(完整word版)人教版高中余弦定理教案

合集下载

高中数学《余弦定理》教案

高中数学《余弦定理》教案

高中数学《余弦定理》教案一、教学目标1. 理解余弦定理的定义和表达式。

2. 学会运用余弦定理解决三角形中的边角问题。

3. 掌握余弦定理在实际问题中的应用。

二、教学内容1. 余弦定理的定义和表达式。

2. 余弦定理的应用举例。

三、教学重点与难点1. 重点:余弦定理的定义和表达式,余弦定理的应用。

2. 难点:余弦定理在实际问题中的应用。

四、教学方法1. 采用讲解法,引导学生理解余弦定理的定义和表达式。

2. 采用案例分析法,通过举例让学生学会运用余弦定理解决实际问题。

3. 采用练习法,巩固学生对余弦定理的理解和应用。

五、教学过程1. 导入:通过复习正弦定理和余弦函数的知识,引出余弦定理的概念。

2. 新课讲解:讲解余弦定理的定义和表达式,举例说明余弦定理的应用。

3. 案例分析:分析实际问题,让学生运用余弦定理解决问题。

4. 练习巩固:布置练习题,让学生巩固余弦定理的知识。

5. 总结:对本节课的内容进行总结,强调余弦定理的重要性和应用。

教案仅供参考,具体实施可根据实际情况进行调整。

六、教学评估1. 课堂问答:通过提问方式检查学生对余弦定理的理解和掌握程度。

2. 练习题:布置课堂练习题,评估学生运用余弦定理解决实际问题的能力。

3. 课后作业:布置课后作业,巩固学生对余弦定理的知识。

七、教学拓展1. 引导学生思考余弦定理在现实生活中的应用,如测量三角形的角度和边长。

2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。

八、教学反思1. 反思本节课的教学效果,检查学生对余弦定理的掌握程度。

2. 分析学生的反馈意见,调整教学方法和策略。

九、教学资源1. 教案、PPT、教材等教学资料。

2. 练习题、测试题等教学资源。

3. 互联网资源,如相关学术文章、教学视频等。

十、教学计划1. 下一节课内容:介绍余弦定理在实际问题中的应用,如几何图形中的角度计算。

2. 教学目标:让学生学会运用余弦定理解决实际问题,提高解决问题的能力。

余弦定理的教案(通用3篇)

余弦定理的教案(通用3篇)

余弦定理的教案(通用3篇)余弦定理的篇1一、单元教学内容运算定律P——P二、单元教学目标1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。

2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。

3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。

4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。

5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。

6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。

7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。

三、单元教学重、难点1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。

2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。

四、单元教学安排运算定律10课时第1课时加法交换律和结合律一、教学内容:加法交换律和结合律P17——P18二、教学目标:1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。

2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。

3、培养学生的观察能力和概括能力。

三、教学重难点重点:发现并掌握加法交换律、结合律。

难点:由具体上升到抽象,概括出加法交换律和加法结合律。

四、教学准备多媒体五、教学过程(一)导入新授1、出示教材第17页情境图。

师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!2、获取信息。

师:从中你知道了哪些数学信息?(学生回答)3、师小结信息,引出课题:加法交换律和结合律。

(二)探索发现第一环节探索加法交换律1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。

人教版高中数学余弦定理教案

人教版高中数学余弦定理教案

人教版高中数学余弦定理教案第一章:余弦定理的概念与表达式1.1 引入余弦定理通过实际问题引入余弦定理的概念,让学生了解余弦定理在几何中的应用。

引导学生思考如何用余弦定理来解决三角形中的问题。

1.2 余弦定理的表述给出余弦定理的数学表达式:a^2 = b^2 + c^2 2bccosA解释余弦定理中的各个符号代表的意思,让学生理解余弦定理的构成。

1.3 余弦定理的应用通过例题讲解如何使用余弦定理来解决三角形中的问题,如求边长、角度等。

引导学生思考余弦定理在实际问题中的应用,培养学生的实际问题解决能力。

第二章:余弦定理在直角三角形中的应用2.1 直角三角形的余弦定理引入直角三角形的余弦定理:a^2 = b^2 + c^2解释直角三角形中余弦定理的特殊性,让学生理解直角三角形中的余弦定理与一般三角形不同。

