的内容进行归纳总结,强调重点知识点。
7. 作业布置:布置课后作业,巩固所学内容。
8. 课后反思:教师对本节课的教学效果进行反思,为下一步教学做好准备。
六、教学评价:1. 课后作业:通过课后作业的完成情况,评估学生对正弦定理和余弦定理的理解和应用能力。
2. 课堂练习:通过课堂练习的实时反馈,了解学生在学习过程中的掌握情况,及时调整教学方法。
3. 小组讨论:观察学生在小组讨论中的参与程度和思考深度,评估他们的合作能力和问题解决能力。
4. 期中期末考试:通过期中期末考试的正弦定理和余弦定理部分,全面评估学生的学习成果。
七、教学资源:1. 教材:选用权威的数学教材,提供正弦定理和余弦定理的基础知识。
2. 多媒体课件:制作精美的多媒体课件,通过动画、图像等形式直观展示正弦定理和余弦定理的应用。
最新正弦定理余弦定理说课稿优秀5篇

最新正弦定理余弦定理说课稿优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!最新正弦定理余弦定理说课稿优秀5篇作为一位无私奉献的人·民教师,通常会被要求编写说课稿,说课稿有助于教学取得成功、提高教学质量。
正弦定理教案优秀5篇

正弦定理教案优秀5篇《正弦定理、余弦定理》教学设计篇一一、教学内容:本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。
二、教材分析:1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书。
数学必修5》(A 版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。
2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。
三、教学目标:1、知识目标:把握正弦定理,理解证实过程。
2、能力目标:(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。
(2)增强学生的协作能力和数学交流能力。
(3)发展学生的创新意识和创新能力。
3、情感态度与价值观:(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。
(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。
四、教学设想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己→←所学知识应用于对任意三角形性质的深入探讨。
让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。
正弦定理和余弦定理的运用教案

正弦定理和余弦定理的运用教案正文:正弦定理和余弦定理的运用教案一、教学目标1. 理解正弦定理和余弦定理的含义和基本公式;2. 掌握正弦定理和余弦定理在解决三角形相关问题中的应用方法;3. 培养学生的逻辑思维能力和解决实际问题的能力。
二、教学重点1. 正弦定理的推导和应用;2. 余弦定理的推导和应用。
三、教学难点1. 正弦定理和余弦定理的理解和记忆;2. 通过具体问题实际运用,使学生深入理解定理的应用方法。
四、教学准备1. 教材:三角函数学科教材;2. 工具:投影仪、黑板、粉笔、直尺、量角器。
五、教学过程Ⅰ. 导入(10分钟)1. 教师简要复习三角比的概念和计算方法;2. 教师引导学生思考:在已知某一角的情况下,如何确定三角形的边长呢?Ⅱ. 正弦定理的推导和应用(20分钟)1. 教师通过投影仪展示正弦定理的基本公式:a/sinA = b/sinB =c/sinC;2. 教师讲解正弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用正弦定理解决问题,并逐步引导学生总结出应用方法。
Ⅲ. 余弦定理的推导和应用(20分钟)1. 教师通过投影仪展示余弦定理的基本公式:c² = a² + b² - 2abcosC;2. 教师讲解余弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用余弦定理解决问题,并逐步引导学生总结出应用方法。
Ⅳ. 正弦定理和余弦定理的综合应用(25分钟)1. 教师给出一些复合问题,要求学生结合正弦定理和余弦定理解决问题;2. 学生分组讨论、解答问题,并在黑板上展示解题过程;3. 教师组织学生展示解题思路和方法,并针对不同解题方法进行及时点评。
Ⅴ. 拓展应用(15分钟)1. 教师布置一些拓展性应用题,要求学生在课后完成;2. 学生自主学习拓展内容,并在下节课讲解时与教师进行互动讨论。
Ⅵ. 总结与作业(10分钟)1. 教师对本节课的要点进行总结,并强调正弦定理和余弦定理的重要性;2. 布置作业:完成课后习题,复习和巩固所学知识。
正弦定理和余弦定理教案设计

正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.3.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高);② S =12absinC =12acsinB =12bcsinA =abc 4R ;③ S =12r(a +b +c)(r 为内切圆半径);④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c).角一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换题型1 正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c.解:由正弦定理,得a sinA =b sinB ,即3sinA =2sin45°,∴ sinA =32.∵ a>b ,∴ A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =bsinC sinB =6+22;当A =120°时,C =180°-45°-120°=15°, c =bsinC sinB =6-22.变式训练 在△ABC 中,(1) 若a =4,B =30°,C =105°,则b =________. (2) 若b =3,c =2,C =45°,则a =________.(3) 若AB =3,BC =6,C =30°,则∠A =________. 答案:(1) 2 2 (2) 无解 (3) 45°或135°解析:(1) 已知两角和一边只有一解,由∠B =30°,∠C =105°,得∠A =45°.由正弦定理,得b =asinB sinA =4sin30°sin45°=2 2.(2) 由正弦定理得sinB =bsinC C =32>1,∴ 无解.(3) 由正弦定理BC sinA =AB sinC ,得6sinA =312,∴ sinA =22.∵ BC>AB ,∴ A>C ,∴ ∠A =45°或135°.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin A cos A =2,sin 2A +cos 2A =1,联立解得sin A =255, 再由正弦定理得a sin A =b sin B ,代入数据解得a =210.