2.2 直角三角形中余弦定理的应用通过例题讲解如何使用余弦定理来解决直角三角形中的问题,如求边长、角度等。

引导学生思考余弦定理在直角三角形中的应用,培养学生的实际问题解决能力。

第三章:余弦定理在非直角三角形中的应用3.1 非直角三角形的余弦定理引入非直角三角形的余弦定理:a^2 = b^2 + c^2 2bccosA解释非直角三角形中余弦定理的应用,让学生理解余弦定理在非直角三角形中的重要性。

3.2 非直角三角形中余弦定理的应用通过例题讲解如何使用余弦定理来解决非直角三角形中的问题,如求边长、角度等。

引导学生思考余弦定理在非直角三角形中的应用,培养学生的实际问题解决能力。

第四章:余弦定理在实际问题中的应用4.1 实际问题的引入通过实际问题引入余弦定理在实际中的应用,让学生了解余弦定理在现实生活中的重要性。

引导学生思考如何将实际问题转化为余弦定理问题。

4.2 实际问题中余弦定理的应用通过例题讲解如何使用余弦定理来解决实际问题,如测量三角形的边长、角度等。

引导学生思考余弦定理在实际问题中的应用,培养学生的实际问题解决能力。

(完整word)高中数学余弦定理教案

(完整word)高中数学余弦定理教案

1、1、 2 余弦定理一、【学习目标】1.掌握余弦定理的两种表示形式及其推导过程;2.会用余弦定理解决详细问题;3.经过余弦定理的向量法证明领会向量工具性.【学习成效】:教课目的的给出有益于学生整体的掌握讲堂.二、【教课内容和要求及教课过程】阅读教材第 5—7 页内容,而后回答以下问题(余弦定理)<1>余弦定理及其推导过程?<2>余弦定理及余弦定理的应用?结论:<1>在中,AB、BC、CA的长分别为c、a、b.由向量加法得:<2>余弦定理:三角形任何一边的平方等于其余两边平方的和减去这两边与它们夹角的余弦的积的两倍.余弦定理还可作哪些变形呢?[ 理解定理 ](1)余弦定理的基本作用为:①已知三角形三边求角;②已知两边和它们的夹角,求第三边。

[ 例题剖析 ]例1评论:五个量中两边及夹角求其余两个量。

例 2 评论:已知三边求三角。

【学习成效】:学生简单理解和掌握。

三、【练习与稳固】依据今日所学习的内容,达成以下练习练习一:教材第 8 页练习第1、 2 题四、【作业】教材第 10 页练习第3---4题.五、【小结】(1)余弦定理合用任何三角形。

(2)余弦定理的作用:已知两边及两边夹角求第三边;已知三边求三角;判断三角形形状。

( 3)由余弦定理可知六、【教课反省】本节课要点理解余弦定理的运用.要求记着定理。

习题优选一、选择题1.在中,已知角则角 A 的值是()A.15°B.75°C.105°D.75°或 15°2.中,则此三角形有()A.一解 B .两解 C .无解 D .不确立3.若是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在中,已知则AD长为()A.B.C.D.5.在,面积,则BC长为()A.B.75 C .51D.496.钝角的三边长为连续自然数,则这三边长为()A. 1、2、3、B.2、3、4C. 3、 4、5D. 4、 5、67.在中,,则A等于()A.60°B.45° C .120°D.30°8.在中,,则三角形的形状为()A.直角三角形B.锐角三角形C.等腰三角形 D .等边三角形9.在中,,则等于()A.B.C.D.10.在中,,则的值为()A.B.C.D.11.在中,三边与面积S的关系式为则角C为()A.30°B.45°C.60°D.90°12.在中,是的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件二、填空题13.在中,,则14.若的三个内角成等差数列,且最大边为最小边的 2 倍,则三内角之比为 ________。

高中数学《余弦定理》教案

高中数学《余弦定理》教案

高中数学《余弦定理》教案第一章:导入与概念介绍1.1 导入教师通过一个实际问题引入余弦定理的概念,例如在直角三角形中,斜边与两个直角边的关系。

引导学生思考如何用数学表达式来描述这个关系。

1.2 余弦定理的概念教师介绍余弦定理的定义,即在三角形中,任意一边的平方等于其他两边平方和与这两边乘积的余弦的两倍之和。

用数学表达式表示为:a^2 = b^2 + c^2 2bccosA。

第二章:证明与推导2.1 余弦定理的证明教师引导学生思考如何证明余弦定理。

通过画图和几何推理,引导学生理解并证明余弦定理。

可以使用三角形的正弦定理和余弦定理的平方关系来证明。

2.2 余弦定理的推导教师引导学生利用余弦定理推导出其他相关的定理,例如正弦定理。

引导学生理解余弦定理与其他定理之间的关系。

第三章:余弦定理的应用3.1 求解三角形的问题教师通过例题展示如何使用余弦定理求解三角形的问题。

引导学生运用余弦定理计算三角形的边长和角度。

3.2 求解三角形的面积教师引导学生利用余弦定理推导出三角形的面积公式,并引导学生运用该公式计算三角形的面积。

第四章:余弦定理的拓展4.1 余弦定理在几何中的应用教师引导学生思考余弦定理在几何中的应用,例如求解三角形的面积、角度等问题。

4.2 余弦定理在物理中的应用教师引导学生思考余弦定理在物理中的应用,例如振动问题、波动问题等。

第五章:巩固与练习5.1 巩固知识教师通过例题和练习题帮助学生巩固余弦定理的理解和应用。

引导学生运用余弦定理解决不同类型的问题。

5.2 练习题教师布置一些练习题,让学生独立完成,巩固对余弦定理的理解和应用。

第六章:解三角形问题6.1 解三角形的概念教师介绍解三角形的概念,即通过已知的三角形一边和两个角,求解其他两边和角度。

引导学生理解解三角形的重要性。

6.2 利用余弦定理解三角形教师通过例题展示如何利用余弦定理解三角形问题。

引导学生运用余弦定理计算三角形的边长和角度。

第七章:余弦定理与向量7.1 向量与余弦定理的关系教师介绍向量与余弦定理的关系,即向量的点积与余弦定理的关系。

(完整版)《余弦定理》教案完美版

(完整版)《余弦定理》教案完美版

《余弦定理》教案(一)教学目标1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.(二)教学重、难点重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在余弦定理的发现和证明过程中的作用.(三)学法与教学用具学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。

从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角教学用具:直尺、投影仪、计算器(四)教学设想[创设情景] C 如图1.1—4,在∆ABC 中,设BC=a ,AC=b,AB=c ,已知a,b 和∠C ,求边c b aA c B(图1.1-4)[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题. A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()222 2 2c c c a b a ba ab b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1—5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

高中数学《余弦定理》教案

高中数学《余弦定理》教案

高中数学《余弦定理》教案一、教学目标1. 让学生理解余弦定理的定义和意义,掌握余弦定理的表达式。

2. 培养学生运用余弦定理解决三角形问题的能力。

3. 培养学生的逻辑思维能力和数学素养。

二、教学重点与难点1. 教学重点:余弦定理的定义和表达式,运用余弦定理解决三角形问题。

2. 教学难点:余弦定理的推导过程,运用余弦定理解决复杂三角形问题。

三、教学方法1. 采用问题驱动法,引导学生主动探究余弦定理。

2. 利用几何画板或实物模型,直观展示三角形中余弦定理的应用。

3. 开展小组讨论,培养学生的合作能力和解决问题的能力。

四、教学准备1. 教师准备PPT,内容包括余弦定理的定义、表达式和应用实例。

2. 准备几何画板或实物模型,用于展示三角形中余弦定理的应用。

3. 准备相关练习题,用于巩固所学知识。

五、教学过程1. 导入:通过一个实际问题,引发学生对余弦定理的思考,激发学生的学习兴趣。

2. 新课讲解:讲解余弦定理的定义和表达式,引导学生理解余弦定理的意义。

3. 实例演示:利用几何画板或实物模型,展示三角形中余弦定理的应用。

4. 小组讨论:让学生分组讨论如何运用余弦定理解决实际问题,培养学生的合作能力和解决问题的能力。

5. 练习巩固:让学生解答相关练习题,巩固所学知识。

6. 总结:对本节课的内容进行总结,强调余弦定理的重要性。

7. 作业布置:布置适量作业,让学生进一步巩固余弦定理的应用。

六、教学延伸1. 引导学生思考余弦定理在实际生活中的应用,例如测量三角形的角度、计算三角形的面积等。

2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。

七、课堂小结1. 让学生回顾本节课所学内容,总结余弦定理的定义、表达式和应用。

2. 强调余弦定理在解决三角形问题中的重要性。

八、课后作业1. 完成教材上的相关练习题,巩固余弦定理的知识点。

九、教学反馈1. 在下一节课开始时,检查学生的作业完成情况,了解学生对余弦定理的掌握程度。

数学必修五余弦定理教案(可编辑

数学必修五余弦定理教案(可编辑

数学必修五余弦定理教案(可编辑教案:数学必修五,余弦定理一、教学目标:1.理解余弦定理的概念及原理;2.学会运用余弦定理解决三角形中的实际问题;3.培养学生的逻辑思维和推理能力。