答案 255210双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A .5 2B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°,由正弦定理得:a sin A =c sin C ,即1032=c 22.∴c =1063.答案 C2.在△ABC 中,若sin A a =cos Bb,则B 的值为( ).A .30°B .45°C .60°D .90°解析 由正弦定理知:sin A sin A =cos Bsin B,∴sin B =cos B ,∴B =45°.答案 B余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .1.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ).A .30°B .45°C .60°D .75°解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°.答案 C2.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.答案 C 3.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________.解析 ∵a 2+b 2-c 2=-3ab ,∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大内角.答案 150° 题型2 余弦定理解三角形4 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cosB cosC =-b2a +c.(1) 求角B 的大小;(2) 若b =13,a +c =4,求△ABC 的面积.解:(1) 由余弦定理知:cosB =a 2+c 2-b22ac,cosC =a 2+b 2-c 22ab .将上式代入cosB cosC =-b 2a +c,得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c, 整理得a 2+c 2-b 2=-ac.∴ cosB =a 2+c 2-b 22ac =-ac 2ac =-12.∵ B 为三角形的内角,∴ B =23π.(2) 将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2accosB ,得b 2=(a +c)2-2ac -2accosB ,∴ 13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ ac =3. ∴ S △ABC =12acsinB =334.备选变式(教师专享)5,(2014·南京期末)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,已知c =2,C =π3.(1) 若△ABC 的面积等于3,求a 、b ;(2) 若sinC +sin(B -A)=2sin2A ,求△ABC 的面积.解:(1) 由余弦定理及已知条件,得a 2+b 2-ab =4.因为△ABC 的面积等于3,所以12absinC =3,得ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4, 解得a =2,b =2.(2) 由题意得sin(B +A)+sin(B -A)=4sinAcosA ,所以sinBcosA =2sinAcosA.当cosA =0时,A =π2,所以B =π6,所以a =433,b =233.当cosA ≠0时,得sinB =2sinA ,由正弦定理得b =2a ,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a , 解得a =233,b =433.所以△ABC 的面积S =12absinC =233.【训练1】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.解 (1)由2cos 2A2+cos A =0,得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc , 又a =23,b +c =4,有12=42-bc ,则bc =4,故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例1】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断.解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )],即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cosB sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B ,即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练】 在△ABC 中,若a cos A =b cos B =ccos C;则△ABC 是( ).A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径).∴sin A cos A =sin B cos B =sin C cos C. 即tan A =tan B =tan C ,∴A =B =C .答案 B【例2】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6,a =433,b =233; 当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.,【防范措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错因 忽视三角形中“大边对大角”的定理,产生了增根. 实录 由1+2cos(B +C )=0,知cos A =12,∴A =π3,根据正弦定理a sin A =bsin B 得: sin B =b sin A a =22,∴B =π4或3π4. 以下解答过程略.正解 ∵在△ABC 中,cos(B +C )=-cos A ,∴1+2cos(B +C )=1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =bsin B, ∴sin B =b sin A a =22.∵a >b ,∴B =π4,∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A=22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 【试一试】 (2014·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c , a sin A sin B +b cos 2 A =2a . (1)求ba ;(2)若c 2=b 2+3a 2,求B .[尝试解答] (1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A . 故sinB =2sin A ,所以b a= 2. (2)由余弦定理和c 2=b 2+3a 2,得cos B =1+3a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.3.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高);② S =12absinC =12acsinB =12bcsinA =abc 4R ;③ S =12r(a +b +c)(r 为内切圆半径);④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c).角一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换题型1 正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c.变式训练 在△ABC 中,(1) 若a =4,B =30°,C =105°,则b =________. (2) 若b =3,c =2,C =45°,则a =________.(3) 若AB =3,BC =6,C =30°,则∠A =________.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =______;a=________.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A .5 2B .10 2 C.1063D .5 62.在△ABC 中,若sin A a =cos Bb,则B 的值为( ).A .30°B .45°C .60°D .90°余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .1.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ).A .30°B .45°C .60°D .75°2.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 33.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 题型2 余弦定理解三角形4 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cosB cosC =-b2a +c.(1) 求角B 的大小;(2) 若b =13,a +c =4,求△ABC 的面积.备选变式(教师专享)5,(2014·南京期末)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,已知c =2,C =π3.(1) 若△ABC 的面积等于3,求a 、b ;(2) 若sinC +sin(B -A)=2sin2A ,求△ABC 的面积.【训练1】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.考向三 利用正、余弦定理判断三角形形状【例1】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. .【训练】 在△ABC 中,若a cos A =b cos B =ccos C;则△ABC 是( ).A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形【例2】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.,【防范措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.【试一试】 (2014·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c , a sin A sin B +b cos 2 A =2a .实用文档(1)求b a; (2)若c 2=b 2+3a 2,求B .。
江苏正弦定理和余弦定理教案

江苏正弦定理和余弦定理教案一、教学目标1. 让学生掌握正弦定理和余弦定理的定义及表达式。
2. 培养学生运用正弦定理和余弦定理解决实际问题的能力。
3. 引导学生通过观察、分析、归纳和验证等方法,深入理解正弦定理和余弦定理的内在联系。
二、教学内容1. 正弦定理:在三角形中,各边的长度与其对角的正弦值成比例。
2. 余弦定理:在三角形中,各边的平方和等于其他两边平方和与这两边夹角余弦值的乘积的两倍。
三、教学重点与难点1. 教学重点:正弦定理和余弦定理的定义及应用。
2. 教学难点:正弦定理和余弦定理的推导过程及其在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳和验证等方法,探索正弦定理和余弦定理。
2. 利用多媒体课件,直观展示正弦定理和余弦定理的推导过程。
3. 设计具有代表性的例题,讲解正弦定理和余弦定理在解决实际问题中的应用。
4. 组织学生进行小组讨论和探究,提高学生的合作能力和解决问题的能力。
五、教学过程1. 导入新课:通过展示三角形模型,引导学生思考三角形中的几何关系。
2. 探究正弦定理:让学生观察三角形模型,引导学生发现各边长度与对角正弦值的关系,进而总结出正弦定理。
3. 验证正弦定理:让学生运用正弦定理解决具体问题,验证其正确性。
4. 探究余弦定理:引导学生观察三角形模型,发现各边平方和与夹角余弦值的关系,总结出余弦定理。
5. 验证余弦定理:让学生运用余弦定理解决具体问题,验证其正确性。
6. 总结正弦定理和余弦定理:引导学生对比总结两个定理的异同点。
7. 巩固练习:设计具有针对性的练习题,让学生巩固正弦定理和余弦定理的应用。
8. 拓展与应用:引导学生运用正弦定理和余弦定理解决实际问题,提高学生的应用能力。
六、教学评价1. 课堂讲解:评价学生对正弦定理和余弦定理的理解程度,以及运用这两个定理解决问题的能力。
2. 练习题:通过布置练习题,检验学生对正弦定理和余弦定理的掌握情况。
高中数学正余弦定理教案模板(精选7篇)-最新

高中数学正余弦定理教案模板(精选7篇)作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。
下面是的为您带来的7篇《高中数学正余弦定理教案模板》,希望能够对困扰您的问题有一定的启迪作用。
余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。
下面我分别从教材分析。
教学目标的确定。
教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。
平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。
本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。