二、教学重点:1.理解余弦定理的概念及原理;2.运用余弦定理解决三角形中的实际问题。

三、教学难点:1.运用余弦定理解决具体问题。

四、教学过程:Step 1 引入与导入(5分钟)1.利用平面上两点间距离公式引入余弦定理;2.通过几个具体实例让学生感触余弦定理的作用。

Step 2 定理说明与证明(10分钟)1.介绍余弦定理的概念和原理;2.利用几何图示证明余弦定理。

Step 3 理解与运用(20分钟)1.引导学生理解余弦定理;2.利用余弦定理计算未知角度的大小;3.利用余弦定理计算未知边长的长度。

Step 4 实际问题的应用(25分钟)1.给出一些实际生活中的问题,如解决航海、测距等问题;2.分组讨论,利用余弦定理解决问题;3.学生进行展示,互相评价讨论,找出最佳解决方案。

Step 5 拓展与应用(15分钟)1.将余弦定理与三角函数的其他定理进行对比;2.引导学生思考余弦定理在其他数学领域的应用。

五、教学辅助手段及教学资源1.平面图示,辅助教学;2.三角量角器,用于演示与实践;3.教学PPT,展示定理证明与解题方法;4.实际问题的示例。

六、教学评估及反馈1.课堂练习,检测学生对概念和原理的理解程度;2.实际问题的解答,评价学生的应用能力;3.学生互相评价讨论,提供解决方案改进的建议。

七、教学延伸1.学生通过解决实际问题,培养分析和解决问题的能力;2.鼓励学生进一步探索余弦定理在其他数学领域的应用。

八、教学反思通过本节课的教学,学生对余弦定理有了更深入的理解,尤其是在解决实际问题的过程中,学生能够灵活运用余弦定理解决问题。

同时,在教学中引入实例和思考问题的环节,激发了学生的学习兴趣和思辨能力,培养了他们的创新思维和问题解决能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《余弦定理》教案
一、教材分析
《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。

本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。

余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。

其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。

二、教学目标
知识与技能:1、理解并掌握余弦定理和余弦定理的推论。

2、掌握余弦定理的推导、证明过程。

3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。

过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。

2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。

3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际
问题的能力。

情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验
解决问题的成功喜悦。

2、感受数学一般规律的美感,培养数学学习的兴趣。

三、教学重难点
重点:余弦定理及其推论和余弦定理的运用。

难点:余弦定理的发现和推导过程以及多解情况的判断。

四、教学用具
普通教学工具、多媒体工具
(以上均为命题教学的准备)
远处的空旷处选一点A,测量出AB,AC的距
离以及A
∠,就可以求出BC的距离了。


求知欲,充分调动学生学
习的积极性。










1、回顾正弦定理以及正弦定理能解决的解三角
形问题的类型。

【正弦定理:
C
c
B
b
A
a
sin
sin
sin
=
=
正弦定理能解决的问题类型:
(1)已知两个角和一条边
(2)已知两条边和一边的对角】
2、简化问题,假设A
∠为直角。

从最特殊的直
角三角形入手,运用勾股定理解决问题。

【记c
AB
b
AC
a
BC=
=
=,
,,运用勾股定理
2
2
2c
b
a+
=,解得a即可。


3、回归一般三角形,让学生思考如何求解。


角三角形中可以运用勾股定理,没有直角那就
构造直角来求解。

(以锐角三角形为例,钝角
三角形类似)
D
C
A
B
【2
2
2BD
CD
BC+
=,
A
AC
CD
sin
=,A
AC
AD
cos
=,AD
AB
BD-
=,
()()2
2
2cos
sin A
AC
AB
A
AC
BC⋅
-
+

=,
A
AB
AC
AB
AC
BC cos
2
2
2
2⋅

-
+
=】
4、根据以上探究过程,得到余弦定理:
A
bc
c
b
a cos
2
2
2
2⋅
-
+
=,
B
ac
c
a
b cos
2
2
2
2⋅
-
+
=,
用正弦定理来尝试解释技
术人员的方案,学生发现
还是解决不了问题。

将学
生带入困境,激发学生的
创造思维。

用勾股定理解决问题,给
学生解决一般三角形的问
题提供参考。

相关文档
最新文档