引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.3.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高);② S =12absinC =12acsinB =12bcsinA =abc 4R ;③ S =12r(a +b +c)(r 为切圆半径);④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c).角一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换题型1 正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c.解:由正弦定理,得a sinA =b sinB ,即3sinA =2sin45°,∴ sinA =32.∵ a>b ,∴ A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =bsinC sinB =6+22;当A =120°时,C =180°-45°-120°=15°, c =bsinC sinB =6-22.变式训练 在△ABC 中,(1) 若a =4,B =30°,C =105°,则b =________. (2) 若b =3,c =2,C =45°,则a =________.(3) 若AB =3,BC =6,C =30°,则∠A =________. 答案:(1) 2 2 (2) 无解 (3) 45°或135°解析:(1) 已知两角和一边只有一解,由∠B =30°,∠C =105°,得∠A =45°.由正弦定理,得b =asinB sinA =4sin30°sin45°=2 2.(2) 由正弦定理得sinB =bsinC C =32>1,∴ 无解.(3) 由正弦定理BC sinA =AB sinC ,得6sinA =312,∴ sinA =22.∵ BC>AB ,∴ A>C ,∴ ∠A =45°或135°.【训练1】 (2011·)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a=________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin A cos A =2,sin 2A +cos 2A =1,联立解得sin A =255, 再由正弦定理得a sin A =b sin B ,代入数据解得a =210.答案 255210双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A .5 2B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°,由正弦定理得:a sin A =c sin C ,即1032=c 22.∴c =1063.答案 C2.在△ABC 中,若sin A a =cos Bb,则B 的值为( ).A .30°B .45°C .60°D .90°解析 由正弦定理知:sin A sin A =cos Bsin B,∴sin B =cos B ,∴B =45°.答案 B余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .1.(2011·联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ).A .30°B .45°C .60°D .75°解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°.答案 C2.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.答案 C 3.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大角为________.解析 ∵a 2+b 2-c 2=-3ab ,∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大角.答案 150° 题型2 余弦定理解三角形4 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cosB cosC =-b2a +c.(1) 求角B 的大小;(2) 若b =13,a +c =4,求△ABC 的面积.解:(1) 由余弦定理知:cosB =a 2+c 2-b22ac,cosC =a 2+b 2-c 22ab .将上式代入cosB cosC =-b 2a +c,得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c, 整理得a 2+c 2-b 2=-ac.∴ cosB =a 2+c 2-b 22ac =-ac 2ac =-12.∵ B 为三角形的角,∴ B =23π.(2) 将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2accosB ,得b 2=(a +c)2-2ac -2accosB ,∴ 13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ ac =3. ∴ S △ABC =12acsinB =334.备选变式(教师专享)5,(2014·期末)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,已知c =2,C =π3.(1) 若△ABC 的面积等于3,求a 、b ;(2) 若sinC +sin(B -A)=2sin2A ,求△ABC 的面积.解:(1) 由余弦定理及已知条件,得a 2+b 2-ab =4.因为△ABC 的面积等于3,所以12absinC =3,得ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4, 解得a =2,b =2.(2) 由题意得sin(B +A)+sin(B -A)=4sinAcosA ,所以sinBcosA =2sinAcosA.当cosA =0时,A =π2,所以B =π6,所以a =433,b =233.当cosA ≠0时,得sinB =2sinA ,由正弦定理得b =2a ,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得a =233,b =433.所以△ABC 的面积S =12absinC =233.【训练1】 (2011·模拟)已知A ,B ,C 为△ABC 的三个角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.解 (1)由2cos 2A2+cos A =0,得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc , 又a =23,b +c =4,有12=42-bc ,则bc =4,故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例1】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断.解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )],即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cosB sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B ,即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练】 在△ABC 中,若a cos A =b cos B =ccos C;则△ABC 是( ).A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径).∴sin A cos A =sin B cos B =sin C cos C. 即tan A =tan B =tan C ,∴A =B =C .答案 B【例2】►在△ABC 中,角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6,a =433,b =233; 当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练】 (2011·西城一模)设△ABC 的角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2. (1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.,【防措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错因 忽视三角形中“大边对大角”的定理,产生了增根. 实录 由1+2cos(B +C )=0,知cos A =12,∴A =π3,根据正弦定理a sin A =bsin B 得: sin B =b sin A a =22,∴B =π4或3π4. 以下解答过程略.正解 ∵在△ABC 中,cos(B +C )=-cos A ,∴1+2cos(B +C )=1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =bsin B, ∴sin B =b sin A a =22.∵a >b ,∴B =π4,∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A=22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 【试一试】 (2014·)△ABC 的三个角A ,B ,C 所对的边分别为a ,b ,c , a sin A sin B +b cos 2 A =2a . (1)求ba ;(2)若c 2=b 2+3a 2,求B .[尝试解答] (1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A . 故sinB =2sin A ,所以b a= 2. (2)由余弦定理和c 2=b 2+3a 2,得cos B =1+3a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.3.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高);② S =12absinC =12acsinB =12bcsinA =abc 4R ;③ S =12r(a +b +c)(r 为切圆半径);④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c).A 为锐角A 为钝角或直角图形关系 式 a <b sin A a =b sin Ab sin A <a <ba ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换题型1 正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c.变式训练 在△ABC 中,(1) 若a =4,B =30°,C =105°,则b =________. (2) 若b =3,c =2,C =45°,则a =________.(3) 若AB =3,BC =6,C =30°,则∠A =________.【训练1】 (2011·)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =______;a =________.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A .5 2B .10 2 C.1063D .5 62.在△ABC 中,若sin A a =cos Bb,则B 的值为( ).A .30°B .45°C .60°D .90°余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .1.(2011·联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ).A .30°B .45°C .60°D .75°2.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 33.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大角为________. 题型2 余弦定理解三角形4 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cosB cosC =-b2a +c.(1) 求角B 的大小;(2) 若b =13,a +c =4,求△ABC 的面积.备选变式(教师专享)5,(2014·期末)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,已知c =2,C =π3.(1) 若△ABC 的面积等于3,求a 、b ;(2) 若sinC +sin(B -A)=2sin2A ,求△ABC 的面积.【训练1】 (2011·模拟)已知A ,B ,C 为△ABC 的三个角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.考向三 利用正、余弦定理判断三角形形状【例1】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. .【训练】 在△ABC 中,若a cos A =b cos B =ccos C;则△ABC 是( ).A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形【例2】►在△ABC 中,角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练】 (2011·西城一模)设△ABC 的角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2. (1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.,【防措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.【试一试】 (2014·)△ABC 的三个角A ,B ,C 所对的边分别为a ,b ,c , a sin A sin B +b cos 2 A =2a . (1)求b a;实用文档(2)若c2=b2+3a2,求B.。